Аддитивное производство (АП)Additive Manufacturing (AM). Технология производства двусторонних печатных плат

Главная / Суд

Применение новых технологий - главный тренд последних лет в любой сфере промышленного производства. Каждое предприятие в России и мире стремиться создавать более дешевую, надежную и качественную продукцию, использую самые совершенные методы и материалы. Использование аддитивных технологий - один из ярчайших примеров того, как новые разработки и оборудование могут существенно улучшать традиционное производство.

Что такое аддитивные технологии?

Аддитивные технологии производства позволяют изготавливать любое изделие послойно на основе компьютерной 3D-модели. Такой процесс создания объекта также называют «выращиванием» из-за постепенности изготовления. Если при традиционном производстве в начале мы имеем заготовку, от которой оптом отсекаем все лишнее, либо деформируем ее, то в случае с аддитивными технологиями из ничего (а точнее, из аморфного расходного материала) выстраивается новое изделие. В зависимости от технологии, объект может строиться снизу-вверх или наоборот, получать различные свойства.

Общую схему аддитивного производства можно изобразить в виде следующей последовательности:

Первые аддитивные системы производства работали главным образом с полимерными материалами . Сегодня 3D-принтеры , олицетворяющие аддитивное производство, способны работать не только с ними, но и с инженерными пластиками , композитными порошками , различными типами металлов , керамикой, песком . Аддитивные технологии активно используются в машиностроении, промышленности, науке, образовании, проектировании, медицине, литейном производстве и многих других сферах.

Наглядные примеры того, как аддитивные технологии применяются в промышленности - опыт BMW и General Electric:

Преимущества аддитивных технологий

  • Улучшенные свойства готовой продукции. Благодаря послойному построению, изделия обладают уникальным набором свойств. Например, детали, созданные на металлическом 3D-принтере по своему механическому поведению, плотности, остаточному напряжении и другим свойствам превосходят аналоги, полученные с помощью литья или механической обработки.
  • Большая экономия сырья. Аддитивные технологии используют практически то количество материала, которое нужно для производства вашего изделия. Тогда как при традиционных способах изготовления потери сырья могут составлять до 80-85%.
  • Возможность изготовления изделий со сложной геометрией. Оборудование для аддитивных технологий позволяет производить предметы, которые невозможно получить другим способом. Например, деталь внутри детали. Или очень сложные системы охлаждения на основе сетчатых конструкций (этого не получить ни литьем, ни штамповкой).
  • Мобильность производства и ускорение обмена данными. Больше никаких чертежей, замеров и громоздких образцов. В основе аддитивных технологий лежит компьютерная модель будущего изделия, которую можно передать в считанные минуты на другой конец мира - и сразу начать производство.

Схематично различия в традиционном и аддитивном производстве можно изобразить следующей схемой:

Аддитивное производство: технологии и материалы

Под аддитивным производством понимают процесс выращивания изделий на 3D-принтере по CAD-модели. Этот процесс считается инновационным и противопоставляется традиционным способам промышленного производства.

Сегодня можно выделить следующие технологии аддитивного производства:

  • FDM (Fused deposition modeling) - послойное построение изделия из расплавленной пластиковой нити. Это самый распространенный способ 3D-печати в мире, на основе которого работают миллионы 3D-принтеров - от самых дешевых до промышленных систем трехмерной печати. FDM-принтеры работают с различными типами пластиков, самым популярным и доступным из которых является ABS. Изделия из пластика отличаются высокой прочностью, гибкостью, прекрасно подходят для тестирования продукции, прототипирования, а также для изготовления готовых к эксплуатации объектов. Крупнейшим в мире производителем пластиковых 3D-принтеров является американская компания Stratasys .
    .

  • SLM (Selective laser melting) - селективное лазерное сплавление металлических порошков. Самый распространенный метод 3D-печати металлом. С помощью этой технологии можно быстро изготавливать сложные по геометрии металлические изделия, которые по своим качествам превосходят литейное и прокатное производство. Основные производители систем SLM-печати - немецкие компании SLM Solutions и Realizer .
    .

  • SLS (Selective laser sintering) - селективное лазерное спекание полимерных порошков. С помощью этой технологии можно получать большие изделия с различными физическими свойствами (повышенная прочность, гибкость, термостойкость и др). Крупнейшим производителем SLS-принтеров является американский концерн 3D Systems .
    .

  • SLA (сокращенно от Stereolithography) - лазерная стереолитография, отверждение жидкого фотополимерного материала под действием лазера. Эта технология аддитивного цифрового производства ориентирована на изготовление высокоточных изделий с различными свойствами. Крупнейшим производителем SLA-принтеров является американский концерн 3D Systems .
    .

В отдельную категорию стоит вынести технологии быстрого прототипирования . Это способы 3D-печати, предназначенные для получения образцов для визуальной оценки, тестирования или мастер-моделей для создания литейных форм.

  • MJM (Multi-jet Modeling) - многоструйное моделирование с помощью фотополимерного или воскового материала. Эта технология позволяет изготавливать выжигаемые или выплавляемые мастер-модели для литья, а также - прототипы различной продукции. Используется в 3D-принтерах серии ProJet компании 3D Systems.
  • PolyJet - отверждение жидкого фотополимера под воздействием ультрафиолетового излучения. Используется в линейке 3D-принтеров Objet американской компании Stratasys . Технология используется для получения прототипов и мастер-моделей с гладкими поверхностями.
  • CJP (Color jet printing) - послойное распределение клеящего вещества по порошковому гипсовому материалу. Технология 3D-печати гипсом используется в 3D-принтерах серии ProJet x60 (ранее называлась ZPrinter). На сегодняшний день - это единственная промышленная технология полноцветной 3D-печати. С ее помощью изготавливают яркие красочные прототипы продукции для тестирования и презентаций, а также различные сувениры, архитектурные макеты.

Аддитивные технологии в России

Отечественные предприятия с каждым годом все более активно используют системы 3D-печати в производственных и научных целях. Оборудование для аддитивного производства, грамотно встроенное в производственную цепочку, позволяет не только сократить издержки и сэкономить время, но и начать выполнять более сложные задачи.

Компания Globatek.3D с 2010 года занимается поставкой в Россию новейших систем 3D-печати и 3D-сканирования. Оборудование, установленное нашими специалистами, работает в крупнейших университетах (МГТУ им. Баумана, МИФИ, МИСИС, Приволжском, СГАУ и других) и промышленных предприятиях, учреждениях ВПК и аэрокосмической отрасли.

Репортаж телеканала «Россия» об использовании SLM 280HL, установленном специалистами Globatek.3D в Самарском государственном аэрокосмическом университете:

Специалисты GLobatek.3D помогают профессионалам из различных областей подобрать 3D-оборудование, которое будет максимально эффективно решать задачи, стоящие перед предприятием. Если ваша компания планирует приобрести оборудование для аддитивного производства, позвоните по телефону +7 495 646-15-33 , и консультанты компании Globatek.3D помогут вам с выбором.

Globatek.3D - 3D-оборудование для профессионалов.


Мастер хорош лишь настолько, насколько хороши его инструменты. Так и 3d принтер хорош лишь настолько, насколько хороши используемые им . Все мы слышали об аддитивном производстве (АП), но чтобы эта технология, прошла от быстрого создания прототипов до массового производства, ей нужно преодолеть множество препятствий.

Несомненно, одним из самых крупных барьеров в превращении 3d печати в производственный процесс, являются ограничения, связанные с материалами. Мы прошли уже большой путь от дней, когда применялись только фирменные пластмассовые нити. В последние годы быстро развивается АП с использованием металла, и тенденция открытых платформ для полимеров для 3d печати, поощряет многих игроков, таких как DuPont, создавать новые применения материалов для аддитивного рынка.

Состояние отрасли аддитивного производства

Можно даже не говорить о росте рынка АП в последние десять лет. Более того, имеющиеся прогнозы предполагают, что рынок 3d печати продолжит обгонять традиционные технологии производства, такие как литье под давлением и станки с ЧПУ. Прогноз для АП с применением металла еще более оптимистичен, что объясняет, почему компании, такие как Vulcan Laboratories, которые ранее концентрировались на АП с применением полимеров, начали инвестировать в применение металла.

Заметные изменения индустрии АП легче воспринять, оценив, насколько продвинулась эта отрасль за такое короткое время. «В 2008 году 3d печатью занималась горстка компаний, выпускавших пару принтеров в год в исследовательских целях. Но теперь вся отрасль развивается со скоростью, значительно отличающейся от той, которая была 10 лет назад», — говорит Джон Кавола (John Kawola), президент компании Ultimaker .

Гордон Стайлз (Gordon Styles), президент и основатель компании Star Rapid , отметил изменения материалов для АП. «Десять лет назад я бы и подумать не мог, что можно печатать материалами высокой прочности, химически устойчивыми и отражающими тепло, — говорит он. — Это было до недавнего времени, но стартап Markforged делает именно это. Вместо более крупных корпораций, предложивших эту технологию, Markforged первой начала создавать детали с ониксом, и даже использует нить из кевлара, углеволокна и стекловолокна HSHT».

Как показывают слова Каволы и Стайлза, контраст между 2008 и 2018 годами в отрасли 3d печати, весьма заметный. За десять лет мы прошли от нескольких компаний до сотен, мы видели взрывной рост возможностей для настольной 3d печати, одновременно с резким падением цены. И мы прошли от теоретических рассуждений об использовании металла и других материалов в 3d печати, до аддитивного производства деталей для аэрокосмической индустрии.

Катушки с нитью, в целлофановой обертке для защиты от влаги

Для сравнения, хотя телефон RAZR V3 от Motorola был самым популярным телефоном в свое время, в 2008 году у нас уже были iPhone, Facebook, Twitter и многое другое. В терминах технологий производства, 2008 год стал годом, когда на IMTS был предложен открытый стандарт связи MTConnect.

Другими новинками IMTS 2008 были многофункциональные станки, машинная обработка пластмасс и композитных материалов. Все эти технологии добились прогресса за последние десять лет, но ни она из них не сравнится с взрывным ростом АП, который мы видели и продолжаем видеть сегодня.

Материалы аддитивной индустрии

Согласно отчету Wohlers Report 2017, рынок материалов для АП вырос с 2016 года на 17 процентов. Это медленнее роста рынка полимерного АП в целом, среднегодовой рост которого (CAGR) составил 29 процентов с 2010 по 2017 годы. Это не должно удивлять: рынок материалов еще не устоялся, и намного проще выпустить новый 3d принтер, чем разработать новый материал для печати.

Разнообразие материалов все еще представляют проблему в АП, хотя и не столь выраженную, как десять лет назад. «Если вернуться в 2008 год, то почти все компании использовали фирменную пластмассу в качестве материала — объясняет Кавола. – Для поставщика, когда потребитель мог покупать только у вас, доходы были высоки. Но если взять материалы, с которыми работали в то время, то их, может быть, были десятки, а не сотни, как сейчас».

Использование фирменных материалов — это хороший способ сохранять монополию, но он сдерживает разработку новых материалов. Если клиент не имеет выбора и должен покупать только у вас, то неважно, предлагает ли ваш конкурент другой материал с лучшими возможностями, поскольку барьер для перехода клиента к нему — покупка нового 3d принтера — слишком высок.

Подобная сегментация рынка также не поощряет инновации у поставщиков материалов. Если вы — DuPont, то намного выгоднее разработать материалы для 3d печати на базе нейлона, которые могут быть использованы на различных принтерах, чем создавать заказную формулу для каждого бренда.

К счастью, рынок материалов для АП в последние годы стал значительно более открытым, как объясняет Стайлз: «Сегодня мы видим, что большинство производителей принтеров открыты к развитию и использованию сырья покупателей и сторонних поставщиков. Это может быть вызвано количеством конкурентов с невысокими ценами и тем фактом, что разработки и проверка новых материалов являются дорогостоящими, и могут иметь очень узкую нишу применения. Это особенно верно для сплавов металлов».

«Поэтому отрасль 3d печати — включая такие компании, как Ultimaker и HP — перешла в последние годы к открытым платформам для материалов, — говорит Кавола. — Это распахнуло дверь крупным компаниям, производящим материалы по всему миру — DuPont, Dow, Owens Corning, Mitsubishi, DSM и многие другие. Я думаю, что это играет большую роль для подталкивания 3d печати в направлении производства, поскольку лучшие специалисты в мире полимерных материалов, начинают использовать материалы, применяемые в литье под давлением, и адаптируют их для 3d печати».

Но при использовании АП в производстве остается проблема сертификации материала. «Проверка материалов для АП и доказательство того, что полученные изделия не хуже, если не лучше изделий получаемых традиционными методами, является основным препятствием в применении АП в производстве, — говорит Стайлз. — Для этого требуются средства и время. В производственной среде необходимо доказывать возможность достижения того же качества для разных поставщиков, а также распространять и увеличивать их количество «.

«Высокие требования стабильного качества для сырья сложно удовлетворить при обширной базе поставки, не говоря уж о различиях в технологии производства и используемых источниках сырья у поставщиков. Все эти факторы необходимо учитывать», — добавляет он.

Возможности материалов для аддитивного производства определенно растут, поскольку в дело вступают крупные поставщики материалов, но какие материалы сегодня действительно пригодны для производственного применения?

Типы материалов для АП

Хотя существует множество материалов, которые можно использовать в АП — включая песок, стекло, керамику, и даже шоколад — в настоящей статье рассматриваются только две категории материалов, играющие наибольшую роль в производственных применениях: полимеры (например, термопластмассы) и металлы.

Металлические материалы для 3d печати

Рынок металлических материалов для АП рос еще быстрее, чем весь рынок АП, и причиной этого являются материалы. В отличие от 3d принтеров, использующих полимеры, которым требуется развитие совершенно новой отрасли материалов, 3d принтеры, использующие металлы, работают с проволокой или (что гораздо чаще) с металлическим порошком, получая их от уже существующих поставщиков.

Конечно, если нужно изготовлять металлические детали высокого качества, требуется использовать порошок, специально разработанный для АП, т.е., в котором соблюдается однородность размеров частиц. Тем не менее, использование одинаковых материалов для металлического покрытия и 3d печатью способствовало развитию порошковой индустрии. Это означает, что можно изготоваливать металлические детали по технологии АП из того же самого материала, из которого они изготавливались до этого.

Да и само по себе, АП предоставляет новые возможности для материалов, которые не использовались при традиционном производстве. Например, некоторые методы 3d печати металла позволяют наносить слои различных металлов — алюминия, тантала и никеля — при изготовлении одной детали. С другой стороны, процесс 3d печати также вносит и новые проблемы, и источники ошибок, включая пористость, остаточные напряжения и деформации.

Но вообще, если металл хорошо ведет себя при сварке или отливке, он также подходит для АП. Как отмечалось выше, уже существует широкий диапазон металлов и сплавов, которые можно использовать в 3d печати, либо в форме порошка, либо в виде проволоки. К ним относятся:

  • Алюминий
  • Кобальт
  • Инконель
  • Никель
  • Драгоценные металлы (золото, серебро, платина)
  • Нержавеющая сталь
  • Тантал
  • Титан
  • Инструментальная сталь
  • Вольфрам.

Рассмотрим более подробно три металла из этого списка.

Аддитивное производство с титаном

Титан является одним из наиболее популярных материалов для 3d печати в производстве, особенно в аэрокосмических и медицинских приложениях. Он объединяет легкость алюминия с прочностью стали, и он не токсичен. Однако этим преимуществам противостоит относительно высокая стоимость титана. Поэтому снижение отходов делает АП привлекательным вариантом для получения титановых деталей.

Порошковый титан легко воспламеняется и взрывается при контакте с водой, при температурах, превышающий 700о C. По этой причине 3d печать с титановым порошком выполняется в вакуумных или в аргоновых камерах. Также можно выполнять 3d печать, используя плавку титановой проволоки электронным лучом (EBM), что устраняет риски взрывной реакции.

К двум наиболее распространенным титановым сплавам, используемым в АП, относятся 6Al-4V и 6Al-4V ELI.

3d печать с алюминием

Алюминий, легкий и универсальный металл, можно использовать для 3d печати аэрокосмических компонентов, и деталей гоночных автомобилей. Хотя он не обладает прочностью стали, алюминий намного легче ее и более устойчив к коррозии. Они также дороже стали, хотя и не настолько, как титан.

Основное преимущество применения алюминия в 3d печати заключается в возможности производства деталей с мелкими элементами и тонкими стенками (до 50 микрон). Алюминиевые детали, изготовленные методами АП, имеют более текстурную, матовую поверхность, в отличие от шлифованной поверхности при производстве алюминиевых деталей на станках

Распространенным алюминиевым сплавом для 3d печати является AlSi10Mg.

Аддитивное производство из нержавеющей стали

По сравнению с алюминием, титаном и большинством других металлов из приведенного списка, нержавеющая сталь является более доступным вариантом. Она может использоваться для 3d печати водостойких деталей высокой прочности и плотности, и используемых в экстремальной среде, такой как реактивные двигатели самолетов и ракет. Были проведены исследования применимости нержавеющей стали 316L для производства корпусов ядерных реакторов при помощи АП. Несмотря на то, что сталь 316L обычно поддается нетепловой обработке, отчет компания Renishaw предполагает, что процесс АП порождает более прочные сплавы, чем при ковке металла, обеспечивая усилие растяжения, превышающее 600 МПа. Детали из нержавеющей стали изготавливаются на 3d принтере либо путем непосредственного нанесение металла, либо используя композитный материал со связывающим веществом. Детали можно покрывать другими металлами для изменения внешнего вида или свойств поверхности.

Распространенными сплавами нержавеющей стали, используемыми в АП, являются 17-4PH, 15-5-PH, ASM 316L и 304L.

Термопластичные материалы для 3d печати

Рынок материалов для термопластичного или полимерного АП развивался несколько десятилетий, а с появившейся тенденций к открытым платформам материалов 3d печати, он стал более устойчивым. Как говорит Кавола: «ОЕМ покупают свои материалы для литья под давлением у крупных компаний, производящих пластмассу. Если эти компании также выпускают нить или порошок для 3d печати, то можно на стадии создания прототипов применять их в 3d принтерах, и затем те же материалы применять для литья под давлением. Идея относительно нова, и возникла лишь в последние годы».

Использование одних и тех же материалов для 3d печати и литья под давлением дает ряд преимущества. Среди них уверенность применения одних и тех же материалов во всем процессе, от прототипов до производства. Есть и менее явные преимущества, такие как отсутствие дополнительной сертификации материалов, увеличивающей время их принятия.

«Процессы литья под давлением и 3d печати для изготовления той же самой детали различаются, но если используется одинаковый материал, то компания получает преимущества от принятия технологий АП», — говорит Кавола.

Стайлз особо отмечает появление одного популярного материала: «В этом году мы увидели появление PEEK, бесцветного, органического, термопластичного полимера для различных производственных систем, — говорит он. — PEEK очень популярен в автомобильной, медицинской, аэрокосмической и химической отраслях. Он устойчив к ударам (твердый), прочный, долговечный, его температура плавления превышает 300ОC, и кроме того, FDA разрешила использовать его при контакте с пищевыми продуктами».

Список полимерных материалов для 3d печати намного длиннее списка металлов, но среди наиболее популярных материалов можно назвать следующие:

  • Ацеталь
  • Акриловое волокно
  • Aкрилонитрил бутