Баев о я методика расследования взяточничества. Расследование получения и дачи взятки. Обстоятельства подлежащие доказыванию

Главная / Авто

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Экотоксикологическая характеристика компонентов нефти

2. Естественное восстановление плодородия

3. Методы рекультивации нефтезагрязненных почв

3.1 Механические методы

3.2 Физико-химические методы

3.3 Биологические методы

3.4 Агротехнические методы

3.5 Фитомелиоративные методы

Библиографический список

Введение

Интенсивно протекающие процессы добычи нефти приводят к увеличению масштабов загрязнения земель. Углеводороды являются одним из опаснейших, быстро распространяющихся и медленно деградирующих в естественных условиях загрязнителей. В общем объеме источников загрязнения природной среды на первое место выходят прорывы нефтяных транспортных систем. Сейчас в эксплуатации находится около 350 тыс. трубопроводов с неудовлетворительным состоянием, на которых ежегодно происходит до 24 000 прорывов, «свищей» и других некатегорированных аварий. Так, потери нефти составляют примерно 3 % ее годовой добычи.

По данным экспертов голландской независимой консалдинговой компании IWACO, в настоящее время в Западной Сибири нефтью загрязнено от 700 до 840 тыс. га земель, что составляет более чем семь территорий города Москвы. В Ханты-Мансийском национальном округе ежегодно на землю выливается до 2 млн. т. нефти (Иларионов С. А., 2004). Экологическая опасность предприятий заключается в большом количестве неорганизованных источников выбросов. Отрасль насчитывает 2064 источника загрязнения, в том числе 834 организованных. В Пермском крае основными предприятиями-загрязнителями среды являются: ОАО «ЛУКойл - Пермнефть», ЗАО «ЛУКойл - Пермь» (Ф. М. Кузнецов, 2003). Интенсивность процессов естественного самоочищения природных объектов от нефтяного загрязнения зависит от природных условий региона, наличия влаги, тепла и активности жизнедеятельности почвенного биоценоза. В связи с постоянно увеличивающимися объемами используемых человеком территорий, ростом техногенных ландшафтов, отрицательно влияющих на экологическую обстановку окружающих участков, восстановление земель, подвергшихся разрушающему воздействию, является наиболее актуальной проблемой. Широкое распространение получило такое направление ее решения, как рекультивация.

Рекультивация -- это комплекс работ, направленный на восстановление продуктивности нарушенных земель, а также на улучшение условий окружающей среды.

К сожалению, до настоящего времени не существует достаточно фундаментального научного обоснования рекультивации нефтезагрязненных земель. Поэтому ликвидация последствий нефтяных разливов в большинстве случаев проводится совершенно неприемлимыми устаревшими методами - выжиганием нефтезагрязненной земли, землеванием песком, транспортировкой зягрязненной земли в отвалы, что способствует вторичному загрязнению окружающей среды (Кузнецов Ф. М.,2003).

Цель данной работы: изучение рекультивации нефтезагрязненных почв.

1. Изучить экотоксикологическую характеристику компонентов нефти;

2. Рассмотреть процесс естественного восстановления плодородия почв;

3. Рассмотреть иоценить используемые методы для рекультивации нефтезагрязненных почв.

1. Экотоксикологическая характеристика компонентов нефти

Нефть - это жидкий природный раствор, состоящий из большого числа углеводородов разнообразного строения и высокомолекулярных смолисто-асфальтеновых веществ. В нем растворено некоторое количество воды, солей, микроэлементов. Нефти всех месторождений мира отличает, с одной стороны, огромное разнообразие видов (нет двух совершенно тождественных нефтей из разных пластовых залежей), с другой - единство ее состава и структуры, сходство по некоторым параметрам. Элементный состав десятков тысяч разнообразных индивидуальных представителей нефти во всем мире изменяется в пределах 3 - 4 % по каждому элементу. Главные нефтеобразующие элементы: углерод (83 - 87 %), водород (12 - 14 %), азот, сера, кислород (1 - 2 %, реже 3 - 6 %за счет серы). Десятые и сотые доли процента нефти составляют многочисленные микроэлементы, набор которых в любой нефти примерно одинаков (Пиковский Ю. И., 1988).

Легкая фракция нефти с температурой кипения ниже 200 С состоит из низкомолекулярных алканов, циклопарафинов (нафтенов) и ароматических углеводородов. Основу этой фракции составляют алканы с числом углеродных атомов С5--С11. В среднюю фракцию с температурой кипения выше 200 С входят алканы с числом углеродных атомов С12--С20 (твердые парафины), циклические углеводороды (циклоалканы и арены). Тяжелая фракция нефти представлена высокомолекулярньтми гетероатомными компонентами нефти -- смолами и асфальтенами (Иларионов С.А., 2004).

Легкая фракция, куда входят наиболее простые по строению низкомолекулярные метановые (алканы), нафтеновые (циклопарафиновые) и ароматические углеводороды, - наиболее подвижная часть нефти.

Компоненты легкой фракции, находясь в почвах, водной или воздушной средах оказывают наркотическое и токсическое действие на живые организмы. Особенно быстро действуют нормальные алканы с короткой углеродной цепью, содержащиеся в основном в легких фракциях нефти. Эти углеводороды лучше растворимы в воде, легко проникают в клетки организмов через мембраны, дезорганизуют цитоплазменные мембраны организма. Большинством микроорганизмов нормальные алканы, содержащие в цепочке менее 9 атомов углерода, не ассимилируются, хотя и могут быть окислены. Токсичность нормальных алканов ослабляется в присутствии нетоксичного углеводорода, который уменьшает общую растворимость алканов. Вследствие летучести и более высокой растворимости низкомолекулярных нормальных алканов их действие обычно не бывает долговременным. Если их концентрация не была летальной для организма, то со временем нормальная жизнедеятельность организма восстанавливается (при отсутствии других токсинов).

Многие исследователи отмечают сильное токсическое действие легкой фракции на микробные сообщества и почвенных животных. Легкая фракция мигрирует по почвенному профилю и водоносным горизонтам, расширяя, иногда значительно, ареал первоначального загрязнения. На поверхности эта фракция в первую очередь подвергается физико-химическим процессам разложения, входящие в ее состав углеводороды наиболее быстро перерабатываются микроорганизмами. Значительная часть легкой фракции нефти разлагается и улетучивается еще на поверхности почвы или смывается водными потоками.

Компоненты средней фракции, с числом углеродных атомов С12--С20, практически нерастворимы в воде. Их токсичность выражена гораздо слабее, чем у более низкомолекулярных структур.

Содержание твердых метановых углеводородов (парафина) в нефти (от очень малых величин до 15 - 20 %) - важная характеристика при изучении нефтяных разливов на почвах. Твердый парафин нетоксичен для живых организмов, но вследствие высоких температур застывания (+18 о С и выше) и растворимости в нефти (+40 о С) в условиях земной поверхности он переходит в твердое состояние, лишая нефть подвижности. Твердые парафины, выделенные из нефти и очищенные, с успехом используются в медицине.

Твердый парафин очень трудно разрушается, с трудом окисляется на воздухе. Он надолго может «запечатать» все поры почвенного покрова, лишив почву свободного влагообмена и дыхания. Это в первую очередь приводит к полной деградации биоценоза.

К циклическим углеводородам в составе нефти относятся нафтеновые (циклоалканы) и ароматические (арены). Общее содержание нафтеновых углеводородов в нефти изменяется от 35 до 60 %.

О токсичности нафтеновых сведений почти не имеется. Вместе с тем имеются данные о нафтенах как стимулирующих веществах при действии на живой организм. Примером может служить лечебная нефть.

Циклические углеводороды с насыщенными связями окисляются очень трудно. Биодеградацию циклоалканов затрудняют их малая растворимость и отсутствие функциональных групп.

Основные продукты окисления нафтеновых углеводородов - кислоты и оксикислоты. В ходе процесса уплотнения кислых продуктов частично могут образовываться продукты окислительной конденсации - вторичные смолы незначительное количество асфальтенов.

Ароматические углеводороды (арены) имеют большое значение в экологической геохимии. К этому классу можно отнести как собственно ароматические структуры, так и «гибридные» структуры, состоящие из ароматических и нафтеновых колец.

Содержание ароматических углеводородов в нефти изменяется от5 до 55%, чаще всего от 20 до 40 %. Полициклические ароматические углеводороды (ПАУ), т. е. углеводороды, состоящие из двух и более ароматических колец, содержатся в нефти в количестве от 1 до 4 %. Как и нафтенах, в этих молекулах вместо атома водорода в одном или нескольких радикалах присоединена алкановая цепочка, что позволяет рассматривать эти молекулы как замещенные гомологи соответствующих голоядерных углеводородов. В нефти наиболее распространены гомологи нафталина, всегда имеются также гомологи фенантренов, бензфлуоренов, хризанов, пирена, 3,4-бензпирена и др. Незамещенные ароматические углеводороды в сырой нефти встречаются редко и в незначительных количествах.

Среди голоядерных ПАУ большое внимание обычно уделяется 3,4-бензпирену как наиболее распространенному представителю канцерогенных веществ. Данные о содержании 3,4-бензпирена в нефти всегда неоднозначны.

Ароматические углеводороды - наиболее токсичные компоненты нефти. В концентрации всего 1 % в воде они убивают все водные растения; нефть, содержащая 38 % ароматических углеводородов, значительно угнетает рост высших растений. С увеличением ароматичности нефтей увеличивается их гербицидная активность. Моноядерные углеводороды - бензол и его гомологи - оказывают более быстрое токсическое воздействие на организмы, чем ПАУ. ПАУ медленнее проникают через мембраны, действуют более длительное время, являясь хроническими токсикантами.

Ароматические углеводороды трудно поддаются разрушению. Наиболее устойчивы к окислению голоядерные структуры, в частности 3,4-бензпирен, при обычных температурах окружающей среды они практически не окисляются. Содержание всех групп ПАУ при трансформации нефти в почве постепенно снижается.

Смолы и асфальтены относятся к высокомолекулярным неуглеводородным компонентам нефти. В составе нефти они играют исключительно важную роль, определяя во многом ее физические свойства и химическую активность. Смолы - вязкие мазеподобные вещества, асфальтены - твердые вещества, нерастворимые в низкомолекулярных углеводородах. Смолы и асфальтены содержат основную часть микроэлементов нефти. С экологических позиций микроэлементы нефти можно разделить на две группы: нетоксичные и токсичные. Микроэлементы в случае повышенных концентраций могут оказывать токсическое воздействие на биоценоз. Среди токсичных металлов, концентрирующихся в смолах и асфальтенах, наиболее распространенные ванадий и никель. Соединения никеля и особенно ванадия в повышенных концентрациях действуют как разнообразные яды, угнетая ферментативную активность, поражая органы дыхания, кровообращения, нервную систему, кожу человека и животных. Достаточных данных о токсичности органической части смол и асфальтенов не имеется. Высокая канцерогенность появляется только в высокотемпературных продуктах пиролиза, коксования и крекинга. В продуктах, получаемых в процессах каталитического гидрирования, канцерогенность резко снижается и исчезает.

Вредное экологическое влияние смолисто-асфальтеновых компонентов на почвенные экосистемы заключается не в химической токсичности, а в значительном изменении водно-физических свойств почв. Если нефть просачивается сверху, ее смолисто-асфальтеновые компоненты сорбируются в основном в верхнем, гумусовом горизонте, иногда прочно цементируя его. При этом уменьшается поровое пространство почв. Смолисто-асфальтеновые компоненты гидрофобны. Обволакивая корни растений, они резко ухудшают поступление к ним влаги, в результате чего растения засыхают.

Из различных соединений серы в нефти наиболее часто обнаруживаются сероводород, меркаптаны, сульфиды, дисульфиды, тиофены, тиофаны, свободная сера.

Сернистые соединения оказывают вредное влияние на живые организмы. Особенно сильным токсическим действием обладают сероводород и меркаптаны. Сероводород вызывает отравление и летальный исход у животных и человека при высоких концентрациях (Пиковский Ю. И., 1988).

В биогеохимическом воздействии нефти на экосистемы участвует множество углеводородных и неуглеводородных компонентов, в том числе минеральные соли и микроэлементы. Токсичные действия одних компонентов могут быть нейтрализованы присутствием других, поэтому токсичность нефти не определяется токсичностью отдельных соединений, входящих в ее состав. Необходимо оценивать последствия влияния комплекса соединений в целом. При нефтяном загрязнении тесно взаимодействуют три группы экологических факторов:

· Сложность, уникальная поликомпонентность состава нефти, находящегося в процессе постоянного изменения;

· Сложность, гетерогенность состава и структуры любой экосистемы, находящейся в процессе постоянного развития и изменения;

· Многообразие и изменчивость внешних факторов, под воздействием которых находится экосистема: температура, давление, влажность, состояние атмосферы, гидросферы и т. д.

Вполне очевидно, что оценивать последствия загрязнения экосистем нефтью и намечать пути ликвидации этих последствий необходимо с учетом конкретного сочетания этих трех групп факторов (Кузнецов Ф. М., 2003).

2. Естественное восстановление плодородия

Н.М. Исмаилов и Ю.И. Пиковский (1988) определяют самовосстановление и самоочищение почвенных экосистем, загрязненных нефтью и нефтепродуктами, как стадийный биогеохимический процесс трансформации загрязняющих веществ, сопряженный со стадийным процессом восстановления биоценоза. Для разных природных зон длительность отдельных стадий этих процессов различна, что связано в основном с природно-климатическими условиями. Важную роль играют также состав нефти, наличие сопутствующих солей и начальная концентрация загрязняющих веществ. Большинство исследователей выделяет в процессе самоочищения нефтезагрязненных почв три этапа: на первом происходят главным образом физико-химические процессы трансформации углеводородов нефти; на втором этапе они подвергаются активному процессу деградации под воздействием микроорганизмов; третий этап определяют как фитомелиоративный. Все нефтезагрязненные почвы проходят указанные этапы самовосстановления, хотя длительность отдельных этапов различна в зависимости от почвенно-климатической зоны.

Исследования нефтезагрязненных почв, проведенные Институтом экологии и генетики микроорганизмов УрО РАН в различных ландшафтно-географических зонах, также свидетельствуют о том, что процесс их самоочищения является многостадийным и занимает от одного до нескольких десятилетий (Оборин А. А., 1988).

Первый этап процесса самоочищения почвы от нефти и нефтепродуктов длится примерно 1--1,5 года. На данном этапе нефть испытывает в основном физико-химические превращения, включающие распределение нефтяных углеводородов по почвенному профилю, их испарение и вымывание, изменение под действием ультрафиолетового облучения и некоторые другие.

Наибольшему физико-химическому воздействию подвергаются углеводороды нефти, попавшие в водоемы. В почве физико-химические процессы происходят значительно медленнее. По данным А.А. Оборина с соавт. (1988), в течение первых трех месяцев инкубации в почве остается не более 20 % нефти. Наиболее интенсивному воздействию подвергаются н-алканы с длиной цепи до С 16 , которые практически полностью исчезают к концу первого года инкубации нефти в почве. В результате первичного окисления в составе нефти появляются алифатические и ароматические, простые и сложные эфиры, а также карбонильные соединения типа кетонов, о чем свидетельствуют данные инфракрасной спектрометрии. Геохимические исследования остаточной нефти со сроком инкубации 1--3 месяца показали, что трансформация углеводородов, за исключением н-алканов С 12 --С 16 , не носит деструктивного характера, но окисленные продукты оказываются более подверженными минерализации микробиологическим путем.

При попадании углеводородов нефти в почву или воду происходит изменение их физико-химических свойств и, как следствие этого, нарушение естественных процессов развития живых организмов, обитающих в этих средах. Микробиологические исследования показали, что в первые дни после попадания нефти в почву почвенная биота значительно подавлена. В этот период почвенный биоценоз стремится адаптироваться к изменившимся, условиям среды. Однако после трех месяцев инкубации микробиологические процессы преобразовании нефти в почве становятся доминирующими, хотя доля химического окисления остается высокой и может достигать 50 % от всей совокупности окислительных процессов.

Второй этап процесса самоочищения длится 3 -- 4 года. К этому времени количество остаточной нефти в почве снижается до 8--10 % от исходного уровня. Этот период характеризуется возросшим количеством углеводородов метано-нафтеновой фракции и снижением доли нафтено-ароматических углеводородов и смол. Указанные изменения могут быть объяснены процессами частичной микробиологической деструкции сложных молекул смолисто-асфальтенового ряда, а также образованием новых алифатических соединений за счет перестройки моно- и бициклических соединений нафтено-ароматического ряда.

Второй этап деградации нефти в почве характеризуется главным образом микробиологическими процессами трансформации углеводородов. Особенностью второго этапа деградации нефти является разрушение ароматических С--С связей. К концу второго года инкубации происходит относительное увеличение доли ароматических углеводородов в составе хлороформенных экстрактов остаточной нефти, которое сопровождается изменением их состава: полностью исчезают моно- и бициклические углеводороды. После завершения первого периода разложения нефти в почве остается еще значительная фракция резистентных компонентов, в которой присутствуют наиболее устойчивые представители почти всех классов углеводородов нефти. Среди них преобладают полициклические ароматические углеводороды, стераны и тритерпаны, трициклические терпаны. Эти соединения являются индикаторами состояния нефти на ранней стадии второго этапа загрязнения. Однако главными компонентами остаточной нефти в почве являются полярные вещества -- смолы и асфальтены. Они сохраняются в почве в течение многих лет либо в виде подвижной фракции, либо в составе гумусового комплекса почвы. Для изучения процессов трансформации органического вещества и внесенных в почву углеводородов нефти, несомненно, одним из лучших методов следует считать метод радиоизотопного анализа.

Интенсивность разложения нефти в почве оценивают в основном по следующим показателям: количеству остаточного содержания углеводородов, скорости выделения микроорганизмами С0 2 , численности микроорганизмов-деструкторов углеводородов нефти и ферментативной активности почвы. На втором этапе в почвах зарегистрирована вспышка численности микроорганизмов, увеличение количества грибов, спорообразующих и неспоровых бактерий. Источником питания этих групп микроорганизмов являются метано-нафтеновые и ароматические углеводороды, причем активность и разнообразие состава микрофлоры стимулируются удлинением цепи алканов (Колесникова Н.М., 1990;). Второй этап процесса самоочищения нефтезагрязненных почв можно назвать соокислительным, т. е. органические соединения подвергаются тем или иным превращениям под воздействием микроорганизмов только при наличии в среде другого органического соединения (Скрябин Г. К., 1976).

Время начала третьего этапаопределяется по исчезновению в остаточной нефти исходных и вторично образованных парафиновых углеводородов. Под термином "вторично образованные углеводороды" подразумеваются структуры гомологического ряда метана, возникшие в процессе деградации более сложных соединений нефти. Третий этап в зоне южной тайги начинается через 58--62 мес. после внесения нефти в почву. Люминесцентно-битуминологические исследования, проведенные на шестой год инкубации нефти в почве, показали, что загрязненные дерново-подзолистые почвы отличаются от фоновых повышенным содержанием органических веществ, растворимых в хлороформе. Низкие фоновые показатели позволяют не учитывать исходную органику почв в составе выделенных битумоидов и классифицировать их как гумифицированные разновидности нефтяных углеводородов. По структурно-групповому составу выделенные битумоиды резко отличаются от исходной нефти низким содержанием метано-нафтеновой фракции и высоким -- смолистой. Существует гипотеза, что за счет биодеградации нефти микроорганизмы продуцируют углеводороды различного молекулярного веса и химической структуры.

Особое место в процессе деградации нефти занимают полициклические ароматические углеводороды, обладающие канцерогенным действием на живые организмы. Контроль за канцерогенностью почвы ведут по наличию в ней 3,4-бензпирена, который является одним из наиболее известных сильных канцерогенов. Сложность трансформации полициклических ароматических углеводородов объясняется их стойкостью к микробиологическому воздействию, особенно в неблагоприятных климатических условиях, а это способствует накоплению 3,4-бензпирена в нефтезагрязненных почвах. Помимо длительной аккумуляции, для него характерны и большие площади рассеивания в результате сжигания горючих полезных ископаемых. Как показали исследования такого промышленно развитого района, как Западный Урал, в результате этого границы фонового содержания 3,4-бензпирена смещаются к Северному полярному кругу.

Геоботанические описания площадок в зоне южной тайги с 15- и 25-летней инкубацией нефти в почве свидетельствуют об устойчивых изменениях в сформировавшихся после нефтяного разлива фитоценозах. Сильное нефтяное загрязнение приводит к полному выпадению травянистого покрова и древостоя, что подтверждается наличием сухостоя и гнило-сухих поваленных деревьев. Растительность на площадке с 15-летним сроком инкубации представлена кипреем узколистным, веиником наземным, хвощом полевым. Только к 25 годам на загрязненной площадке формируется разнотравно-злаковое сообщество.

Сроки естественного восстановления нефтезагрязненных почв значительно увеличиваются при сжигании пролитой нефти; на сожженных площадках обнаружено наличие канцерогенных веществ, образовавшихся при пиролитических процессах. Даже через 20 лет концентрация полициклических ароматических углеводородов на поверхности почвы превышает фоновый уровень (Иларионов С.А., 2004).

Итак, механизмы естественного очищения почвенных экосистем от нефти имеют этапный характер. Каждому из выделенных этапов соответствуют определенное количество и структурные особенности остаточной нефти, что обусловливает конкретную биогеохимическую обстановку в изучаемой системе. Самой природой подсказан биологический путь восстановления природных объектов, загрязненных углеводородами нефти; правда, в естественных условиях он протекает достаточно долго и зависит от климатических условий, вида почвы и тяжести загрязнения (Бирюков В., 1996).

Скорости восстановления компонентов экосистемы нефтезагрязненнных почв значительно ниже скорости трансформации самой нефти в почве. Наблюдается замкнутый по времени эффект последействия. Длительность естественного восстановления нарушенных почвенных экосистем объясняется тем, что действие такого гетерогенного фактора, как нефть, не может быть однозначным. Оно распространяется на все компоненты подвергнувшейся загрязнению окружающей среды.

Полученная информация по исследованию процессов естественного очищения почв от нефтяного загрязнения необходима для совершенствования методов, применяемых при мониторинге нефтезагрязненных почвенного экосистем. Механизм естественного очищения почвенных экосистем имеет этапный характер. Каждому из выделенных этапов соответствуют определенные количества и структурные особенности нефти, что определяет конкретную биогеохимическую обстановку в изучаемой системе. Скорости восстановления отдельных биокомпонентов нефтезагрязненных почв значительно ниже скорости трансформации самой нефти в почве. Наблюдается замкнутый по времени эффект последействия. Длительность естественного восстановления нарушенных почвенных экосистем объясняется тем, что действие такого антропогенного фактора, как нефть, не может быть однозначным, оно определенным образом распространяется на всю изучаемую систему (Иларионов С.А., 2004).

3. Методы рекультивации нефтезагрязненных почв

Под рекультивацией понимается комплекс мер, направленных на восстановление природных объектов, нарушенных в результате природнохозяйственной деятельности человека. Процесс удаления разлитой нефти и нефтепродуктов требует довольно сложной технологии как при подготовке загрязненного участка к рекультивации, так и при проведении самого процесса (Кузнецов Ф. М., 2003).

До недавнего времени, а порой и сейчас, многие предприятия, где не уделяют должного внимания вопросам борьбы с нефтяными загрязнениями, очистку почвы от нефти и нефтепродуктов проводят двумя методами -- сжиганием нефтяного пятна и землеванием (пескованием). Как первый, так и второй метод приводят к длительному вторичному загрязнению окружающей среды. На участках выжигания пролитой нефти даже через 4 - 6 лет общее проективное покрытие растениями редко превышает 5 - 10 % площади. Зарастание такого рода техногенных экотопов начинается по трещинам образовавшейся на поверхности почвы плотной битуминозной корки (Иларионов, 2004).

Метод ликвидации аварий сжиганием широко распространен на нефтепромыслах Западной Сибири, однако сроки естественного восстановления нефтезагрязненных почв при этом значительно увеличиваются. Обследование таких участков через 7 лет после сжигания аварийного разлива нефти показало повышенное содержание канцерогенных веществ, образовавшихся при пиролитических процессах; концентрация полиароматических углеводородов была почти в 3 раза выше, чем в свежезагрязненных образцах торфа. На участках, где до разлива произрастал низкорослый заболоченный лес, растительность практически отсутствовала, и через 7 лет зарастаемость не превышала 20 %. Фитоценоз был представлен пушицей, осокой, сусаком, на обваловке росли иван-чай и камыш озерный; древесная растительность отсутствовала. Следовательно, при сжигании нефтяного пятна не только увеличивается токсичность почв, но и затормаживается восстановление практически всех изученных блоков экосистемы (Шилова И. И., 1978).

При рекультивации почв применяют следующие методы:

Механические;

Физико-химические;

Агротехнические;

Микробиологические;

Фитомелиоративные.

3.1 Механические методы

Механическая очистка предусматривает сбор нефти и нефтепродуктов либо вручную, либо с помощью обычных, а также специальных машин и механизмов. Как правило, на первом этапе данного способа очистки производят локализацию пролитой нефти путем создания вокруг разлива с помощью бульдозера земляного вала около 1 м высотой. После этого, если позволяют местные условия, рядом с местом разлива нефти оборудуют котлован-отстойник, который устилают нефтенепроницаемой пленкой. Затем из места локализации нефть перекачивают в котлован (который, как правило, обустраивают ниже уровня места разлива), а из него ее отправляют на товарный склад для дальнейшей переработки. Согласно А. И. Булатову с соавт. (1997), степень механической очистки может достигать 80 %.

Для отделения нефти от загрязненной почвы могут быть использованы центрифуги, которые применяют для очистки буровых растворов от выбуренного шлама. В нашей стране для этих целей используют центрифуги ОГШ-132 и ОГШ-502 с частотой вращения ротора 600 и 2560 об/мин соответственно. Производительность центрифуги ОГШ-132 составляет 100 - 200 м 3 /ч. Этот способ позволяет производить экологически чистый сбор твердых отходов (Кузнецов Ф. М., 2003).

Одним из способов рекультивации почвы при ремонтно-восстановительных работах на нефтепроводе заключается в том, чтобы механически не допустить загрязнения плодородного слоя почвы. С этой целью перед началом вскрытия трассы его срезают на глубину 20 - 30 см и транспортируют бульдозерами в бурты временного хранения. После проведения ремонтно-восстановительных работ срезанная плодородная часть почвы возвращается на прежнее место (Светлов, 1996).

3.2 Физико-химические методы

Физико-химические методы применяются для очистки от нефти как самостоятельно, так и в сочетании с другими способами. Широко используются сорбционные методы. В качестве сорбентов применяют природные и синтетические адсорбционные материалы органической и неорганической природы. Для сорбции нефти и нефтепродуктов могут применяться такие вещества, как торф, торфяной мох, бурый уголь, кокс, рисовая шелуха, кукурузная лузга, древесный опил, диатомовая земля, солома, сено, песок, резиновая крошка, активированный уголь, перлит, пемза, лигнин, тальк, снег (лед), меловой порошок, отходы текстильной промышленности, вермикулит, изопреновый каучук и некоторые другие материалы. Особый практический интерес представляют сорбенты растительного происхождения (торф, опилки, ДВП и другие) ввиду их невысокой стоимости и значительного объема запасов. Сорбционная способность гранулированного торфа составляет 1,3 - 1,7 г/г, степень очистки - 60 - 88 %. Для удаления нефтепродуктов с водной поверхности применяют соцветия тростника. Их сорбционная способность изменяется от 11 до г нефти на 1 г тростниковых соцветий (Кузнецов Ф. М., 2003).

В качестве сорбентов используют также разнообразные отходы промышленных предприятий, которые весьма эффективны при сборе нефти с поверхности воды и почвы. Они имеют низкую стоимость и высокую нефтепоглощающую способность.

Существуют различные способы очистки загрязненного нефтепродуктами грунта с использованием сорбционных материалов. Например, если в качестве адсорбента используют гидрофобизованные нефтепродуктами опилки, то методика очистки заключается в следующем: опилки смешивают с нефтезагрязненной почвой, затем в данную смесь подают воду и все перемешивают, опилки после данной процедуры всплывают и их удаляют с поверхности воды. При этом очистка грунта достигает 97 - 98 %. В качестве гидрофобизатора используется отработанное техническое масло (Абрашин Ю. Ф., 1992).

Для сбора пролитого масла или маслообразного продукта можно использовать рыхлую или крупчатую снежную массу: пролитое масло покрывают слоем снежной массы высотой 2 - 3 см, слегка его утрамбовывают, чтобы улучшить ее контакт с маслом, дают снежной массе некоторое время для пропитки маслом, после чего ее перемешивают. Обработку масла указанным способом ведут до тех пор, пока большая часть снежной массы не пропитается маслом, затем ее собирают в отдельную емкость, нагревают и отделяют выделившийся слой масла (Грибанов Г. А., 1990).

Наиболее широкое применение на практике получили торф и различные его модификации, древесный опил, перлит и различные марки активированного угля. Отечественная промышленность производит следующие марки активированных углей: БАУ, КАД-йодный, СКТ, АГ-3, МД, АСГ-4, АДБ, БКЗ, АР-3, АГН, АГ-5, АЛ-3 и некоторые другие, которые можно применять для очистки объектов окружающей среды от нефти и нефтепродуктов.

Торф -- природное образование органической природы, возникшее в результате отмирания и неполного разложения болотной растительности в условиях повышенной влажности и недостатка кислорода. Это многокомпонентная система, содержащая как органические, так и минеральные вещества. В органическую часть входят битумы, извлекаемые из торфа различными органическими растворителями, они хорошо растворяются в воде и легко гидролизуются. Кроме того, в состав торфа входят гуминовые и фульвокислоты, хорошо растворимые в щелочах и кислотах соответственно, а также трудно поддающийся микробному разложению лигнин. Исследования хлороформенных экстрактов торфа, отобранного в районе Западно-Сургутского месторождения ОАО "Сургутнефтегаз", показали, что его органическая часть представляет систему, включающую различные структурно-групповые фракции: доля метанонафтеновых углеводородов составляет 29,2 %, нафтеноароматических -- 20,8 %, смол -- 28,5 %, асфальтенов -- 21,5 %. Сложная природа органического вещества торфа, его химический состав предопределяют его замечательное свойство -- сорбционную способность. Использование торфа в качестве сорбента техногенных выбросов обусловлена его микроструктурой и дисперсностью, пористостью, клетчатой структурой, высокой удельной поверхностью (до 200 м 2 /г). Для выяснения сорбционной специфики торфо-мохо-лишайниковых образований Среднего Приобья была проделана серия лабораторных и полевых экспериментов. В опытах использовалась нефть Западно-Сургутского месторождения. Анализ хлороформенных экстрактов сорбированной нефти свидетельствует о том, что при нагрузке нефти от 20 до 400 мл на 100 г торфа количество поглощенной нефти не превышает 25 % от исходной нагрузки. Расчет показал, что одна весовая часть влажного торфа сорбирует 0,7 весовой части нефти. Нефтепоглощающая способность мха при этой нагрузке составляет две весовые части нефти на одну весовую часть мха. Количественное определение сорбционной емкости воздушно-сухих образцов = 20 °С) показало, что одна весовая часть их способна поглотить до четырех весовых частей нефти. Следовательно, гидрофильность торфа значительно снижает его нефтепоглощающую способность. Для сорбции 1 т нефти требуется около 1,5 т торфа естественной влажности, или 250 кг сухого. Сорбционная емкость торфа может быть увеличена различными приемами: тепловой обработкой, добавкой водоотталкивающих агентов и т. д. (Кузнецов Ф. М., 2003).

В Республике Коми для рекультивации нефтезагрязненных почв используют метод засыпки нефтяного разлива песком и торфом (Братцев А. П., 1988). Однако И. Б. Арчегова с коллегами (1997) против использования торфа для рекультивационных работ в условиях Крайнего Севера, так как считает, что разработки торфа на Севере нанесут дополнительный ущерб природе. Сорбция полициклических ароматических углеводородов типа 3,4-бензпирена была подтверждена полевыми исследованиями. При полной нефтенасыщенности торфа концентрация 3,4-бензпирена в нем может достигать 8,5--9 тыс. мкг/кг образца. Если учесть, что исходная нефть содержит порядка 16 тыс. мкг 3,4-бензпирена на 1 кг нефти, то о торфе можно говорить как о наиболее дешевом и эффективном материале, способном сорбировать канцерогенные вещества.

Для восстановления плодородия почв, загрязненных нефтепродуктами, и изменения направленности почвообразовательного процесса в сторону их окультуривания предлагается после бурения скважин обрабатывать почву и грунт комплексными реагентами, включающими высокоактивные дисперсные адсорбенты. Для детоксикации слабозагрязненных почв использовалась композиция следующего состава: клиноптилоллит из расчета 80--100 т/га, диспергированный мел -- 2,5 т/га, аммиачная селитра -- 0,01--0,02 т/га. Отдельно растворенный силикон (0,005--0,01 т/га) добавляется к подготовленной смеси, и все компоненты перемешиваются 8--10 мин. Приготовленную композицию вносили в загрязненные почвы на глубину 20--25 см из специально установленных навесных бачков с последующей заделкой ротационной бороной БИГ-3.

Полученные результаты свидетельствуют о том, что обработка загрязненных нефтью почв предлагаемой композиции приводит к изменению дисперсности с образованием дополнительного кристаллического каркаса, что сопровождается изменением структурно-механических, адсорбционных свойств почв в широком диапазоне. Токсичность загрязненных почв, составлявшая до обработки 35 %, уменьшилась до 17 %. Это свидетельствует об интенсификации процессов сорбции нефтепродуктов, что влияет на изменение структурного типа почвы и улучшает ее агрономические свойства. После обработки почв содержание тяжелых фракций нефти составляет 0,3 %, что соответствует слабой степени загрязненности; интенсивно восстанавливается водный режим, о чем свидетельствуют содержание микрореагентов и изменение фильтрационной способности. Создаются нормальные условия для питания растений, и это обеспечивает их выживаемость до 95 %.(Иларионов С. А., 2004).

Одно из самых основных свойств, которым должен обладать сорбент, применяемый для очистки нефтезагрязненных объектов, -- его гидрофобность. Такие свойства присущи, например, древесному углю и пиролитическим отходам целлюлозно-бумажной промышленности. При пиролизе отходов древесины на лесокомбинате "Балыклес" г. Нефтеюганска производят пиролитический продукт с хорошими сорбционными свойствами в отношении углеводородов нефти. Подобный сорбционный материал, названный "Илокор", -- это продукт пиролиза отходов древесины, полученный по известной технологии и представляющий собой полидисперсный порошок с размерами частиц 0,3--0,7 мм. Его сорбционная емкость составляет 8Д--8,8 г нефти на 1 г сорбента. На основе данного препарата получены две его модификации: "Эколан" и "Илокор-био". Эти сорбенты обладают не только хорошими сорбционными свойствами; их применение способствует быстрому восстановлению любого типа нефтезагрязненных почв. Так, при внесении в нефтезагрязненную почву с нагрузкой нефти 50 л/м 2 препарата "Эколан" в количестве 20 кг/м 2 происходило практически полное восстановление ее плодородия. Для восстановления выщелоченных черноземов потребовалось 3--4 мес, а для серых лесостепных почв -- 7--8 лет. По мнению указанных выше авторов, при внесении в загрязненную почву данного препарата резко снижается токсичность почвы, что происходит, по-видимому, благодаря сорбции легких фракций нефти.

Дешевый и экологически чистый препарат "Эконафт" был разработан фирмой "Инство". Расход этого вещества для обезвреживания нефтемаслоотходов составляет 0,3--1,0 т на 1 т отходов в зависимости от степени загрязнения. После смешения препарата с загрязненной землей или другими нефтемаслоотходами процесс адсорбции завершается через 30 -- 40 мин. При этом утилизируемый материал приобретает вид гранул, прочный наружный слой которых герметизирует адсорбированные жидкие загрязнения и изолирует их тем самым от земли. Полученные гранулы не смачиваются водой, морозоустойчивы и стойки при хранении. Смешанные с землей гранулы могут быть использованы в качестве наполнителя в производстве строительных и дорожных материалов.

Разработаны методы обезвреживания нефти и нефтепродуктов путем их связывания и превращения в твердые образования. При введении в смесь жидких и твердых углеводородов портландцемента образуется состав, который затем подвергают сушке. При этом углеводороды оказываются как бы покрытыми слоем цемента, изолирующим данный состав от соприкосновения с окружающей средой. Далее происходит застывание цемента в виде формы, которая придается смеси на начальном этапе перемешивания (Булатов А. И., 1997).

В другом случае осуществляют смешивание нефти и нефтепродуктов с известковой вяжущей пастой на водной основе. Полученную смесь формируют в блоки удобных для последующей транспортировки или захоронения размеров и выдерживают до затвердения, в результате чего достигается капсулирование экологически вредных веществ в твердой цементирующей массе. Для ускорения процесса отверждения и снижения расхода отвердителя в композиционную смесь добавляют нетоксичную окись хрома, образующуюся при термическом разложении двухромовокислого аммония. Окись хрома, полученная при термическом разложении двухромовокислого аммония, рассыпается по поверхности отверждаемой жидкости. Благодаря сильно развитой структуре поверхности окись хрома поглощает нефть, нефтепродукты и растительные масла (Быков Ю. И., 1991).

. Среди обширного класса сорбентов наиболее эффективными для удаления с поверхности органических загрязнителей являются искусственные сорбенты многоразового пользования с высокоразвитой открытопористой структурой. К таким материалам относится, например, сорбент, созданный на основе карбамидного олигомера, специальным способом вспененного и превращенного в поропласт с высокоразвитой межфазной поверхностью. Он обладает отличными олеофильными свойствами и высокой сорбционной способностью: 1 г такого сорбента может поглощать до 60 г нефти и нефтепродуктов в зависимости от плотности сорбента; скорость сорбирования составляет от нескольких минут до 1--2 ч в зависимости от вязкости нефтепродукта. Сорбент позволяет осуществлять последующее простое извлечение собранного нефтепродукта (до 97%) методом отжима с целью его дальнейшей утилизации.

В Сибирском институте химии нефти СО РАН (г. Томск) разработана технология получения высокоэффективных адсорбентов на основе ультрадисперсных порошков металлов. Данные адсорбенты созданы на основе окиси алюминия и имеют неравновесную кристаллическую структуру, развитую поверхность и способны эффективно и быстро адсорбировать из воды органические вещества, нефтепродукты, тяжелые металлы, радионуклиды, галогены и другие загрязнители. Кроме того, эти адсорбенты обладают способностью коагулировать и осаждать коллоидные частицы железа, неорганических примесей и эмульсии органических веществ и нефтепродуктов в водной среде.

Твердые синтетические полимерные сорбенты (пенополиуретан, различные смолы) состоят из частиц, содержащих открытые поверхностные поры, которые способны удерживать углеводороды, и закрытые внутренние поры, придающие частицам хорошую плавучесть. Такие сорбенты не поглощают воду, но способны поглотить 2--5-кратный объем углеводородов. На некоторых предприятиях США для удаления нефти с поверхности воды используют хлопья полиуретановой пены, которая в дальнейшем собирается и отжимается с помощью специального устройства.

Хорошими сорбционными свойствами обладают такие полимерные материалы, как вспененные полистирольные гранулы или фенолформальдегидная стружка. Одним из лучших материалов в сорбции нефти оказался "пламилод", который представляет собой специально изготовленную пластмассу. Данный материал может впитать в себя до 1 т нефти на 40--130 кг собственного веса (Кагарманов Н. Ф., 1978).

Для очистки нефтезагрязненной почвы используют также поверхностно-активные вещества. Они изменяют поверхностное натяжение нефтяной пленки, что способствует ее диспергированию и лучшему отделению сырой нефти и нефтепродуктов от частиц почвы. В настоящее время для данной цели используют детергенты искусственного и естественного происхождения.

Песчаная почва, загрязненная нефтепродуктами, может быть очищена с помощью подогретой воды, в которую введены поверхностно-активные вещества. Данная операция осуществляется следующим образом. Почву промывают подогретой до 20 -- 100 °С водой, из полученной жидкостной смеси путем отстаивания отделяют нефть и нефтепродукты, песок дополнительно промывают водным раствором, который содержит добавки ПАВ для отделения нефтяной пленки с поверхности частиц. Затем образующуюся водно-нефтяную эмульсию отделяют и обрабатывают деэмульгатором до образования отдельных слоев нефти и воды. После этого слои разделяют и путем отгонки отделяют деэмульгатор, который направляют для повторного использования. При этом степень очистки частиц песка составляет 98,0 - 99,9 %.

В Московском институте эколого-технологических проблем была создана установка для очистки грунта от нефти и нефтепродуктов. Принцип ее действия основан на использовании виброкавитационной экстракции загрязнений, содержащих нефть и нефтепродукты, с последующим разделением пульпы на чистый грунт и извлеченные нефтепродукты. В качестве экстрагентов разработчики предлагают использовать как пресную, так и соленую воду, пар, нефть и различные углеводороды. Установка снабжена специально сконструированным экстрактором, который обладает высокими производительностью и эффективностью, а также оригинальным узлом для последующего отделения грунта от нефти и нефтепродуктов. Масса установки не превышает 55 т, ее производительность составляет 1 т загрязненного грунта в час. Расход воды -- не более 200 кг на 1 т исходного грунта. Остаточная концентрация нефти и нефтепродуктов в грунте после его обработки не превышает 0,05 -- 0,1 % (по массе). В этом же институте созданы растворы комплексных препаратов на основе полиалкиленгуанидинов (ПАГ), которые разделяют водно-нефтяные эмульсии.

Предложен термический способ очистки почвы от легких и средних по молекулярному весу углеводородов, при котором в пробуренную скважину впускают горячую смесь инертного газа и воздуха, затем ее поджигают, а продукты сгорания углеводородов откачивают на поверхность почвы в куполообразное защитное устройство, в котором продукты сгорания обезвреживаются и выбрасываются в атмосферу. Другой термический способ обезвреживания почвы, загрязненной значительным количеством нефтепродуктов, заключается в удалении ее с загрязненного участка и обработке на специальной установке. После предварительного нагрева горячими газами почву пропускают через горелку обрабатывающей установки, где из нее отсасывают в виде паров около 95 % присутствующих в ней углеводородов, которые направляются в отделение конденсации для превращения в жидкий нефтепродукт. Из камеры горения почву перегружают в камеру дожигания, в которой она нагревается до 1200 °С, в результате чего разрушаются оставшиеся в почве токсичные вещества. После завершающей обработки почва становится пригодной для обычного использования (Иларионов С. А., 2003).

Методы поверхностной очистки от нефтяных загрязнений с помощью сорбентов весьма перспективны, так как эти методы просты в осуществлении, экологически безопасны и позволяют в дальнейшем легко утилизировать собранные нефтепродукты.

3.3 Микробиологические методы

Способность окислять углеводороды нефти обнаружена у многочисленных видов бактерий и грибов, принадлежащим к родам: Acinetobacter, Acremonium, Pseudomonas, Bacillus, Mycobacterium, Micrococcus, Achrobacter, Aeromonas, Proteus, Nocardia, Rhodococcus, Serarratia, Spirillium и другие, и грибы - Aspergillus, Candida, Penicillum, Trichoderma, Aureobasidium и некоторые другие. Микроорганизмы, использующие углеводороды нефти, являются главным образом аэробными, т. е. они минерализуют нефтяные углеводороды только в присутствии кислорода воздуха. Окисление углеводородов осуществляется оксигеназами. Промежуточными продуктами при распаде углеводородов являются спирты, альдегиды, жирные кислоты, которые затем окисляются до углекислого газа и воды.

Сразу после загрязнения почвы нефтью и/или нефтепродуктами основную роль играют физико-химические процессы. Их возможно интенсифицировать различными методами. После удаления из почвы наиболее токсичных легких фракций нефти существенную роль в очищении почв начинают играть микроорганизмы (Андерсон Р. К., 1980; Гусев, 1981). Для ускорения процессов микробной деструкции в почве углеводородов нефти в настоящее время применяют главным образом два подхода: стимуляцию аборигенной почвенной углеводородокисляющей микрофлоры и интродукцию в нефтезагрязненную почву угле-водородокисляющих микроорганизмов и их ассоциаций (бактериального препарата) (Иларионов С.А., 1997).

Стимуляция естественной нефтеокисляющей микрофлоры основана на создании в почве оптимальных условий для ее развития, в том числе нейтрализации изменений, вызванных попаданием в почву нефти (Пиковский Ю.И, Исмаилов, 1988). Так, для улучшения водно-воздушного режима нефтезагрязненной почвы рекомендуются ее рыхление, частая вспашка, дискование, добавление композиций, улучшающих промывной режим и порозность загрязненной почвы перемешивание с незагрязненной почвой.

Д.Г. Звягинцев (1987) на основании анализа поведения почвенных микробных популяций пришел к выводу о том, что в самой почве есть достаточное количество разнообразных микроорганизмов, которые способны разлагать различные вещества, в том числе и углеводороды нефти. Однако для их оптимального развития необходимо создать условия. При внесении в почву микроорганизмов их численность через определенное время стабилизируется на каком-то конкретном уровне: Очень большое значение имеет фаза роста микроорганизмов, в которой они вносятся в почву. По мнению многих авторов (Звягинцев, 1987), интродукция в загрязненную почву микроорганизмов, окисляющих углеводороды нефти, малоперспективна. К тому же интродукция штаммов и ассоциаций микроорганизмов в окружающую среду может привести к значительным изменениям микробоценоза и в конечном счете повлиять на всю экосистему (Звягинцев Д.Г., 1987).

Однако, согласно другой точке зрения, введение новых углеводородокисляющих микроорганизмов с бактериальными препаратами является оправданным при очистке нефтезагрязненных почв северных территорий, где микробиологическая активность почвы слаба из-за непродолжительного теплого сезона, сурового климата и специфических почвенных условий, особенно при техногенном воздействии (Маркарова Л.Е., 1999)

Для ускорения процесса деградации нефти в почве к естественной ассоциации микроорганизмов часто добавляют чистые культуры микроорганизмов-деструкторов углеводородов нефти, выделенные из вероятных ареалов их распространения -- загрязненных нефтепродуктами почв из различных климатических зон. Наиболее активные штаммы микроорганизмов-деструкторов нефти в дальнейшем служат основой для создания бактериального препарата. Его действующим началом является искусственно подобранная ассоциация живых микроорганизмов, относящихся порой к различным таксономическим группам и имеющих различные типы метаболизма. Препарат обычно включает также необходимые питательные вещества, стимуляторы ферментативной деятельности штаммов, а иногда сорбент, обладающий высокой сорбционной емкостью (Иларионов С.А., 2004). Первые бактериальные препараты, изготовленные на основе активных штаммов-деструкторов углеводородов нефти, состояли, как правило, из одного вида микроорганизмов. В дальнейшем было показано, что один микроорганизм не может использовать весь спектр углеводородов нефти, поэтому стали разрабатывать бактериальные препараты, состоящие из двух и более видов микроорганизмов-деструкторов. Ниже приведены результаты испытаний и примеры использования различных бактериальных препаратов.

...

Подобные документы

    Характеристика методов и способов обезвреживания нефтезагрязненных субстратов. Анализ методов оценки нефтяного загрязнения почв и подходов к их восстановлению. Биоремедиация и трансформация нефти в почве микробиологическим препаратом и дождевыми червями.

    дипломная работа , добавлен 01.04.2011

    Влияние нефти и нефтепродуктов на окружающую природную среду. Компоненты нефти и их действие. Нефтяное загрязнение почв. Способы рекультивации нефтезагрязненных почв и грунтов с применением методов биоремедиации. Характеристика улучшенных методов.

    курсовая работа , добавлен 21.05.2016

    Компоненты нефти и их негативное влияние на окружающую природную среду. Виды микроорганизмов-деструкторов нефти и нефтепродуктов. Понятие и подходы биоремедиации, способы рекультивации нефтезагрязнённых почв и грунтов с применением методов биоремедиации.

    реферат , добавлен 18.05.2015

    Понятие и сущность биотехнологий; их использование для очистки углеводородов нефти. Биопрепараты-нефтедеструкторы: "Родер", "Суперкрмпост пикса", "Охромин", бактерии Pseudomonas - экологически безопасные методы восстановления нефтезагрязненных почв.

    курсовая работа , добавлен 23.02.2011

    Предупреждение последствий разливов нефтепродуктов. Использование аварийных огнеупорных, цилиндрических боновых заграждений постоянной плавучести. Механические, физико-химические, термические и биологические методы удаления нефти с водных поверхностей.

    реферат , добавлен 27.02.2015

    Основные понятия и этапы рекультивации земель. Рекультивация полигонов твердых бытовых отходов. Схема процесса очистки почвы от нефтепродуктов с внесением нефтеокисляющих микроорганизмов. Рекультивация земель, загрязненных тяжелыми металлами, отвалов.

    контрольная работа , добавлен 31.10.2016

    Проблема локальных загрязнений почвы, связанных с разливами нефти и нефтепродуктов. Снижение количества микроорганизмов в почве как следствие загрязнения почвы нефтепродуктами. Пагубное влияние загрязнений на пищевые цепи. Способы рекультивации земель.

    презентация , добавлен 16.05.2016

    Нарушение равновесного состояния почвы: загрязнение и изменение ее состава. Рекультивация малоплодородных земель. Восстановление почв после промышленных разработок. Достоинства и недостатки различных способов утилизации отходов - опыт развитых стран.

    реферат , добавлен 14.07.2009

    Оценка негативного влияния разлива нефти на физико-химические и микробиологические свойства зараженных почв. Анализ данных оценки эффективности технологии Cleansoil ® по ремедиации земель, методика проведения экспериментов и формирование выводов.

    статья , добавлен 17.02.2015

    Характеристика современной очистки сточных вод для удаления загрязнений, примесей и вредных веществ. Методы очистки сточных вод: механические, химические, физико-химические и биологические. Анализ процессов флотации, сорбции. Знакомство с цеолитами.

PAGE \* MERGEFORMAT 12

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

Кафедра кадастра недвижимости и геод е зии

ОПД.В.04 РЕКУЛЬТИВАЦИЯ ЗЕМЕЛЬ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к практическому занятию № 4 по теме:

«Рекультивация земель, загрязненных нефтью и нефтепродуктами»

Специальность 120301 Землеустройство

Уфа 2012

УДК 631.4

ББК 40.3

М 54

Рассмотрены и обсуждены на заседании кафедры кадастра недвижимости и геодезии (протокол № от 2012 года)

Составитель: доцент, к.с.-х.н. Минниахметов И.С.

Рецензент: к.с.-х.н., доцент кафедры земледелия и почвоведения

Га й син В.Ф.

Ответственный за выпуск: зав. кафедрой кадастра недвижимости и геодезии, к.с.-х.н., доцент Ишбулатов М.Г.

г. Уфа, БГАУ, кафедра кадастра недвижимости и геодезии

РЕКУЛЬТИВАЦИЯ ЗЕМЕЛЬ, ЗАГРЯЗНЕННЫХ НЕФТЬЮ И НЕФТЕПРОДУКТАМИ

Цель занятия — научиться разрабатывать системы мероприятий по рекультивации земель, загрязненных нефтью и нефтепродуктами.

ОБЩИЕ СВЕДЕНИЯ

В условиях возросшей в XX веке антропогенной нагрузки на биосферу планеты, почва являясь элементом природной системы и находясь в динамическом равновесии со всеми другими компонентами, подвергается деградационным процессам. Одной из наиболее типичных проблем современности является загрязнение нефтью и нефтепродуктами почвенного покрова территорий в результате аварийных ситуаций при добыче, транспортировке и переработке нефти.

В настоящее время отдельные нефтедобывающие территории по состоянию окружающей среды приближаются к районам экологического бедствия. Возникает угроза устойчивой, а часто необратимой трансформации условий функционирования природных систем и изменений качества жизни на значительных площадях в разных природных зонах — от Крайнего Севера до юга страны. Происходят глубокие изменения практически всех компонентов окружающей среды: почв и структуры почвенного покрова, грунтов и недр, поверхностных и подземных вод, биоты и воздуха.

Нефтяная промышленность по опасности воздействия на окружающую среду занимает третье место в числе 130 отраслей современного производства (Панов и др., 1986).

Поскольку на современном уровне развития нефтедобывающей и нефтеперерабатывающей промышленности не представляется возможным исключить ее воздействие на окружающую среду, возникает необходимость рекультивации земель, загрязненных нефтью, нефтепродуктами и высокоминиралезованными нефтепромысловыми сточными водами (НСВ).

Загрязнение почвы нефтью и НСВ отличается от многих других антропогенных воздействий тем, что оно дает не постоянную, а, как правило, "залповую" нагрузку на среду, вызывая быструю ответную реакцию. При оценке последствий такого загрязнения не всегда можно сказать, вернется ли экономика к устойчивому состоянию или будет необратимо деградировать. Во всех мероприятиях, связанных с ликвидацией последствий загрязнения, с восстановлением нарушенных земель, необходимо исходить из главного принципа: не нанести экономике большой вред, чем тот, который уже нанесен при загрязнении.

Концепция восстановления экономики опирается на этот принцип. Е e суть м аксимальная мобилизация вн утренних ре су рсов на восст ановление своих первоначальных ф ункций.

В настоящее время рекультивация нефтезагрязненных земель в Башкортостане проводится, как правило, без достаточного научного обоснования. Ликвидация последствий разливов нефти проводится часто таким способом, что происходит необратимое уничтожение плодородного слоя почвы, например, при сжигании нефти, засыпке загрязненных участков грунтом, вывозе загрязненной почвы в отвалы.

1 Методические положения

1.1 Методы рекультивации

Методы рекультивации, применяемые в зарубежной и отечественной практике, можно условно разделить на четыре группы: физические, физико- химические, химические и биологические.

К физическим методам относятся механическое снятие замазученных и битумизированных слоев почвы, содержащих свыше 5 % углерода нефтепродуктов (Якубов, 1989), сбор нефтепродуктов с поверхности с помощью гидронасоса (Hinchel и др., 1988), смешивание загрязненных почв с чистой почвой для уменьшения содержания нефти и нефтепродуктов (Абдуев, Аскеров, 1979; Ахмедов и др., 1988; Исмаилов, Пиковский, 1988).

Рядом авторов предлагается интенсивно аэрировать нефтезагрязненные почвы, используя при этом глубокою вспашку, рыхление, дискование, боронование (Самосова и др., 1979; Андерсон, Пропадущая, 1979, Аскеров, 1982; Оборин и др., 1988).

Balch Thomas (1993) предлагает интенсивно собирать загрязненную почву в покрытые кучи высотой 4—5 м и шириной до 40 м, в основании которых располагается сеть перфорированных труб для подачи горячего воздуха. В результате диффундирования нагретый воздух захватывает углеводороды и летучие органические соединения.

Н asler Anders (1989) рассматривает возможность применения методов очистки путем нагрева почвы до температуры 700°С или с помощью струи воды под высоким давлением. Heimhard Hans - l ü rgen (1987) предлагает использовать водно-воздушную струю высокого давления. Weston Roy F . (1998), Matig J ., Т r ü benbach G . (1991), Joseph E . Musul (1993) используют технологию нагрева почвы, при этом происходит испарение влаги и органического вещества. Jorgenson Torre М., Krizan Larry W et . al . (1991) разработали поэтапную технологию очистки нефтезагрязненных земель на Аляске. Перед замерзанием почвы нефть удалялась механически и с помощью промывания, летом следующего года почву удобрили, аэрировали, создали определенную влажность, что способствовало благоприятным условиям для разложения нефти. В результате этих мероприятий произошло снижение содержания углеводородов нефти на 94 % от начального.

Физико-химические методы предполагают применение специально подобранных поверхностно-активных веществ (диспергаторов, дезмульгаторов и т.д.) вспомогательных веществ, влияющих на изменение состояния и коллоидно-дисперсной структуры взвешенных частиц в нефтяной и водной фазах.

Для очистки больших территорий, загрязненных вредными техногенными соединениями, предлагается использовать широко распространенные природные сорбенты органического происхождения (торф, мох, чернозем, уголь), глины и глинистые материалы с высокой емкостью поглощения по отношению к загрязнителям.

Hasler Anders (1989) предлагает обжиг загрязненных почв с одновременным добавлением в них вяжущих веществ, после термообработки образующийся конгломерат используется как строительный материал, a Rez D . H . (1993) использует для обезвреживания жидких и твердых углеводородов портландцемент, при этом углеводород изолируется от соприкосновения с окружающей средой.

Punt и др. (1991) предлагают экстракцию загрязняющих почву нефтепродуктов перегнанной фракцией природного конденсата и гексана, а Bulman и др. (1993) и Greiner D (1994) — химическое насыщение почвы кислородом для восстановления ее биологической активности. Hinchel R . E ., Downey D . C . и др. (1998) показали возможность использования закачки воды, обогащенной кислородом или содержащей перекись водорода.

Большая роль в ускорении разложения нефти и нефтепродуктов в почве принадлежит минеральным и органическим удобрениям (Самосова и др., 1979; Демиденко и др., 1983; Абзалов и др., 1988; Гайнутдинов и др., 1988, Тишкина, 1990).

Особенно важно применение азотных удобрений, т.к. в почве при нефтяном загрязнении вносится большое количество С, резко изменяя соотношение C : N . Для нормального развития микроорганизмов требуется на 1 часть азота 10 частей углерода, в грязных до 400—420 (Odu , 1978).

Биологичес кий метод — является наиболее эффективным и экологическим методом рекультивации нефгезатрязненных почв. Они включают в себя использование биопрепаратов и биостимуляторов для деградации нефти и нефтепродуктов.

В разложении нефти в почве главное и решающее значение имеет функциональная активность комплекса почвенных микроорганизмов, обеспечивающих полную минерализацию нефти и нефтепродуктов до углекислого газа и воды. Основной вклад в этот процесс вносят микроорганизмы, способные использовать углеводороды в качестве единственного источника органического вещества и энергии. Тип почвы, ее минеральный и органический состав, влажность, аэрированность, температура также влияют на скорость деградации углеводородов нефти. На основании способности микроорганизмов использовать углеводороды нефти и других ксенобиотиков предложен метод биокоррекции загрязнений, который включает следующие подходы:

  1. активацию деградирующей способности микрофлоры, естественно содержащийся в загрязненной почве, путем внесения биогенных элементов, ко- метаболизируемых субстратов, кислорода — биостимуляция;
  2. интродукцию в загрязненную почву специализированных микроорганизмов, предварительно выделенных из различных загрязненных источников или генетически модифицированных — биодополнение.

С помощью биологического метода, основанного па применении природных штаммов микроорганизмов, за 3 года рекультивации можно полностью восстановить плодородие нефтезагрязненных почв при уровне загрязнения, не превышающем 10—15% сырой нефти к массе почвы. В случае более высоких концентраций загрязняющих веществ биовосстановление целесообразно комбинировать с физическими и физико-химическими методами очистки.

Видовое разнообразие нефтеокисляющих бактерий велико. На основе штаммов различных бактерии и их ассоциаций созданы весьма эффективные биопрепараты — Родотрин, Экойл, Путидойл и т.д.

Рассмотренные ниже физико-химический и химический методы являются и определенной степени симулирующими. Биостимулирующими служат также различные пищевые добавки и поверхностно-активные вещества (ПАВ), отходы дрожжевого производства, рыбная мука, молочная сыворотка, отходы белково-витаминного комбината, активный ил, азот, фосфор и калий минеральных удобрений, традиционный навоз и даже, как показали исследования Н.А. Киреевой, жидкие стоки животноводческих комплексов и другие сточные воды, которые утилизируются на земледельческих полях орошения.

Известна роль дождевых червей в разложении нефти. Кибардиным и др. (1989) показано, что дождевые черви заглатывают нефть в почве и делают ее доступной для микроорганизмов.

Посев в нефтезагрязненную почву люцерны и других бобовых культур, трав с разветвленной корневой системой способствуют ускорению разложения углеводородов (Алиев и др., 1977; Gudin , Syratt , 1975; Lee Eusiand , 1993). Положительное воздействие посевов сельскохозяйственных растений, и в частности многолетних трав, объясняется тем, что своей развитой корневой системой они способствуют улучшению газовоздушного режима загрязненной почвы, обогащают почву азотом и биологическими активными соединениями, выделяемыми корневой системой в почву в процессе жизнедеятельности растений. Все это стимулирует рост микроорганизмов и соответственно ускоряет разложение нефти и нефтепродуктов. В этой связи нельзя не учитывать также возможность самих растений подвергать разложению различные классы нефтяных углеводородов (Угрехелидзе, 1976) или адсорбировать их (Cunningham Scott и др., 1995) .

1.2 Комплексная технология рекультивации земель,

Загрязненных нефтью

Технология рекультивации земель, загрязненных нефтью, зависит от многих факторов: концентрации нефти в почве, типа нефти, наличия средств рекультивации — биопрепаратов, химических мелиорантов, технических средств и т.д. На основании исследований и обобщения опыта по рекультивации земель, загрязненных нефтью, Институтом биологии УНЦ РАН совместно с БашНИПИнефть разработан руководящий документ «Проведение рекультивации техногенно нарушенных земель при добыче нефти» , который одобрен соответствующими государственными органами и предложен предприятиям АНК «Башнефти» для использования в восстановлении земель, загрязняемых нефтью и нефтепродуктами. Получены также патенты РФ на изобретение «Способ очистки почв от нефтяных загрязнений» .

Согласно предложенной схеме (рисунке 1) основных мероприятий по рекультивации нефтезагрязненных почв, сначала проводится мелиоративное обследование загрязненной территории, уточняются границы ареала и все те факторы, на основании которых выбираются способы рекультивации.

Рисунок 1 Схема основных мероприятий по рекультивации нефтезагрязненных земель

Основными средствами рекультивации нефтезагрязненных земель являются применение биологических препаратов и активизация аборигенной почвенной микрофлоры на фоне различных агротехнических и фитомелио- ративных мероприятий, направленных на оптимизацию трофических и физико-химических условий для жизнедеятельности микроорганизмов, потребляющих углеводороды нефти.

Эффективное использование биопрепаратов возможно при концентрации нефтепродуктов в почве не выше 10—15%. Поэтому на первом этапе рекультивации при содержании нефти выше нефтеемкости почвы производятся механический сбор разлитой нефти вместе с некоторой частью поверхностного слоя почвы и транспортировка их в земляные (нефтешламовые) амбары. После отделения нефти от почвы, используя и ПАВ, прежде чем приступить к биологической рекультивации на полигоне, необходимо провести ряд агротехнических мероприятий — интенсивное рыхление, увлажнение, внесение комплексных минеральных и органических удобрений. Можно также оставить почву на парование при периодическом рыхлении и в последующем проводить фитомелиорацию, используя в качестве сидератов преимущественно бобовые культуры. При содержании нефти в загрязненной почве в концентрации до 10—5% можно приступить сразу к агротехническим воздействиям (рыхление, внесение удобрений и биостимуляторов) с последующим внесением биопрепаратов. При содержании нефти в почве менее 5% можно приступить к фитомелиорации сразу или через этап парования.

Рекультивация считается завершенной при снижении содержания нефти в почве до 0,1%, формировании травостоя с проективным покрытием не менее 80%. При загрязнении почв сырой нефтью, в составе которой содержится значительное количество НСВ, в схему рекультивации включаются химические мелиоранты. На начальном этапе проводится, если это возможно, отмывка почвы от солей, затем гипсование, далее выполняются предусмотренные в системе мероприятий агротехнические и биологические способы рекультивации.

2 порядок выполнения задания

2.1 Основные мероприятия по рекультивации

нефтезагрязненных почв

Первый этап — агрогеохимический.

На этом этапе происходит процесс выветривания, испарения и частичного разрушения легких фракций, фотоокисление, частичное восстановление микробиологических сообществ и почвенных животных. Часть компонентов превращается в твердый продукт, что улучшает водно-воздушный режим.

  1. Сбор нефти с поверхности (бульдозеры, экскаваторы), откачка насосами.
    1. Транспортировка и складирование в нефтешламовые амбары для последующей переработки.

3. Подготовка участка путем частичной или сплошной планировки (при необходимости) почва очищается от мусора, отходов ликвидации аварии и оставляется на самоочищение и естественную трансформацию нефти на 1,0—1,5 года.

  1. Во время первого этапа при отсутствии опасности эрозии необходимо проводить рыхление почвы (перепашка на глубину 10—20 см) 2—3 раза после наступления физической спелости почвы весной.
    1. В зимний период необходимо снегозадержание, а весной — регулирование снеготаяния.
      1. Внесение комплексных минеральных удобрений (N , Р, К), не менее 90 кг действующего на 1 га.
      2. На этом этапе при загрязнении почвы менее 10% (весовые) используются биопрепараты — в том числе биостимуляторы и биодобавки. При слабом загрязнении почв внесение биопрепаратов экономически нецелесообразно. Следует ограничится агротехническими методами и биостимуляции.
      3. На агротехническом этапе проводится контроль за возможным загрязнением грунтовых вод нефтью.
      4. По окончании 1 этапа проводится анализ содержания остаточной нефти в почве. Определяется степень естественного зарастания.

Второй этап — биологический.

  1. 1-я стадия биологического этапа — пробный посев трав. Цель этого мероприятия - оценить остаточную фитотоксичность почв, интенсифицировать процессы биодеградации нефти, уточнить сроки перехода к заключительному этапу.
    1. Перед пробным посевом почву перепахивают (рыхлят, дискуют). Сеют преимущественно бобовые культуры (горох, люцерна, донник и др.).
      1. 2-я стадия биологической рекультивации — посев многолетних трав проводится через 1—3 года после загрязнения. Этот этап начинается, если пробный посев дал всходы не менее чем на 75% площади.
        1. Перед посевом многолетних трав проводится рыхление почв, внесение органических удобрений и биостимуляторов. Минеральные удобрения лучше вносить в виде подкормок 2-3 раза.
        2. Рекомендуемые травы для лесостепной зоны — овсяница луговая, тимофеевка луговая, клевер красный, костер безостый, ежа сборная, люцерна синегибридная. Для стенной зоны — житняк гребнистый, люцерна желтогибридная, донник желтый, волоснец, регнерия волокнистая.
        3. Многолетние травы выращиваются не менее 2-х лет. Зеленую массу не рекомендуется использовать в кормовых целях, лучше запахивать в почву в качестве сидератов.
        4. Рекультивация считается завершенной, если рост трав и формирование травостоя проходит нормально с агрономической точки зрения и зарастает более 80 % площади. Содержание нефтепродукта не должно превышать 0,1%.


3 задания на самОстоятельную работу

Разработать систему мероприятий по рекультивации загрязненных земель, с учетом уровня загрязнения нефтью (см. таблицу 1).

Таблица 1 Классификация почв по степени загрязнения нефтью

Вариант

Степень загрязнения

Очень слабое

до 1%

Слабое

1—3%

Среднее

3—5 %

Сильное

5—10%

Очень сильное

10—15 %

Катастрофическое

>15%

* санитарный норматив ≤0,1%

Технологическая карта составляется в соответствии с таблицей 2:

Таблица 2 Технологическая карта

Вид работы

Основные

агротехнические и

технологические

требования

Применяемые

машины

технический этап

биологический этап

Выводы:

Форма контроля. Разработанная технологическая карта по рекультивации загрязненных нефтью земель с выводами предоставляются преподавателю и оцениваются с собеседованием.

4 Вопросы для самоконтроля знаний

1 Какие методы используют при рекультивации земель, загрязненных нефтью и нефтепродуктами?

2 Назовите основные биопрепараты применяемые при рекультивации земель, загрязненных нефтью и нефтепродуктами?

3 Основные мероприятия по рекультивации земель, загрязненных нефтью и нефтепродуктами?

4 Охарактеризуйте современные способы очистки земель от нефтепродуктов.

5 Какой из методов является наиболее эффективным при рекультивации земель, загрязненных нефтью и нефтепродуктами?

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1 Габбасова, И.М. Деградация и рекультивация почв Ба ш кортостана [Текст] / И.М. Габбасова. — Уфа, Гилем, 2004. — 284 с.

2 Голованов, А. И. Рекультивация нарушенных земель [Текст]: учеб. пособие / А. И. Голованов, Ф. М. Зимин, В. И. Сметанин; под ред. А. И. Голованова. — М.: КолосС, 2009. — 325 с.

3 Основы природообустройства [Текст]: учебное пособие / А.И. Гол о ванов [и др.]. — М.:Колос, 2001. — 263 с.

4 Почвы Башкортостана [Текст]. Т.2. Уфа: Гилем, 1997. — 328 с.

5. Садовникова, Л. К. Экология и охрана окружающей среды при химич е ском загрязнении [Текст] : учеб. пособие / Л. К. Садовникова, Д. С. Орлов, И. Н. Лозановская. — 3-е изд., п е рераб. — М.: Высш. шк., 2006. — 334 с.

6 Система ведения агропромышленного производства в Республике Ба ш кортостан [Текст]. — Уфа, Гилем, 1997. — 612 с.

7 Сметанин, В.И. Рекультивация и обустройство нар у шенных земель [Текст]: учебное пособие / В.И. Сметанин. — М.: Колос, 2000. — 96 с.

Применяемые в России методы технической и биологической рекультивации земель имеют недостатки, которые делают их или неэффективными или дорогостоящими.

На практике наиболее часто используются следующие методы:

1. Техническая рекультивация с засыпкой грунтом и высеиванием трав – способ дает косметический эффект, поскольку нефть остается в грунте. Кроме того, необходим большой объем земляных работ.

2. Техническая рекультивация с вывозом нефтезагрязненного грунта на полигоны отходов. Способ практически нереальный с экономической точки зрения, так как большие обьемы нефтезагрязненного грунта и высокая стоимость транспортировки и размещения отходов могут многократно перекрыть прибыли компании.

3. Засыпка сорбентом (торфом) с последующей вывозкой на полигоны отходов. Недостатки те же, что и в предшествующем методе.

4. Использование нефтеэкстрагирующих установок импортного производства. Производительность этих установок 2-6 м3 в сутки, что при стоимости установки в 150000 $ и персонале 3 человека делают ее крайне неэффективной. Зарубежные компании уже не используют такие установки и пытаются продать их в России, выдавая за последнее слово науки и техники.

5. Использование микробиологических препаратов типа «путидойл» и им подобных. Препараты активны только на поверхности, поскольку необходим контакт с воздухом, и во влажной среде при относительно высокой температуре. Очень хорошо себя зарекомендовал при рекультивации летом морских побережий Кувейта, загрязненных во время военных действий. В Сибири популярен за счет легкости и дешевизны применения. Очень хорош для отчетности, когда нет проверки результата на месте (5).

Авторами рекомендуется канадский способ рекультивации грунта, который не капризен к температуре, не требует транспортировки грунта и полигонов отходов, не требует инвестиций в специальную технику и постоянного технического персонала. Способ очень гибкий, позволяет модифицировать, используя различные материалы, микробиологические препараты, удобрения (5).

Условное назвали метода - «парниковая гряда», потому что в основе метода лежит микробиологическое окисление с естественным повышением температуры - как «горит» навозная куча. Устройство гряды представлено на рис.1.

На грунтовую подушку шириной 3 метра укладываются змейкой перфорированные пластиковые трубы, которые затем засыпаются слоем гравия, щебня или керамзита, или материала типа «дорнит». На эту пористую подушку сэндвичем укладываются чередующиеся слои нефтезагрязненного грунта и удобрений. В качестве последнего используется навоз, торф, опил, солома и минеральные удобрения, можно добавлять микробиологические препараты. Гряда укрывается полиэтиленовой пленкой, в трубы подается воздух от компрессора соответствующей мощности. Компрессор может работать или на топливе, или на электричестве – если есть подключение. Воздух распыляется в пористой подушке и способствует быстрому окислению. Трубы можно использовать многократно. Пленка предотвращает охлаждение; если подавать нагретый воздух и дополнительно утеплить гряду торфом или «дорнитом», то способ будет эффективен и зимой. Нефть окисляется практически полностью за 2 недели, остаток нетоксичен и на нем прекрасно растут растения. Эффективно, экономично, производительно (5).

Рис. 1. Схема рекультивации нефтезагрязненных земель


Выводы

Таким образом, под рекультивацией земель понимается комплекс работ, направленных на восстановление биологической продуктивности и хозяйственной ценности нарушенных земель, а также на улучшение условий окружающей природной среды.

Земельные участки в период осуществления биологической рекультивации в сельскохозяйственных и лесохозяйственных целях должны проходить стадию мелиоративной подготовки, т.е. биологический этап должен осуществляться после полного завершения технического этапа.

Для успешного проведения биологической рекультивации важное значение имеют исследования флористического состава формирующихся сообществ, процессов восстановления фиторазнообразия на нарушенных промышленностью землях, когда катастрофически уничтожены почвенный и растительный покровы.

Биологический этап рекультивации нефтезагрязненных земель включает комплекс агротехнических и фитомелиоративных мероприятий, направленных на улучшение агрофизических, агрохимических, биохимических и других свойств почвы. Биологический этап заключается в подготовке почвы, внесении удобрений, подборе трав и травосмесей, посеве, уходе за посевами. Он направлен на закрепление поверхностного слоя почвы корневой системой растений, создание сомкнутого травостоя и предотвращение развития водной и ветровой эрозии почв на нарушенных землях.

Таким образом, технологическая схема (карта) работ по биологической рекультивации нарушенных и загрязненных нефтью земель включает:

· планировку поверхности;

· внесение химического мелиоранта, органических и минеральных удобрений, бактериального препарата;

· отвальную или безотвальную вспашку, плоскорезную обработку;



· лущение дисковой бороной или дисковым лущильником;

· кротование, щелевание с кротованием;

· лункование, прерывистое бороздование;

· снегозадержание и задержание талых вод;

· предпосевную подготовку почвы;

· буртование сильнозагрязненной почвы с устройством воздухоотводов;

· распределение почвы из бугров по поверхности участка;

· посев семян фитомелиоративных растений;

· уход за посевами;

· контроль за ходом рекультивации.

Рекомендуется канадский способ рекультивации грунта, который не капризен к температуре, не требует транспортировки грунта и полигонов отходов, не требует инвестиций в специальную технику и постоянного технического персонала. Способ очень гибкий, позволяет модифицировать, используя различные материалы, микробиологические препараты, удобрения. Условное назвали метода - «парниковая гряда», потому что в основе метода лежит микробиологическое окисление с естественным повышением температуры.


Список использованной литературы

1.ГОСТ 17.5.3.04-83. Охрана природы. Земли. Общие требования к рекультивации земель.

2. Инструкция по рекультивации земель, нарушенных и загрязненных при аварийном и капитальном ремонте нефтепроводов от 6 февраля 1997 г. N РД 39-00147105-006-97.

3. Чибрик Т.С. Основы биологической рекультивации: Учеб. пособие. Екатеринбург: Изд-во Урал. ун-та, 2002. 172 с.

4. Чибрик Т.С., Лукина Н.В., Глазырина М.А. Характеристика флоры нарушенных промышленностью земель Урала: Учеб. пособие. – Екатеринбург: Изд-во Урал. ун-та, 2004. 160 с.

5. Интернет-ресурс: www.oilnews.ru

Реферат

Дипломная работа 47 страниц, 2 рисунка, 3 таблицы, 50 источников.

НЕФТЬ, НЕФТЕПРОДУКТЫ, ПОЧВА, НЕФТЯНОЕ ЗАГРЯЗНЕНИЕ, РЕКУЛЬТИВАЦИЯ, БИОРЕМЕДИАЦИЯ, МИКРООРГАНИЗМЫ, ДОЖДЕВЫЕ ЧЕРВИ

Дипломная работа посвящена рассмотрению способов рекультивации нефтезагрязненных почв и грунтов с упором на подходы биоремедиации.

Цель работы - рассмотрение методов и способов обезвреживания нефтезагрязненных субстратов.

Первая глава работы посвящена проблеме нефтяного загрязнения, где особое внимание уделено почвам, загрязненным нефтью и нефтепродуктами. Во второй главе рассмотрены методы оценки нефтяного загрязнения почв. Методы восстановления нефтезагрязненных почвенных экосистем рассмотрены в третьей главе. В ней показаны основные методы рекультивации нефтезагрязненных почв, особое внимание уделяется биоремедиации и исследованию по трансформации нефти в почве микробиологическим препаратом и дождевыми червями.


Введение

1. Влияние нефти и нефтепродуктов на окружающую природную среду

1.1 Компоненты нефти и их действие

1.2.1 Механические нарушения почвенного покрова

1.2.2 Химическое загрязнение почв

1.2.3 Влияние нефтяного загрязнения на микробиологические процессы в почве

2. Методы оценки нефтяного загрязнения почв

2.1 Нормирование загрязнения почв нефтью и нефтепродуктами

2.2 Методы контроля

2.3 Методы биоиндикации и биотестирования почв

3. Методы восстановления нефтезагрязненных почвенных экосистем

3.1 Классификация методов рекультивации почв, загрязненных нефтью и нефтепродуктами

3.2 Основные подходы и роль биоремедиации в восстановлении нефтезагрязненных почв

3.3 Микроорганизмы-деструкторы нефти и нефтепродуктов

3.5 Методы рекультивации основанные на интенсификации процессов самоочищения

Заключение

Список использованных источников

Введение

Нефть является одним из основных факторов мирового экономического развития в 20 веке и остается важнейшим энергоресурсом на обозримое будущее. Относительно невысокие цены на нефть и нефтепродукты при больших объемах их потребления, отсутствие адекватной создаваемой угрозе политики по охране окружающей среды приводили к весьма значительным потерям, последствиями которых явились загрязнения почв и грунтов.

Нефтяное загрязнение – как по масштабам, так и по токсичности представляет собой общепланетарную опасность. Нефть и нефтепродукты вызывают отравление, гибель организмов и деградацию почв. Естественное самоочищение природных объектов от нефтяного загрязнения - длительный процесс, особенно в условиях Сибири, где долгое время сохраняется пониженный температурный режим. Поэтому исключительную актуальность приобретает проблема рекультивации нефтезагрязненных почв.

В настоящее время одной из наиболее перспективной технологии очистки нефтезагрязненных почв считается интродуцирование в почву различных комплексов микроорганизмов, отличающихся повышенной способностью к биодеструкции тех или иных углеводородных компонентов нефти и нефтепродуктов.

В природных условиях биотрансформация нефти и нефтепродуктов осуществляется под воздействием комплекса самых различных групп организмов. Особое внимание уделяется исследованиям по совместному влиянию представителей двух смежных трофических уровней: микроорганизмов и дождевых червей на элиминирование нефти в почве.

Целью дипломной работы является рассмотрение методов и способов обезвреживания нефтезагрязненных субстратов.


1. Влияние нефти и нефтепродуктов на окружающую природную среду

Нефть, продукты ее переработки и газоконденсаты оказывают отрицательное воздействие на воздух, воду и почву. Предприятия топливно-энергетического комплекса России, в том числе – по добыче и переработке нефти, не смотря на снижение объемов производства, остаются крупнейшим в промышленности источником загрязнителей окружающей среды. На их долю приходится около 48% выбросов вредных веществ в атмосферу, 27% сброса загрязненных сточных вод, свыше 30% твердых отходов и до 70% общего объема парниковых газов (Абросимов, 2002).

По величине прогнозных ресурсов нефти и газа Восточная Сибирь относится к числу потенциально наиболее благоприятных геологических объектов в материковой части России. Основные разведанные запасы нефти – 83% - сосредоточены в Верхнечонском, газа – 79% - в Ковыктинском месторождениях. Разведанные запасы углеводородов в Иркутской области, от их прогнозной оценки, составляют всего: по нефти – 10,7%, по газу – 18,6% (Государственный доклад…, 2004). В последние годы для обеспечения северных поселков нефтью в качестве котельного топлива, проводится опытно-промышленная эксплуатация ряда этих месторождений: Атовского газоконденсатного, Марковского, Ярактинского, Даниловского, Дулисминского нефтегазоконденсатных месторождений. Таким образом, для Иркутской области проблема нефтяного загрязнения окружающей среды является весьма актуальной.

Одна из серьезных глобальных проблем – загрязнение почвенного покрова нефтью и нефтепродуктами. Решение проблемы очистки почвенного покрова от загрязнений нефтью, разработка новых и совершенствование существующих технологий восстановления нефтезагрязненных земель, относится к числу приоритетных. Эта проблема коснулась и Иркутской области. По состоянию на 01.01.2004 года в Иркутской области насчитывалось 27883 га нарушенных земель. Наибольшая доля нарушенных земель приходится на районы и города с интенсивной добычей полезных ископаемых. В 2003 году рекультивировано 1850 гектаров нарушенных земель, что почти в 3 раза больше, чем в предыдущем (Государственный доклад…, 2004).

Экологические проблемы начинаются уже на стадии добычи нефтяного сырья и его поставки на предприятия. Наиболее характерными загрязнителями окружающей среды являются углеводороды (44,9% от суммарного выброса), оксид углерода (47,4%) и различные твердые вещества (4,3%). Не менее острые проблемы возникают при транспортировке нефти на нефтеперерабатывающие предприятия. Нефть транспортируется по трубопроводам, подверженным коррозии, отложениям смол и парафинов внутри труб. Ежегодно происходит более 60 крупных аварий и около 20 тыс. случаев, сопровождающихся значительными разливами нефти, попаданием ее в водоемы, гибелью людей, большими материальными потерями (Абросимов, 2002).

1.1 Компоненты нефти и их действие

Нефть (тур. neft, от перс. нефт), горючая маслянистая жидкость, распространенная в осадочной оболочке Земли; важнейшее полезное ископаемое. Сложная смесь алканов, некоторых циклоалканов и аренов, а также кислородных, сернистых и азотистых соединений (Советский …, 1981).

Химический состав нефти зависит от района добычи и в среднем определяется следующими данными: углерод (83-87%), водород (12-14%), азот, сера, кислород (1-2%, реже 3-6% за счет серы). Десятые и сотые доли процента составляют многочисленные микроэлементы, набор которых в любой нефти примерно одинаков.

К нефтепродуктам обычно относят различные углеводородные фракции, получаемые из нефтей. Основные компоненты нефтепродуктов – углеводороды. Наряду с углеводородами в нефтепродуктах, как и в нефтях, также содержатся соединения серы, азота и кислорода.

При нефтяном загрязнении тесно взаимодействуют три группы экологических факторов: 1) уникальная многокомпонентность состава нефти, находящегося в процессе постоянного изменения; 2) гетерогенность состава и структуры любой экосистемы, находящейся в процессе постоянного развития; 3) многообразие и изменчивость внешних факторов, под воздействием которых находится экосистема: температура, давление, влажность, состояние атмосферы, гидросферы и т. д. (Восстановление…, 1988).

Вполне очевидно, что оценивать последствия загрязнения экосистемы нефтью и намечать пути ликвидации этих последствий необходимо с учетом конкретного сочетания этих трех групп факторов.

В качестве эколого-геохимических характеристик основного состава нефти приняты содержание легкой фракции (начало кипения 200 °С), метановых углеводородов (включая твердые парафины), циклических углеводородов, смол и асфальтенов, сернистых соединений (Восстановление…, 1988).

Легкая фракция нефти, куда входят наиболее простые по строению низкомолекулярные метановые (алканы), нафтеновые (циклопарафины) и ароматические углеводороды – наиболее подвижная часть нефти.

Большую часть легкой фракции составляют метановые углеводороды с числом углеводородных атомов от 5 до 11 (пектан, гексан, гептан, октан, нонан, декан, ундекан). Нормальные (неразветвленные) алканы составляют в этой фракции 50-70%.

Метановые углеводороды легкой фракции, находясь в почвах, оказывают наркотическое и токсическое действие на живые организмы. Особенно быстро действуют нормальные алканы с короткой углеводородной цепью, содержащиеся в основном в легких фракциях нефти. Эти углеводороды лучше растворимы в воде, легко проникают в клетки организмов через мембраны, дезорганизуют цитоплазменные мембраны организма. Нормальные алканы, содержащие в цепочке менее 9 атомов углерода, большинством микроорганизмов не ассимилируются, хотя могут быть окислены. Их токсичность ослабляется в присутствии нетоксичного углеводорода, который уменьшает общую растворимость алканов (Гриценко и др., 1997).

Многие исследователи отмечают сильное токсическое действие легкой фракции на микробные сообщества и почвенных животных. Легкая фракция, мигрируя по почвенному профилю и водоносным горизонтам, расширяет, иногда значительно, ореол первоначального загрязнения. На поверхности эта фракция в первую очередь подвергается физико-химическим процессам разложения, входящие в ее состав углеводороды наиболее быстро перерабатываются микроорганизмами (Восстановление…, 1988).

Значительная часть легкой фракции нефти разлагается и улетучивается еще на поверхности почвы или смывается водными потоками. Путем испарения из почвы удаляется от 20 до 40% легкой фракции (Восстановление…, 1988).

В нефтях, богатых легкой фракцией, существенную роль играют более высокомолекулярные метановые углеводороды (С12 – С27), состоящие из нормальных алканов и изоалканов. Метановые углеводороды во фракции, кипящей выше 200 ºС, практически нерастворимы в воде. Их токсичность выражена гораздо слабее, чем у более низкомолекулярных структур.

Содержание твердых метановых углеводородов (парафина) в нефти (от очень малых количеств до 15-20%) – важная характеристика при изучении нефтяных разливов на почвах. Твердый парафин не токсичен для живых организмов, но вследствие высоких температур застывания (+18 ºС и выше) и растворимости нефти (+40 ºС) в условиях земной поверхности он переходит в твердое состояние, лишая нефть подвижности. Твердые парафины, выделенные из нефти и очищенные, с успехом применяются в медицине (Восстановление…, 1988).

Твердый парафин очень трудно разрушается, с трудом окисляется на воздухе. Он надолго может «запечатать» все поры почвенного покрова, лишив почву свободного влагообмена и «дыхания». Это, в свою очередь, приводит к полной деградации биоценоза.

К циклическим углеводородам в составе нефти относятся нафтеновые (циклоалканы) и ароматические (арены).

Циклоалканы – это кольца из радикалов СН2 , с насыщенными связями. Часто в одном или нескольких радикалах вместо одного атома водорода присоединена цепочка алкана разной длины. Общее содержание нафтеновых углеводородов в нефти изменяется от 35 до 60%, в некоторых случаях составляя меньше или больше приведенных крайних значений (Петров, 1984).

О токсичности нафтеновых углеводородов сведений почти не имеется. Циклические углеводороды с насыщенными связями окисляются очень трудно. Биодеградацию циклоалканов затрудняет их малая растворимость и отсутствие функциональных групп (Восстановление…, 1988).

Ароматические углеводороды – наиболее токсичные компоненты нефти. В концентрации всего 1% в воде они убивают все водные растения; нефть, содержащая 38% ароматических углеводородов, значительно угнетает рост высших растений. С увеличением ароматичности нефти увеличивается ее гербицидная активность. Содержание ароматических углеводородов в нефти изменяется от 5 до 55%, чаще всего от 20 до 40%. Основную массу ароматических структур составляют моноядерные углеводороды – гомологи бензола. Полициклические ароматические углеводороды, т. е. углеводороды, состоящие из двух и более ароматических колец, содержатся в нефти в количестве от 1 до 4% (Восстановление…, 1988).

Бензол и его гомологи оказывают более быстрое токсическое действие на организм, чем полициклические ароматические углеводороды (ПАУ). Последние действуют медленнее, но более длительное время, являясь хроническими токсикантами. Ароматические углеводороды трудно поддаются разрушению. Обычно они окисляются микроорганизмами(Шилина, 1985).

Смолы и асфальтены относятся к высокомолекулярным неуглеводородным компонентам нефти. В составе нефти они играют исключительно важную роль, определяя во многом ее физические свойства и химическую активность. Структурный каркас смол и асфальтенов составляют высококонденсированные полициклические ароматические структуры, состоящие из десятков колец, соединенных между собой гетероатомными структурами, содержащими серу, кислород, азот. Смолы – вязкие мазеподобные вещества, асфальтены – твердые вещества, нерастворимые в низкомолекулярных углеводородах. Относительная молекулярная масса смол – 500-1200, асфальтенов – 1200-3000 (Панов и др., 1986).

Смолы и асфальтены содержат основную часть микроэлементов нефти, в том числе почти все металлы. Общее содержание микроэлементов в нефти – сотые, десятые доли процента.

Смолистые вещества очень чувствительны к элементарному кислороду и активно присоединяют его. На воздухе смолистая нефть быстро густеет, теряет подвижность. Если нефть просачивается сверху, ее смолисто-асфальтеновые компоненты сорбируются в основном в верхнем, гумусовом горизонте, иногда прочно цементируя его. При этом уменьшается поровое пространство почвы. Смолисто-асфальтеновые компоненты гидрофобны. Обволакивая корни растений, они резко ухудшают поступление к ним влаги, в результате чего растения засыхают. Эти вещества малодоступны микроорганизмам, процесс их метаболизма идет медленно, иногда десятки лет. Токсическое же влияние оказывают некоторые тяжелые металлы в составе смол и асфальтенов. Последние малодоступны микроорганизмам и обычно остаются в почвах в виде прочного органно-минерального комплекса (Восстановление…, 1988).

Из различных соединений серы в нефти наиболее часто обнаруживаются сероводород, меркаптаны, сульфиды, дисульфиды, свободная сера. Сернистые соединения оказывают вредное влияние на живые организмы. Особенно сильным токсическим действием обладают сероводород и меркаптаны.

1.2 Нефтяное загрязнение почв

При освоении, обустройстве и эксплуатации месторождений нефти и газа в значительной мере изменяется природный ландшафт и идет интенсивное загрязнение земель.

Почвенный покров – основной элемент ландшафта – первым принимает на себя «экологический удар». В связи с механическим нарушением и нередко химическим загрязнением происходит постепенная деградация почв, которая стала одной из основных экологических проблем нефтегазового комплекса.

Наибольший ущерб природе наносят аварии на магистральных нефте- и газопроводах. Так, при одном порыве нефтепровода выбрасывается в среднем 2 т нефти, что выводит из строя 1000 м³ земли, а в результате аварии на газоконденсатопроводе на землю в среднем попадает не менее 2 млн. т/год нефтепродуктов (Гриценко и др., 1997).

Нефть, попадая в почву, вызывает значительные, порой необратимые изменения ее свойств – образование битуминозных солончаков, гудронизацию, цементацию и т. д. Эти изменения влекут за собой ухудшение состояния растительности и биопродуктивности земель. В результате нарушения почвенного покрова и растительности усиливаются нежелательные природные процессы – эрозия почв, деградация, криогенез.

Проблема деградации почв требует от компетентных отраслевых служб принятия незамедлительных мер, поскольку с почвами связана биологическая продуктивность всего ландшафта.

Деградация почв возникает в результате разных природных и антропогенных причин, принимая формы химического загрязнения, опустынивания, заболачивания и т.д. Антропогенная деградация является либо непосредственным результатом залповой техногенной нагрузки (механическая, химическая), либо связана с природными гипергенными или почвообразовательными процессами.

В результате формируются отдельные сочетания неблагоприятных почвенных свойств, и происходит снижение биологической продуктивности ландшафтов.

1.2.1 Механические нарушения почвенного покрова

Механическое нарушение почв наблюдается на всех объектах нефтяной и газовой отрасли и связано со строительными (возведение буровых установок, устьевого оборудования, прокладка трубопроводов, строительство промышленных корпусов, жилых поселков и коммуникаций) и рекультивационными (снятие плодородного слоя, засыпка траншей, планировка амбаров и пр.) работами. Эта разновидность техногенного воздействия на почвы свойственна промышленному освоению природной среды вообще и не является специфической для нефтегазового комплекса. Масштабы нарушений почвенного покрова, вызванных механическим воздействием, зависят, с одной стороны, от размера и назначения возводимых сооружений, а с другой – от ранимости природной среды в разных биогеоценозах.

Снятие плодородных горизонтов почвы имеет два основных следствия. Во-первых, кардинально изменяются почвенные свойства (физические, химические, биологическая активность). Во-вторых, развиваются несвойственные ненарушенному почвенному покрову гипергенные процессы (водная и ветровая эрозия, заболачивание, деградация болот и др.) либо интенсивность этих процессов возрастает (Трофимов и др., 1979).

При механическом разрушении почвенного профиля, как правило, происходит частичное или полное уничтожение гумусоаккумулятивных горизонтов, определяющих актуальное плодородие, перемешивание материала разных горизонтов, выполняющих в ненарушенном ландшафте самостоятельную экологическую функцию, внедрение подстилающих пород с неблагоприятными физическими свойствами и низким потенциальным плодородием.

Так, в результате исследований в районе подземного хранилища газа установлено, что на его территории почвенный слой характеризуется пониженным содержанием гумуса, азота, низкой суммой обменных оснований по сравнению с аналогичными показателями фоновых почв (Сидорова и др., 1994).

1.2.2 Химическое загрязнение почв

Основные причины химического загрязнения почв на объектах нефтегазовой отрасли следующие (Панов и др., 1986):

На нефтегазодобывающих предприятиях: возникновение газовых и нефтяных фонтанов, самовозгорание газа, выбросы подземных высокоминерализированных вод, сброс загрязненных сточных вод на рельеф, разлив буровой жидкости, ликвидация амбаров, разлив метанола, поступающего от установки регенерации, складирование шламообразных отходов, диффузная миграция газа, излив пластовой смеси, выброс продуктов сгорания топлива и т. д;

На нефте- и газотранспортных предприятиях: разлив углеводородного конденсата, ингибиторов коррозии, газопроводов, разлив турбинного топлива, метанола, органических кислот, поверхностно-активных веществ (ПАВ), смазочных компрессорных масел;

На нефтегазоперерабатывающих предприятиях: разлив и утечки конденсата и смазочных масел, а также химреагентов (метанола, диэтиленгликоля, диэтаноламина и др.).

Таким образом, основными загрязнителями почв в нефтяной и газовой отраслях являются: жидкости (нефтяные углеводороды, минерализованные пластовые воды, химреагенты, буровые растворы); газы (попутный и природный газ и продукты его сгорания); твердые вещества (шламы, серная пыль в районах предприятия переработки сернистого углеводородного сырья).

Химическое загрязнение почвы негативно влияет на ее физические, химические, ионообменные свойства и биологическую активность (Панов и др., 1986).

Показатели изменения этих свойств почвы целесообразно использовать в качестве признаков ее деградации. Это особенно актуально для объектов нефтегазового комплекса, так как в данном случае задача определения ПДК усложняется многокомпонентностью большинства загрязнителей почвы (Панов и др., 1986).


1.3 Влияние нефтяного загрязнения на микробиологические процессы в почве

Процесс естественного фракционирования и разложения нефти начинается с момента ее поступления на поверхность почвы. Выделяют три наиболее общих этапа трансформации нефти в почвах (Исмаилов и др., 1988):

1) физико-химическое и частично микробиологическое разложение алифатических углеводородов;

2) микробиологическое разрушение главным образом низкомолекулярных структур разных классов, новообразование смолистых веществ;

3) трансформация высокомолекулярных соединений; смол, асфальтенов, полициклических углеводородов.

Длительность всего процесса трансформации нефти в разных почвенно-климатических зонах различна: от нескольких месяцев до нескольких десятков лет (Бочарникова, 1990).

Загрязнение нефтью оказывает отрицательное воздействие на химические, физические и биологические свойства почв. Под влиянием нефти и ее компонентов изменяется численность микроорганизмов основных физиологических групп, ухудшаются агрофизические, агрохимические свойства почвы, снижаются активность окислительно-восстановительных и гидролитических ферментов, обеспеченность почвы подвижными формами азота и фосфора.

На разложение нефти в почве решающим образом влияет функциональная активность комплекса почвенных микроорганизмов, обеспечивающих полную минерализацию нефти и нефтепродуктов до углекислого газа и воды. На первой стадии изменение почвенной биоты характеризуется массовой гибелью мезо- и микрофауны; на второй стадии – «бумом» микробиологической активности специализированных микроорганизмов и последующей постепенной эволюцией биоценоза, коррелирующей с постоянно изменяющейся геохимической ситуацией в почве (Логинов и др., 2000).

В работе Н. А. Киреевой показана токсичность ароматических углеводородов для микроорганизмов почвы и их негативное воздействие на ферментативную активность. Наиболее чувствительными к загрязнению ароматическими углеводородами являются нитрифицирующие и целлюлозоразрушающие микроорганизмы, которые могут служить индикаторами загрязнения почв (Киреева, 1995).

Загрязнение нефтью существенно изменяет комплекс почвенных актиномицетов, снижая их численность и обедняя видовой состав. Кроме того, в загрязненной нефтью почве возрастает число фитопатогенных и фитотоксичных видов микроскопических грибов. Развитие фитотоксичных форм грибов может усилить отрицательное воздействие на почву нефтяного загрязнения (Киреева, 1996).

Показано, что загрязнение нефтью приводит к существенному (на два порядка) снижению численности гетеротрофной части микробного комплекса, отмеченного на начальных этапах воздействия нефти. Через три месяца происходит восстановление численности гетеротрофов (Сидоров и др., 1997).

Первоначально, в интервале концентраций нефти соответствующих зоне гомеостаза (до 1 мл/кг), она не оказывает существенного влияния на почвенную микробиоту, выступает как биологический стимулятор. Более высокие дозы (зона стресса 1-30 мл/кг) приводят к необратимым изменениям микробиологических свойств почвы, а в дальнейшем, - к нарушению её водно-воздушного режима. Затем, в зоне резистентности, она становится основным трофическим субстратом для углеводородокисляющих микроорганизмов, одновременно угнетая жизнедеятель-ность других гетеротрофных микроорганизмов, растений и животных. Наконец, при ещё больших дозах, в зоне репрессии, нефть выступает как ингибитор биологической активности почвы (Левин и др., 1995).

Изменения микробиологических параметров почвы первыми рассматриваются как значимые экологические нарушения. Они зафиксированы при концентрациях нефти более 1-5 мл/кг в зависимости от типа почвы.

2. Методы оценки нефтяного загрязнения почв

2.1 Нормирование загрязнения почв нефтью и нефтепродуктами

Выработка методологии борьбы с загрязнением окружающей среды нефтью и нефтепродуктами крайне сложное дело. Реакция почв на загрязнение нефтью, их чувствительность к этим загрязнителям отличаются в разных почвенных зонах, также в пределах сопряженных ландшафтов.

Предельно допустимые концентрации нефтяных загрязнений в почвах зависят от вида нефтепродуктов (НП) и составляет для почвы 0,1 мг/кг. Однако ПДК суммарного содержания нефтепродуктов в почве не стандартизовано; установлены ПДК для некоторых видов нефтепродуктов: бензол – 0,3 мг/кг, толуол – 0,3 мг/кг, ксилол – 0,3 мг/кг (Саксонов и др., 2005).

Минимальный уровень содержания нефтепродуктов в почвах и грунтах, выше которого наступает ухудшение качества природной среды, рассматривается как верхний безопасный уровень концентрации (ВБУК) (Пиковский, 1993). ВБУК нефтепродуктов в почвах зависит от сочетания многих факторов, таких как тип, состав и свойства почв и грунтов, климатические условия, состав нефтепродуктов, тип растительности, тип землепользования и др. Эти нормы должны различаться в зависимости от климатических условий и типов почвообразования.

Верхний безопасный уровень концентрации НП в почвах можно принять за ориентировочный уровень допустимой концентрации (ОДК) в почвах. Ориентировочным допустимым уровнем загрязнения почвы НП предлагается считать нижний допустимый уровень загрязнения, при котором в данных природных условиях почва в течение одного года восстановит свою продуктивность, а негативные последствия для почвенного биоценоза могут быть самопроизвольно ликвидированы. Такая оценка ОДК как общесанитарного показателя может быть дана для верхнего гумусо-аккумулятивного горизонта почв (примерно до глубины 20-30 см) (Саксонов и др., 2005).

Вполне очевидно, что ОДК нефти и НП в почве не может быть единым для всех типов почв и природных зон. Он зависит от факторов, определяющих влияние вещества на свойства почв и растений, от потенциала самоочищения почв, от данного вида загрязнения. Главные из таких факторов – химический состав загрязняющего вещества, свойства и состав почв, физико-географические (главным образом, климатические) условия данной территории (Пиковский, 2003).

В обзоре МакДжила (McGill, 1977) приводятся данные исследователей из разных стран по установлению безопасных пределов содержания нефти и НП в почвах. Эти оценки существенно расходятся по причине резко различных климатических и почвенных условий тех районов, где проводились эксперименты.

На основе сообщения мирового опыта и данных экспериментов МакДжилом составлена таблица ориентировочных нормативов содержания НП в почвах, подлежащих рекультивации (таблица 2.1).

Таблица 2.1 - Относительная степень нарушенности почв, содержащих различные количества нефти


2.2 Методы контроля

При количественных оценках уровня нефтяных загрязнений наибольшее распространение получили методы инфракрасной спектрофотометрии, ультрафиолетовой люминесценции, газовой и газожидкостной хроматографии.

ИК-спектроскопия. Все органические вещества имеют в инфракрасном диапазоне свои индивидуальные спектры поглощения. Положение полос поглощения в ИК-спектрах веществ характеризуется длиной волны l, нм (мкм) (Митчелл и др., 1980). Для ИК-анализа углеводородов используют диапазон от 0,7 до 25 мкм, который обычно подразделяют на три области: ближнюю – 0,7-2,5 мкм, область основных частот – 2,6-6 мкм, дальнюю – 6-25 мкм.

Ближняя ИК-область для аналитических определений в технологических и экологических целях в нашей стране в отличие от многих развитых стран практически не осваивается.

Наиболее широко используется область основных частот. Нормативные документы по анализу суммарного загрязнения окружающей среды нефтепродуктами с ИК-спектроскопическим окончанием регламентируют проведение измерений в интервале длин волн 3,3-3,5 мкм. Стандартная смесь, содержащая 37,5% изооктана, 37,5% цетана, 25% бензола, предназначена для калибровки приборов в этой области (Проскуряков, 1995).

Дальняя ИК-область используется в основном для идентификации источника загрязнения, а также для определения типов нефтей по показателю ароматизированности и для структурно-группового анализа (Проскуряков, 1995).

Пробоподготовка для ИК-детектирования не вызывает сложностей. Анализ требует малого количества вещества любой молекулярной массы в любом агрегатном состоянии. После анализа вещество остается неизменным (Саксонов и др., 2005). Принципиально новым шагом явилось создание лабораторных Ик-спектрометров на основе Фурье-преобразования. Большинство отечественных нефтепродуктов проводят измерение концентраций нефтяных загрязнений на одной длине волны. Следует выделить прибор ИКАН-1, в котором предусмотрена возможность установки любой длины волны в диапазоне от 1,85 до 3,5 мкм с индикацией ее значения на цифровом табло. Это дает принципиально новую возможность проводить анализ многокомпонентных смесей на нескольких длинах волн.

Существующие люминесцентные методы оценки нефтяного загрязнения характеризуются высокой экспрессностью и чувствительностью. Они позволяют определять микроэлементы, а также суммарное содержание загрязняющих органических веществ и индивидуальных органических соединений.

Приборы для люминесцентного анализа могут быть разделены на две группы: флуориметры и спектрофлуориметры. В флуориметрах используют светофильтры, а в спетрофлуориметрах – дифракционные решётки.

В нашей стране наибольшее распространение получил люминесцентно-фотометрический анализатор «Флюорат-0,2». В этом приборе источником возбуждения люминесценции служит газоразрядная лампа (для измерения нефтепродуктов - ксеноновая). Несмотря на высокую чувствительность люминесцентного метода, при использовании приборов типа «Флюорат-0,2» для измерения суммарного содержания НП возникает проблема калибровки прибора по стандартному раствору, что необходимо для получения достоверных данных. Однако, до настоящего времени такой стандартный раствор для люминесцентных методов отсутствует. Стандартный раствор изооктан – цетан - бензол, используемый для ИК-спектрометрии, изготавливается на четырёххлористом углероде, который поглощает в рабочей области флуориметра, поэтому калибровку проводят по какому-либо известному НП, например маслу Т-22 (Саксонов и др., 2005). В результате при измерениях «тяжёлых» НП (мазут и прочие) прибор может дать погрешность до 40-50%, а при определении «лёгких» НП (бензин и прочее) результаты измерений концентрации могут быть занижены в несколько раз. Следует отметить, что в европейских странах ультрафиолетовые методы анализа применяются мало (Берне и др., 1997).

Наиболее перспективными для мониторинга нефтепродуктов с одновременной идентификацией и расшифровкой химического состава являются методы газовой, газожидкостной или высокоэффективной жидкостной хроматографии. Наиболее распространён газохроматографический метод, особенно в сочетании с ИК-спектрометрией, позволяющий определять индивидуальные компоненты в смеси нефтепродуктов, что делает этот метод анализа незаменимым при установлении источника загрязнения почв, идентификации веществ нефтяного происхождения в процессе биодеградации, при исследовании процессов разрушения нефтепродуктов.

Однако при выполнении массовых анализов его использование ограничено низкой производительностью и высокой стоимостью аналитических работ.

В основе всех предложенных методов лежит извлечение нефти и нефтепродуктов из проб органическими растворителями. Почва является очень трудным объектом анализа, поскольку её органическая часть довольно сложна и разнообразна по составу. В любой почве содержится от 1% до 15% органических веществ в зависимости от типа почвы. Гумус составляет 85-90% от общего количества органического вещества почвы. Кроме этого, в почве содержатся и неспецифические вещества: жиры, углеводы (целлюлоза, пектины, пентозаны, маннаны и т.д.), протеины, белки, аминокислоты, амиды, лигнины, дубильные вещества, терпены, смолы и т.п. Таким образом, при выборе растворителя необходимо учитывать сложный химический состав, как определяемого вещества – нефтепродукта, так и исследуемого объекта – почвы (Почвенно-экологический…, 1994).

Многие авторы отдают предпочтение гексану. Химические свойства гексана благоприятны для количественного извлечения нефтепродуктов из почвы. Этот растворитель используют для разработки ускоренных вариантов метода оценки степени загрязнения почв нефтью. Данная методика определения нефти и НП в почве основана на их экстракции из почвы при конденсации кипящего гексана в аппарате Сокстек.

Содержание нефтепродуктов в экстрактах определяют гравиметрическим методом после отгонки растворителя. В модельных опытах была изучена полнота экстракции нефти в зависимости от времени взаимодействия нефти и почвы. Установлено, что даже в первый день после добавления гексан извлекает всего 60-75% внесённого количества. Со временем степень извлечения имеет тенденцию к снижению (Почвенно-экологический…, 1994).

По результатам хроматографического исследования анализа гексанового экстракта было показано, что гексан не извлекает гуминовые кислоты и другие неспецифические вещества почв. В тоже время гексан растворяет все группы углеводородов, за исключением асфальтенов и высокомолекулярных смол, содержание которых в нефтепродуктах обычно не превышает 2% (Почвенно-экологический…, 1994).

К настоящему времени создано множество методик и приборов для экологического мониторинга нефтей и нефтепродуктов. Однако вопрос о разработке наиболее оптимальных методов их определения и идентификации нельзя считать закрытым, поскольку у каждого метода есть свои преимущества и недостатки. К тому же, само понятие «нефтепродукт» весьма расплывчато, особенно с учётом непостоянства и разнообразия состава нефтей и нефтепродуктов. Необходим мониторинг нефтепродуктов с одновременной идентификацией и расшифровкой его химического состава.

нефтяное загрязнение почва биоремедиация


2.3 Методы биоиндикации и биотестирования почв

Биодиагностика антропогенных изменений относится к экспрессным методам анализа и, кроме того, дает комплексную оценку экологического состояния почвы. Существует множество биологических показателей, с помощью которых оценивается состояние почв. Наиболее важными являются интегральные показатели биологической активности: токсичность, «дыхание», количество свободных аминокислот и белков. Интенсивность дыхания почвы является исключительно вариабельной величиной и зависит от большого количества факторов (температурного режима, влажности, состояния фитоценоза и др.). Для оценки экологического влияния загрязнений необходимо проводить сравнение данных, полученных на разных участках в максимально близких условиях. Информативными являются и другие показатели, например, ферментативная активность.

Попадание нефти и нефтепродуктов в почву приводит к изменению активности основных почвенных ферментов, что влияет на обмен азота, фосфора, углерода и серы (Киреева, Новоселова и др., 2001). Устойчивые изменения в активности некоторых почвенных ферментов могут использоваться в качестве диагностических показателей загрязнения почв нефтью. Удобна для этой цели группа ферментов, объединяемых под общим названием почвенные уреазы. Во-первых, они меньше подвержены воздействию других экологических факторов и, во-вторых, прослеживается четкая зависимость их активности от степени загрязнения почв (Киреева, Водопьянов и др., 2001).

Применение микроорганизмов для оценки интегральной токсичности почвы и создание на их основе комплексной системы чувствительных, достоверных и экономичных биотестов является перспективной областью исследований. Многие физиологические группы почвенных микроорганизмов проявляют чувствительность по отношению к нефтяным углеводородам.

Общая численность микроорганизмов, как правило, достаточно четко отражает микробиологическую активность почвы, скорость разложения органических веществ и круговорота минеральных элементов. На основании данного показателя можно не только судить о степени загрязненности почвы нефтью, но и о ее потенциальной способности к восстановлению, а также о процессах разложения нефти в естественных природных условиях и при рекультивации загрязненных почв (Киреева, 1995).

Нефтяное загрязнение может также способствовать накоплению в почве микроскопических грибов, вызывающих заболевания растений и фитотоксины (Киреева, Кузяхметов и др., 2003). Последнее обстоятельство играет немаловажную роль при разработке мероприятий по фитомелиорации нефтезагрязненных земель.

Непосредственное воздействие нефти на растительный покров в том, что замедляется рост растений, нарушаются функции фотосинтеза и дыхания, отмечаются различные морфологические нарушения, сильно страдают корневая система, листья, стебли и репродуктивные органы. Оперативную информацию о фитотоксичности загрязненной почвы можно получить, используя в качестве тест-объектов семена и проростки растений. Для удобства постановки тестов на токсичность семена подбирают по размерам и скорости их прорастания. Часто используют семена редиса, кресс-салата, кукурузы, зерновых. В качестве тест-функции выступают показатели всхожести семян, дружности и времени появления всходов, скорости удлинения проростков, последний из которых считается наиболее чувствительным.

В природных экосистемах почвенные беспозвоночные широко используются для мониторинга на уровне комплекса видов (Трублаевич, Семенова, 1997).

Набор тест-объектов из семян растений, микроорганизмов, почвенных беспозвоночных и ферментов можно использовать как в полном объеме, так и частично, в зависимости от целевого назначения исследований и степени нефтяного загрязнения почвы. Если пробы с почвенными ногохвостками и активность ферментов дают хорошую количественную характеристику токсичности почвы при низкой и средней степени ее загрязнения, то микробиологические тесты удобны для описания состояния сильнозагрязненных высокотоксичных почв (Киреева, 1995).

3. Методы восстановления нефтезагрязненных почвенных экосистем

Нефтяное загрязнение отличается от многих других антропогенных воздействий тем, что оно дает не постепенную, а, как правило, «залповую» нагрузку на среду, вызывая быструю ответную реакцию. При оценке последствий такого загрязнения не всегда можно сказать, вернется ли экосистема к устойчивому состоянию или будет необратимо деградировать. Во всех мероприятиях, связанных с ликвидацией последствий загрязнения, с восстановлением нарушенных земель, необходимо исходить из главного принципа: не нанести экосистеме больший вред, чем тот, который уже нанесен при загрязнении. Суть восстановления загрязненных экосистем – максимальная мобилизация внутренних ресурсов экосистемы на восстановление своих первоначальных функций. Самовосстановление и рекультивация представляют собой неразрывный биогеохимический процесс.

Естественное самоочищение природных объектов от нефтяного загрязнения - длительный процесс, особенно в условиях Сибири, где долгое время сохраняется пониженный температурный режим. В связи с этим, разработка способов очистки почвы от загрязнения углеводородами нефти – одна из важнейших задач при решении проблемы снижения антропогенного воздействия на окружающую среду.

3.1 Классификация методов рекультивации почв, загрязненных нефтью и нефтепродуктами

Рекультивация земель – это комплекс мероприятий, направленных на восстановление продуктивности и хозяйственной ценности нарушенных и загрязненных земель. Задача рекультивации – снизить содержание нефтепродуктов и находящихся с ними других токсичных веществ до безопасного уровня, восстановить продуктивность земель, утерянную в результате загрязнения (Реймерс, 1990). В настоящее время разработан ряд методов ликвидации нефтяных загрязнений почвы, включающие механические, физико-химические, биологические методы (таблица 3.1).

Таблица 3.1 - Методы ликвидации нефтяных загрязнений почвы (Колесниченко, 2004).

Методы Способы ликвидации Особенности применения
Механи-ческие Обвалка загрязнения, откачка нефти в ёмкости Первичные мероприятия при крупных разливах при наличии соответствующей техники и резервуаров (проблема очистки почвы при просачивании нефти в грунт не решается)
Замена почвы Вывоз почвы на свалку для естественного разложения
Физико-химические Сжигание Экстренная мера при угрозе прорыва нефти в водные источники. В зависимости от типа нефти и нефтепродукта уничтожается от 50 до 70% разлива, остальная часть просачивается в почву. Из-за недостаточно высокой температуры в атмосферу попадают продукты возгонки и неполного окисления нефти; землю после сжигания необходимо вывозить на свалку
Предотвращение возгорания При разливе легковоспламеняющихся продуктов в цехах, жилых кварталах, на автомагистралях, где возгорание опаснее загрязнения почвы; изолируют разлив сверху противопожарными пенами или засыпают сорбентами
Промывка почвы Проводится в промывных барабанах с применением ПАВ, промывные воды отстаиваются в гидроизолированных прудах или ёмкостях, где впоследствии проводятся их разделение и очистка
Дренирование почвы Разновидность промывки почвы на месте с помощью дренажных систем; может сочетаться с использованием нефтеразлагающих бактерий
Экстракция растворителями Обычно проводится в промывных барабанах летучими растворителями с последующей отгонкой их остатков паром
Сорбция Разливы на сравнительно твёрдой поверхности (асфальт, бетон, утрамбованный грунт) засыпают сорбентами для поглощения нефтепродукта и снижения пожароопасности при разливе легковоспламеняющихся продуктов
Термическая десорбция Проводится редко при наличии соответствующего оборудования, позволяет получать полезные продукты вплоть до мазутных фракций
Биологические Биоремедиация Применяют нефтеразрушающие микроорганизмы. Необходима запашка культуры в почву. Периодические подкормки растворами удобрений, ограничение по глубине обработки, температуре почвы (выше 15ºС), процесс занимает 2-3 сезона
Фиторемедиация Устранение остатков нефти путём высева нефтестойких трав (клевер ползучий, щавель, осока и др.), активизирующих почвенную микрофлору, является окончательной стадией рекультивации загрязнённых почв

До недавнего времени наиболее распространенным и дешевым методом ликвидации нефтяного загрязнения было простое сжигание. Этот способ неэффективен и вреден по двум причинам: 1) сжигание возможно, если нефть лежит на поверхности густым слоем или собрана в накопители, пропитанные ею почва или грунт гореть не будут; 2) на месте сожженных нефтепродуктов продуктивность почв, как правило, не восстанавливается, а среди продуктов сгорания, остающихся на месте или рассеянных в окружающей среде, появляется много токсичных, в частности канцерогенных веществ (Гриценко, Акопова, 1997).

Очистка почв и грунтов в специальных установках путем пиролиза или экстракции паром дорогостояща и малоэффективна для больших объемов грунта. Требуются большие земляные работы, в результате чего нарушается естественный ландшафт, а после термической обработки в очищенной почве могут остаться новообразованные полициклические ароматические углеводороды – источник канцерогенной опасности (Пиковский, 1993).

Землевание замедляет процессы разложения нефтяных углеводородов, приводит к образованию внутрипочвенных потоков нефти, пластовой жидкости и загрязнению грунтовых вод. Складирование загрязненной почвы создает очаги вторичного загрязнения.

Качественное удаление нефтяных загрязнителей при высоких уровнях загрязнения зачастую не обходится без применения различного рода сорбентов. Среди возможного сырья для производства сорбентов наиболее привлекательными являются естественное органическое сырье и отходы производства растительного происхождения. К такому сырью относятся торф, сапропели, отходы переработки сельскохозяйственных культур и др. На базе такого сырья разработаны, например, такие сорбенты, как «Сорбест», «РС», «Лессорб» и др. (Колесниченко, 2004).

Существует технология очистки почв и грунтовых вод путем промывания их поверхностно-активными веществами. Этим способом можно удалить до 86% нефти и нефтепродуктов. Применять его в широких масштабах вряд ли целесообразно, так как поверхностно-активные вещества сами загрязняют среду и появится проблема их сбора и утилизации (Пиковский, 1993).

3.2 Основные подходы и роль биоремедиации в восстановлении нефтезагрязненных почв

Существующие механические, термические и физико-химические методы очистки почв от нефтяных загрязнений дорогостоящи и эффективны только при определенном уровне загрязнения (как правило, не менее 1% нефти в почве), часто связаны с дополнительным внесением загрязнения и не обеспечивают полноты очистки. В настоящее время наиболее перспективным методом для очистки нефтезагрязненных почв, как в экономическом, так и в экологическом плане является биотехнологический подход, основанный на использовании различных групп микроорганизмов, отличающихся повышенной способностью к биодеградации компонентов нефтей и нефтепродуктов (Логинов и др., 2000). Способность утилизировать трудноразлагаемые вещества антропогенного происхождения (ксенобиотики) обнаружена у многих организмов. Это свойство обеспечивается наличием у микроорганизмов специфических ферментных систем, осуществляющих катаболизм таких соединений. Поскольку микроорганизмы имеют сравнительно высокий потенциал разрушения ксенобиотиков, проявляют способность к быстрой метаболической перестройке и обмену генетическим материалом, им придается большое значение при разработке путей биоремедиации загрязненных объектов.

Под термином «биоремедиация» принято понимать применение технологий и устройств, предназначенных для биологической очистке почв, т.е. для удаления из почвы уже находящихся в ней загрязнителей (Биология. Большой энциклопедический…, 1999). Биоремедиация включает в себя два основных подхода:

1 биостимуляция – активизация деградирующей способности аборигенной микрофлоры внесением биогенных элементов, кислорода, различных субстратов;

2 биодополнение – интродукция природных и генноинженерных штаммов-деструкторов чужеродных соединений.

Биостимуляция insiti (биостимуляция в месте загрязнения). Этот подход основан на стимулировании роста природных микроорганизмов, обитающих в загрязненной почве и потенциально способных утилизировать загрязнитель, но не способных делать это эффективно из-за недостатка основных биогенных элементов (соединений азота, фосфора, калия и др.) или неблагоприятных физико-химических условий. В этом случае в ходе лабораторных испытаний с использованием образцов загрязненной почвы устанавливают, какие именно компоненты и в каких количествах следует внести в загрязненный объект, чтобы стимулировать рост микроорганизмов, способных утилизировать загрязнитель (Логинов и др., 2000).

Биостимуляция invitro. Отличие этого подхода в том, что биостимуляция образцов естественной микрофлоры загрязненной почвы проводится сначала в лабораторных или промышленных условиях (в биореакторах или ферментерах). При этом обеспечивается преимущественный и избирательный рост тех микроорганизмов, которые способны наиболее эффективно утилизировать данный загрязнитель. «Активизированную» микрофлору вносят в загрязненный объект одновременно с необходимыми добавками, повышающими эффективность утилизации загрязнителя (Логинов и др., 2000).

Существующие два пути интенсификации биодеградации ксенобиотиков в окружающей среде – стимуляция естественной микрофлоры и интродукция активных штаммов, не только не противоречат, но и дополняют друг – друга (Коронелли, 1996).

Биорекультивация нефтезагрязненных почв – это многостадийный биотехнологический процесс, включающий физико-химические методы детоксикации загрязнителя, применение органических и минеральных добавок, использование биопрепаратов (Вельков,1995).

Основными факторами, влияющими на ход биоразрушения органических загрязнителей, являются их химическая природа (которая обусловливает возможные пути биотрансформации), концентрация и взаимодействие с другими загрязнителями (на уровне их непосредственного взаимодействия или взаимного влияния на трансформацию).

К неблагоприятным физико-химическим условиям, лимитирующим деградацию микроорганизмами ксенобиотиков в окружающей среде, можно отнести низкую или чрезмерную влажность почвы, недостаточное содержание кислорода, неблагоприятную температуру и рH, низкую концентрацию или доступность ксенобиотиков, наличие альтернативных, более предпочтительных субстратов и т.д.. Среди биологических факторов отмечены поедание интродуцируемых микроорганизмов простейшими, обмен генетической информацией в популяции, физиологическое состояние и плотность интродуцируемой микробной популяции (Providenti, 1993). Некоторые из перечисленных проблем могут быть решены путем создания генетически сконструированных штаммов-деструкторов и их консорциумов, усовершенствования методов интродукции, оптимизации условий существования природных микробных популяций.

Таким образом, интродукция микроорганизмов приводит к положительным результатам только при создании соответствующих условий для развития внесенной популяции, для чего необходимо знать физиологические особенности интродуцента, а также учитывать складывающиеся микробные взаимодействия.

3.3 Микроорганизмы-деструкторы нефти и нефтепродуктов

Способность усваивать углеводороды нефти присуща микроорганизмам, представленным различными систематическими группами. К ним относятся различные виды микромицетов, дрожжей и бактерий. Наиболее активные деструкторы нефти встречаются среди бактерий. Они характеризуются способностью к усвоению широкого спектра углеводородов, включая и ароматические, обладают высокой скоростью роста и, следовательно, представляют большой практический интерес.

Углеводородокисляющая группа микроорганизмов природного происхождения таксономически очень разнообразна. Наиболее активные бактериальные штаммы относятся к родам: Pseudomonas, Arthrobacter, Rhodococcus, Acinetobacter, Flavobacterium, Corynebacterium, Xanthomonas, Alcaligenes, Nocardia, Brevibacterium, Mycobacterium, Beijerinkia, Bacillus, Enterobacteriaceae, Klebsiella, Micrococcus, Sphaerotilus. Среди актиномицетов внимание привлекает многочисленный род Streptomyces. Из дрожжей выделяют род Candida и Torulopsis (Сидоров и др., 1997).

Постоянными и доминирующими компонентами естественных биоценозов нефтяных загрязнений являются родококки, их основная экологическая функция – аккумуляция газообразных н-алканов, жидких углеводородов нефти и трансформация их в биомассу. Бактерии этого рода отличаются высокой жизнестойкостью при действии неблагоприятных факторов – низкой температуры, солнечного ультрафиолета, длительного отсутствия питательных веществ. Естественная нефтеокисляющая микрофлора нефтезагрязненной тундровой почвы представлена главным образом бактериями R. Erythropolis. В связи с этим понятен интерес к родококкам – деструкторам нефти (Коронелли, 1996).

Т. В. Коронелли с соавт. с целью выбора штамма, сохраняющего в наибольшей степени углеводородокисляющую активность при низких температурах, провели скрининг всей коллекции углеводородокисляющих бактерий (роды Pseudomonas, Arthrobacter, Rhodococcus) в агаризованной среде с парафином при температуре плюс 6°С. Отобранные таким образом 17 штаммов выращивали в жидкой среде с нефтью при плюс 8°С. Через 14 суток определяли концентрацию нефтяных углеводородов методом ИК-спектроскопии. Оказалось, что 12 штаммов использовали от 13 до 36% внесенной нефти, два штамма – 5-6%, а три были неэффективными. Все 12 штаммов являлись представителями рода Rhodococcus: 11 принадлежали к виду R. Erythropolis; один – к виду R. Maris (Коронелли, 1996).

Немалый интерес представляют спорообразующие бактерии, так как они наиболее устойчивы к различным неблагоприятным воздействиям окружающей среды.

В настоящее время активно ведётся поиск микроорганизмов, разрушающих нефть, в особенности при низких температурах. Активные формы микроорганизмов выделяются из разнообразных водных и почвенных экосистем, особенно загрязнённых углеводородами или нефтью, а также из микрофлоры нефти и пластовых вод нефтяных месторождений.

Выбор активного микроорганизма-деструктора углеводородных загрязнений должен производиться с учетом ряда требований. При поиске микроорганизма-деструктора необходимо учитывать, что вносимая в почву микробная биомасса не должна быть чужеродной для почвенной микрофлоры. Еще одним важным требованием к вносимым в почву микроорганизмам является их непатогенность. В связи с тем, что технология микробиологической очистки загрязненных почв предусматривает аэробные условия, необходимо вести выбор микроорганизма-деструктора среди аэробных и факультативно-анаэробных микроорганизмов. Микробные клетки могут подвергаться воздействию неблагоприятных факторов окружающей среды, следовательно, микроорганизм-деструктор должен обладать высокой жизнестойкостью.

В настоящее время предложено большое количество различных коммерческих микробиологических препаратов как отечественного, так и импортного производства. Ряд из них нашел широкое применение на практике (Деворойл, Дестройл, Путидойл и т.п.)

Институтом Микробиологии АН России совместно с Научно – производственным предприятием «Биотехинвест» разработан микробиологический препарат «Деворойл». Препарат предназначен для биодеградации нефти и нефтепродуктов при загрязнении почв, водоемов, поверхностей акваторий, а также внутренних поверхностей танков нефтеналивных судов и прочих резервуаров.

Микробиологический препарат «Деворойл» состоит из тщательно подобранного сообщества углеводородоокисляющих бактерий и дрожжей. В состав ассоциации входят вегетативные клетки непатогенных штаммов культур родов Rhodococcus, Pseudomonas и Yarovvia. Бактерии способны окислять нефтяные n – алканы длиной цепи С9 – С30 и ароматические углеводороды. Удачно подобранная ассоциация микроорганизмов дает препарату множество принципиальных преимуществ.

Также для ликвидации нефтяных загрязнений почвы используется препарат «Дестройл». Коммерческий препарат, выпускаемый Бердским заводом биологических препаратов, полученный на основе выделенной из природы микробной культуры Acinetobacter sp. Обладает высоковыраженной активностью в отношении углеводородов нефти и нефтепродуктов, вызывая в них глубокие необратимые процессы деградации до остаточных продуктов, относящихся к экологически нейтральным соединениям.


3.4 Трансформация нефти в почве микробиологическим препаратом и дождевыми червями

Ученые Иркутского Государственного Университета (Стом, Матвеева и др., 2006) проводили исследования. В лабораторных условиях изучали влияние дождевых червей и нефтеразрушающего микробиологического препарата, а также их бинарной смеси на образцы нефтезагрязненной почвы. Трансформация нефтяного загрязнения, снижение фитотоксичности исследуемых образцов и рекультивация почвы наиболее эффективно происходит под действием комплекса биодеструкторов.

Было предложено для элиминирования нефтегенного загрязнения совместное применение нефтеразрушающих микробиологических препаратов и дождевых червей. При использовании такого подхода предполагалось увеличение скорости и степени биотрансформации нефтепродуктов, восстановление структуры почвы, устранение необходимости дополнительной аэрации и повторного внесения препарата.

Источником микроорганизмов служил микробиологический препарат "Дестройл", рекомендованный для очистки почвы от нефти и нефтепродуктов. В качестве дождевых червей использовали красный калифорнийский гибрид дождевого червя Eisenia foetida.

Эксперименты проводили в садках размером 180 мм - 120 мм - 60 мм, помещая туда образцы нефтезагрязненной почвы (толщина слоя 50 мм). В работе использовали дерново-подзолистую почву, в которую добавляли нефть Марковского месторождения Иркутской области (из расчета 25 г нефти на 1 кг почвы). В один из опытных садков вносили микробиологический препарат "Дестройл" (0,5 г на 100 г нефтезагрязненной почвы), в другой - дождевых червей, а в третий - добавляли "Дестройл" совместно с дождевыми червями. Червей брали одинакового возраста длиной 60-70 мм по пять особей. Контролем служила нефтезагрязненная почва, в которую не добавляли ни червей, ни «Дестройл».

Количественное содержание нефти, экстрагированной хлороформом (Агранович, 1979), в процессе опыта определяли на спектрофотометре СФ - 46, при l = 286 нм (Куркова, Бриль, 1990).

Определение скорости вермитрансформации почвы червями вели по оригинальной методике (Стом и др., патент №96114221). В основе этого метода лежит регистрация толщины слоя копролитов накапливающихся на поверхности субстрата. Оценку фитотоксичности водных вытяжек из почв осуществляли по пробе на прорастание семян редиса (Stom, 1982). Подсчитывали число проросших семян и измеряли длину проростков. Каждый опыт проводили не менее чем с тремя параллелями и в 5 биологических повторностях.

Как видно из рисунка 3.1 добавление в почву червей, а еще в большей степени микробиологического препарата существенно активизировало процессы элиминирования нефти в исследуемых образцах. По мере увеличения продолжительности экспериментов наблюдали все более значительное снижение содержания нефти при совместном действии красного калифорнийского гибрида и препарата "Дестройл" по сравнению с действием биодеструкторов порознь. Особенно наглядно это проявлялось в сорокасуточных экспериментах, когда наблюдалось заметное снижение влияния отдельно внесенных дождевых червей и микробиологического препарата.

В вариантах с добавлением червей отмечалось повышение структурированности почвы, ее скважности. Это, без сомнения, должно повышать аэрацию и улучшать водный режим почвы (Орлов, 1978), тем самым, способствуя физико-химическим и микробиологическим процессам разрушения нефти.


Рисунок 3.1 – Влияние различных биодеструкторов на содержание нефти в почве


О том, что при действии комплекса биодеструкторов происходило значительно более интенсивное обезвреживание нефти, свидетельствовали и данные, полученные при тестировании на семенах редиса.

Из таблицы 3.2 можно увидеть, что при совместном влиянии микробиологического препарата и красного калифорнийского гибрида, происходило значительно более эффективное снижение фитотоксичности водных вытяжек из почвы, в которую добавляли нефть, чем в тех случаях, когда компоненты действовали порознь.

Таблица 3.2 – Влияние биодеструкторов на фитотоксичность водных вытяжек из почвы, загрязненной нефтью

Примечание: Контроль: водная вытяжка почвы, в которую не вносили нефть; кол-во проросших семян - 29; средняя длина проростков, мм - 57; исходная концентрация нефти в 1 кг почвы – 25 г.

Через 30 суток от начала эксперимента в вариантах с водными вытяжками, из нефтезагрязненных почв, в которые запускали красных калифорнийских червей, прорастало всего 3,5 % семян, там где был добавлен «Дестройл» - 17%, а там где присутствовали и черви и микробиологический препарат – 68 %. Длина проростков редиса через 30 суток составила соответственно 11,0, 33,0 и 60,5 мм.

Таким образом, проведенные исследования показали, что комплекс биодеструкторов, состоящий из представителей двух трофических уровней - ассоциаций нефтеразрушающих микроорганизмов - "Дестройл" и дождевых червей, более эффективно элиминировал нефть из нефтезагрязненных почв, снижал фитотоксичность образцов, и вел к рекультивации почв, чем названные биодеструкторы это делали по отдельности.


3.5 Методы рекультивации, основанные на интенсификации процессов самоочищения

Самоочищение и самовосстановление почвенных экосистем, загрязненных нефтью и нефтепродуктами, - это стадийный биогеохимический процесс трансформации загрязняющих веществ, сопряженный со стадийным процессом восстановления биоценоза. Для разных природных зон длительность отдельных стадий этих процессов различна, что связано в основном с почвенно-климатическими условиями. Важную роль играют и состав нефти, наличие сопутствующих солей, начальная концентрация загрязняющих веществ (Исмаилов и др., 1998).

Механизм самовосстановления экосистемы после нефтяного загрязнения достаточно сложен. С помощью агротехнических приемов можно ускорить процесс самоочищения нефтезагрязненных почв путем создания оптимальных условий для проявления потенциальной активности микроорганизмов, входящих в состав естественного микробиоценоза.

Одним из основных факторов, лимитирующих процесс разложения углеводородов, является газовоздушный режим загрязненной почвы. Нефтяное загрязнение ухудшает газовый обмен почвы, создает условия для усиления восстановительных процессов. Для окисления углеводородов микроорганизмами необходимо наличие молекулярного кислорода, в анаэробных условиях процесс окисления крайне затруднен.

Из свыше 100 видов бактерий, грибов, дрожжей, способных утилизировать один или несколько нефтяных углеводородов в качестве источника углерода и энергии, только один принадлежал к анаэробам (Колесниченко, 2004). Приемы обработки почв, способствующие улучшению аэрации, стимулируют активность микроорганизмов, усиливают окислительные процессы. Интенсификация разложения нефти и нефтепродуктов в почве возможна путем рыхления, частой вспашки, дискования.

Обработка является мощным регулирующим фактором, стимулирующим самоочистку нефтезагрязненных почв. Она положительно влияет на микробиологическую и ферментативную активность, так как способствует улучшению условий жизнедеятельности аэробных микроорганизмов, которые количественно и по интенсивности метаболизма доминируют в почвах и являются основными деструкторами углеводородов. Рыхление загрязненных почв увеличивает диффузию кислорода в почвенные агрегаты, снижает концентрацию углеводородов в почве в результате улетучивания легких фракций, обеспечивает разрыв поверхностных пор, насыщенных нефтью, но в то же время способствует равномерному распределению компонентов нефти и нефтепродуктов в почве и увеличению активной поверхности. Обработка почвы создает мощный биологически активный слой с улучшенными агрофизическими свойствами. В почве при этом создается оптимальный водный, газовоздушный и тепловой режим, растет численность микроорганизмов и их активность, усиливается активность почвенных ферментов, увеличивается энергия биохимических процессов (Колесниченко, 2004).

Обеспеченность почв биогенными элементами - азотом, фосфором и калием - важный фактор, определяющий интенсивность разложения нефти и нефтепродуктов. Недостаток биогенных элементов необходимо восполнять путем внесения в почву минеральных удобрений. Практически во всех случаях внесение биогенных элементов в виде минеральных удобрений стимулирует разложение углеводородов в почве. Наиболее интенсивно разложение углеводородов протекает при ежегодном внесении комплекса N, P, K – содержащих удобрений в сочетании с навозом, а также при внесении в почву биогумуса (Андерсон и др., 1979).

Биогумус получают переработкой навоза (крупного рогатого скота, свиного, конского), опилок, измельченной вермикультурой соломы. Биогумус поддерживает высокую численность бактерий, утилизирующих органические и минеральные формы азота, целлюлозоразрушающих микроорганизмов, нитрификатов. Способствует перестройке микробного ценоза нефтезагрязненной почвы, что проявляется в расширении видового разнообразия бактериальной флоры. Почвенная микрофлора использует компоненты биогумуса в качестве источника азота, фосфора и калия, обеспеченность которыми в нефтезагрязненной почве снижается. Многие органические вещества биогумуса служат энергетическим материалом для почвенной микрофлоры, благодаря чему в почве повышается активность микробиологических процессов, соответственно усиливается мобилизация питательных веществ (Логинов, 2000).

Температура - важный фактор, при прочих равных условиях определяющий интенсивность микробиологического разложения нефти и нефтепродуктов. Оптимальной температурой для разложения нефти и нефтепродуктов в почве считается 20-37°С. В почвах, расположенных в аридных зонах с повышенной среднегодовой температурой, интенсивность самоочищения загрязненных почв значительно выше, чем в почвах, расположенных в гумидных зонах с относительно низкими среднегодовыми температурами.

В виду сильного влияния температуры на скорость биодеградации нефтепродуктов особое внимание исследователей в последнее время привлекают природные микроорганизмы, обладающие высокой устойчивостью к низким температурам. В частности, из загрязненных нефтепродуктами почв Антарктики был выделен штамм Pseudomonassp. 30-3, способный переносить диапазон температур от 0 до 35 °С (Panickeretal., 2002).

Поддержание почвы во влажном состоянии является одним из агротехнических приемов управления биологической активностью и оказывает эффективное воздействие на темпы разложения нефти и нефтепродуктов. Благоприятный водный режим почвы достигается путем полива. Улучшение водного режима путем полива обусловливает улучшение агрохимических свойств почв, в частности влияет на подвижность питательных веществ, микробиологическую деятельность и активность биологических процессов. Одновременно с этим усиливается действие на микробиологическую и ферментативную активность агрохимических приемов, например внесения удобрений, рыхления.

Кислотность почвы играет важную роль в разложении нефти и нефтепродуктов. Значения рН, близкие к нейтральным, являются оптимальными для роста на углеводородах большинства бактериальных микроорганизмов. В подзолистых почвах с кислой реакцией этот фактор имеет решающее значение при разложении нефти и нефтепродуктов. Поэтому для создания рН, оптимального для их биоразложения, кислые почвы подвергают известкованию (Колесниченко, 2004).

Посев на нефтезагрязненную почву люцерны и других бобовых культур, трав с разветвленной корневой системой способствует ускорению разложения углеводородов (Алиев и др., 1977). Положительное воздействие посевов сельскохозяйственных растений, и в частности многолетних трав, объясняется тем, что своей развитой корневой системой они способствуют улучшению газовоздушного режима загрязненной почвы, обогащают почву азотом и биологически активными соединениями, выделяемыми корневой системой в почву в процессе жизнедеятельности растений. Все это стимулирует рост микроорганизмов и соответственно интенсифицирует разложение нефти и нефтепродуктов.


Заключение

Загрязнение почв нефтью и нефтепродуктами - одна из сложных и многоплановых проблем экологии и охраны окружающей среды. В настоящее время успешно развиваются технологии биоремедиации нефтезагрязненных территорий. При этом решение проблемы достигается за счет стимуляции микробных ценозов путем внесения удобрений, микроорганизмов, которые способны наиболее эффективно утилизировать данный загрязнитель или путем внесения различных биопрепаратов.

Единственным реальным в настоящее время способом борьбы с последствиями разлива нефти и нефтепродуктов является комплекс работ, включающий механическое или физико-химическое удаление разлитых нефтепродуктов с последующей очисткой остающейся в почве нефти биологическими методами при помощи биодеструкции нефтеокисляющими микроорганизмами.

В то же время существующие в настоящее время в России препараты оказываются недостаточно эффективными в различных экстремальных почвенно-климатических условиях различных регионов России, в связи с чем для ликвидации масштабных последствий разливов нефти в настоящее время необходим активный поиск и выделение аборигенных штаммов и разработка новых препаратов.

Однако необходимо отметить, что природные аборигенные микроорганизмы обладают ограниченной нефтеокисляющей активностью, несмотря на более высокую устойчивость к воздействию факторов внешней среды. Поэтому возможным перспективным решением является разработка новых, не существующих в природе видов микроорганизмов. Эти новые виды, обладающие как минимум на порядок более высокой нефтеокисляющей активностью, должны создаваться обязательно с искусственным ограничением срока жизни с целью предотвращения биогенной катастрофы.

Разработаны и активно внедряются большое количество коммерческих микробиологических препаратов иностранного и отечественного производства, таких как «Дестройл», «Путидойл», «Деворойл» и др. Однако в природных условиях биодеградация протекает под воздействием всего комплекса почвенной биоты, неотъемлемой частью которой являются и дождевые черви. В связи с этим можно было предположить, что вермикультура окажется перспективной и для интенсификации переработки нефтезагрязненных материалов.

Проведенные исследования показали, что комплекс биодеструкторов, состоящий из представителей двух трофических уровней - ассоциации нефтеразрушающих микроорганизмов - "Дестройл" и дождевых червей, более эффективно элиминировал нефть из нефтезагрязненных почв и снижал фитотоксичность исследуемых образцов, чем в случае их раздельного внесения.

Проблема нефтяного загрязнения почв в настоящее время в нашей стране практически не решается. Работы по очистке нефтяных загрязнений с использованием микроорганизмов не координируются, их научный и технологический уровень невысокий. Таки образом, проблема загрязнения нефтью и нефтепродуктами почв Российской Федерации стоит в настоящее время как никогда остро и для поиска путей разрешения всех ее аспектов необходима координируемая концентрация усилий всех заинтересованных правительственных, научных и производственных организаций.

Список используемых источников

1 Абросимов А.А. Экология переработки углеводородных систем / Под ред. М. Ю. Доломатова, Э. Г. Теляшева.-М.: Химия, 2002.-608 с.

3 Андресон Р.К. Изучение факторов, влияющих на биоразложение нефти в почве / Р.К. Андресон, Л.А. Пропадущая // Коррозия и защита в нефтегазодобывающей промышленности.- М., 1979.- №3.- С. 30-32.

4 Берне Ф.Ж. Водоочистка / Ф. Бернье, Ж. Кордонье. – М.: Химия, 1997. – 288 с.

5 Биология. Большой энциклопедический словарь / Гл. ред. М.С. Гиляров. – 3-е изд. – М.: Большая Российская энциклопедия, 1999. – 864 с.

6 Бочарникова Е.Д. Влияние нефтяного загрязнения на свойства серо-бурых почв Апшерона и серых лесных почв Башкирии / Е.Д Бочарникова // Автореф. Дис. … канд. биол. наук.- М.: 1990.-16 с.

7 Вельков В.В. Биоремедиация; принципы, проблемы, подходы / В.В. Вельков // Биотехнология.- 1995.- № 3–4.- С. 20-27.

8 Восстановление нефтезагрязнённых почвенных экосистем / Под ред. М.А. Глазковской.- М. Наука, 1988.- 264 с.

9 Власов А.В. Борьба с потерями нефтепродуктов при транспортировании и хранении (анализ и оценка потерь) / А.В. Власов - М.: ЦНИИТЭНефтехим, 1994.- 50 с.

10 Гольдберг В. М. Техногенное загрязнение природных вод углеводородами и его экологические последствия / В.М. Гольдберг, В.П. Зверев, А.И. Арбузов, и др.– М.: Наука, 2001.-125с

11 Государственный доклад о состоянии и об охране окружающей среды Иркутской области в 2003 году. – Иркутск: Изд-во «Облмашинформ», 2004.-296 с.

12 Гриценко А.И. Экология. Нефть и газ / А.И. Гриценко, Г.С. Акопов, В.М. Максимов. - М.: Наука, 1997.-598 с.

13 Давыдова С.Л. Нефть как топливный ресурс и загрязнитель окружающей среды / С.Л. Давыдова, В.И. Тагасов. – М.: Изд-во РУДН, 2004. – 131 с.

14 Динков В.А. Высоконадежный трубопроводный транспорт / В.А. Динков, О.М. Иванцов // Строительство трубопроводов.- М.: ТОТ, 1994.- С. 5-9.

15 Иерусалимский Н.Д. Исследование микрофлоры сточных вод нефтеперераба-тывающих предприятий / Н.Д. Иерусалимский, Е.А. Андреева, Е.Л. Гришанкова, Е.Л. Головлев, В.В. Дорохов, Л.Н. Жукова // Прикладная биохимия и микробиология. – 1965.- № 2.-С.163-166.

16 Исмайлов Н.И. Современное состояние методов рекультивации нефтезагрязненных земель / Н.И. Исмайлов, Ю.И. Пиковский // Восстановление нефтезагрязненных почвенных экосистем.- М.: Наука, 1988.-С. 222-236.

17 Киреева Н.А. Биологическая активность нефтезагрязненных почв / Н.А. Киреева, В.В. Водопьянов, А.М. Мифтахова. – Уфа Гилем, 2001.

18 Киреева Н.А. Диагностические критерии самоочищения почв от нефти / Н.А. Киреева, Е.И. Новоселова, Г.Ф. Ямалетдинова // Экология и промышленность России 2001 Декабрь.

19 Киреева Н.А. Фитотоксичность антропогенно-загрязненных почв / Н.А.Киреева, Г.Г. Кузяхметов, А.М.Мифтахова, В.В.Водопьянов.-Уфа Гилем, 2003.

20 Киреева Н.А. Микробиологическая оценка почвы, загрязненной нефтяными углеводородами / Н.А. Киреева // Баш. Хим. ж.-1995.-2, № 3-4.-С. 65-68.

21 Киреева Н.А. Влияние загрязнения почв нефтью и нефтепродуктами на численность и видовой состав микромицетов / Н.А. Киреева, Н.Ф Галимзянова // Почвоведение, 1995.- №2,- С.211-216.

22 Киреева Н.А. Состояние комплекса актиномицетов нефтезагрязненных почв / Н.А. Киреева // Вест. Баш. Ун-та.-1996.- № 1.-С. 42-45.

23 Колесниченко А.В. Процессы биодеградации в нефтезагрязненных почвах / А.В. Колесниченко, А.И. Марченко, Т.П. Побежимова, В.В. Зыкова.- Москва: «Промэкобезопасность», 2004. - 194 с.

24 Коронелли Т.В. Принципы и методы интенсификации биологического разрушения углеводородов в окружающей среде (обзор) / Т.В. Коронелли // Прикладная биохимия и микробиология.-1996.- 32, № 6.- С.579-585.

25 Куркова З.В. Использование диэлькометрического метода для определения содержания и дисперсности нефтепродуктов в сточной воде / З.В. Куркова, З.М. Бриль, Н.Н. Гулина // Химия и технология воды.- 1990.-т.12, № 11. – С.1036-1038.

26 Левин С.В. Эколого-микробиологическое нормирование содержания нефти в почве / С.В. Левин, Э.М. Халимов, В.С. Гузев // Токсикологический вестник.–1995.- №1.- С. 11-15.

27 Логинов О.Н. Биотехнологические методы очистки окружающей среды от техногенных загрязнений / О.Н. Логинов, Н.Н, Силищев, Т.Ф. Бойко, Н.Ф. Галимзянова.–Уфа: Гос. изд. научно-тех. литературы «Реактив», 2000. – 100 с.

28 Методика определения нефтепродуктов в сточных водах производств люминисцентно-хроматографическим методом. – В кн.: Справочник по физико-химическим методам исследования объектов окружающей среды / Под ред. Г.И. Агранович – Л.: Судостроитель, 1979. – С.87.

29 Митчел Дж. Акваметрия / Дж. Митчелл, Д. Смит.- М.: Химия, 1980.-С.600.

30 Орлов Д. С. Экология и охрана биосферы при химическом загрязнении / Д.С. Орлов, Л.К. Садовникова, И.Н. Лозановская. – М.: Высш. Шк, 2002. – 334 с.

31 Орлов Д.С. Химия почв / Д.С. Орлов.– М.: Высшая школа, 1978.-С.342.

32 Панов Г. Е. Охрана окружающей среды на предприятиях нефтяной и газовой промышленности / Г.Е. Панов, Л.Ф. Петряшин, Г.Н. Лысяный. - М.: Недра, 1986.- 244 с.

33 Петров А. А. Углеводороды нефти / А.А. Петров.- М.: Наука, 1984.-263 с.

34 Пиковский Ю.И. Природные и техногенные потоки углеводородов в окружающей среде / Ю.И. Пиковский.– М.: Изд-во МГУ, 1993. – 208 с

35 Пиковский Ю.И. Проблема диагностики и нормирования загрязнения почв нефтью и нефтепродуктами / Ю.И. Пиковский, А.Н. Геннадиев, С.С. Чернянский, Г.Н. Сахаров // Почвоведение.-№ 9.-2003.-С.1132-1140.

36 Проскуряков В.А. Химия нефти игаза / В.А. Проскуряков.- СПб.: Химия, 1995. – С.448.

37 Реймерс Н.Ф. Природопользование / Н.Ф. Реймерс // Словарь-справочник. – М.: Мысль, 1990.-637, С.

38 Рокитский П.Ф. Биологическая статистика / П.Ф. Рокитский.–Минск.: Высшая школа, 1973. – 318 с.

39 Ржавский Е.А. Пути уменьшения потерь нефтегрузов при железнодорожных перевозках / Е.А. Ржавский, И.О. Суходольский // Транспорт и хранение нефти и нефтепродуктов.- М.,1967. -Т.1.-С.29-30.

40 Саксонов М.А. Экологический мониторинг нефтегазовой отрасли / М.А. Саксонов, А.Д. Абалаков, Л.В. Данько, О.А. Бархатова, А.Э. Балаян, Д.И. Стом // Физико-химические и биологические методы. - Иркутск: Иркут. Ун-т, 2005.-114 с.

41 Сидорова Е.В. Охрана почв на объектах газовой промышленности / Е.В. Сидорова, Г.С. Акопова, Н.С. Немкова.- М.: ИРЦ Газпрома, 1994.- 50 с.

42 Сидоров Д.Г. Полевой эксперимент по очистке почв от нефтяного загрязнения с использованием углеводородокисляющих микроорганизмов / Д.Г. Сидоров, И.А. Борзенков, Р.Р. Ибатулин, Е.И. Милехина, И.Т. Храмов, С.С. Беляев, М.В. Иванов // Прикладная биохимия и микробиология.- 1997.- Т.33, №5.- С.497-502.

43 Стом Д.И. Трансформация нефти в простейшие трофические цепи / Д.И. Стом, Д.С. Потапов, А.Э. Балаян, О.Н. Матвеева, В.К. Баранская // Проблемы систематики, экологии и токсикологии беспозвоночных. – Иркутск: Изд-во ИГУ, 2000.-С. 90-95.

44 Стом Д.И. Экспрессный метод оптимизации состава сред для вермикультивирования / Д.И. Стом, Д.С. Потапов, А.Э. Балаян. – Приоритетная справка на патент. – ВНИИГПЭ ОТД № 20.-№ 96114221.

45 Советский энциклопедический словарь / Под ред. А.М. Прохоров.-М.: «Советская Энциклопедия», 1981.-1600 с.

46 Трофимов С.С. Системный подход к изучению процесса почвообразования в техногенных ландшафтах / С.С. Трофимов, А.А. Титлянова, И.Л. Клевенская // Почвообразование в техногенных ландшафтах.- Новосибирск: Наука, 1979.- С.3-18.

47 Трублаевич Ж.М. Оценка токсичности почв с помощью лабораторной культуры коллембол Polзогша сапсШа / Ж.М. Трублаевич, Е.Н. Семенова // Экология, 1997.-№5.

48 Химия океана. М.: Наука, 1979. Т.1. Химия вод океана. 518 с.

49 Шилина А.И. Моделирование физико-химического превращения бенз(а)перена в аэрозольной фазе / А.И. Шилина // Миграция загрязняющих веществ в почвах и сопредельных средах.- Л.: Гидрометиздат, 1985.- С. 128-142.

50 McGillW.W. Soilrestorationfollowingoilspils – areview // J. Canad. Petrol. Technol, 1977.-V.16, №2. – Р.60-67.

51 PanickerG., Aislabie J., Saul D., Bej A.K. Cold tolerance of Pseudomonas sp. 30-3 isolated from oil-contaminated soil, Antarctica // Polar Biol, 2002, 25, P 5-11.

52 Stom D.I. Effect of polyphenols on shootand root growth and on seed germination // Biologia Plantarum.- 1982. – Vol. 24, N. 1. – P. 1451-1457/

Этапы рекультивации нефтезагрязненных земель
Согласно ГОСТ 17.5.3.04-83 рекультивация нефтезагрязненных земель включает в себя ряд мероприятий, которые направлены на восстановление плодородности почвы, подвергшейся различным видам загрязнений. А также на улучшение условий окружающей среды.

Вышеуказанным Госстандартом утверждены и требования к мероприятиям по охране окружающей среды, предпринимаемым при рекультивации, поражённых нефтью и нефтепродуктами земель. Сюда относится:

– ускорение химического разложения (деградации) нефтяных продуктов;

– ликвидация излишков натрия и солей из почв.

Задачи по восстановлению земель от химического воздействия нефтесодержащих продуктов включают:

– удаление нефтяных разливов из структуры почв;

– техническая рекультивация;

Рекультивация осуществляется в несколько этапов. Каждый из них должен производиться в соответствии со строго определёнными сроками, оговорёнными в проектной части. Необходимые этапы рекультивации и сроки их выполнения зависят от нескольких факторов: уровень поражения, давность разлива, условия погоды конкретной местности и состояние её почв. А также в соответствии с геохимическими и ландшафтными характеристиками и состояние биоценоза.

Загрязнения условно делятся на две разновидности , в зависимости от их уровня:

умеренный : для устранения загрязнения в большинстве случаев достаточно активизировать процесс самоочищения почв путём внесения в их состав удобрений, и обработки поверхности рыхлением или другим техническим приёмом;

высокий : такие загрязнения требуют задействования специальных мер, включающих в себя создание аэробных условий и активацию процессов, окисляющих углеводородные вещества.

Если рекультивация земельных участков производится с целью выращивания на них в будущем сельхоз культур, то после завершения восстановительных работ необходимо проведение анализов агрохимической и санитарно-эпидемиологической службами на выявление остатков нефтепродуктов. Только в случае отсутствия каких-либо нефтяных примесей, угрожающих здоровью людей и животных, разрешается посев и выращивание сельскохозяйственных культур.

В противном случае, на поражённых землях сажаются деревья не только с целью увеличения лесных территорий, но и для улучшения условий окружающей среды и защиты почвы от коррозии. В некоторых случаях на местах разлива создаются заповедники и рекреационные зоны.

Создание рекреационных зон, в свою очередь, включает в себя:

– преобразование рельефа (вертикальное планирование);

– сохранение существовавших или полученных рельефных форм вследствие проделанных работ (рельефная поверхность должна по максимуму обеспечивать эффективность дальнейшего использования земельного участка в сельхоз или других целях).

После окончания работ, ландшафт повреждённых и расположенных вблизи земельных участков должен отвечать требованиям экологической сбалансированности и устойчивости.



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация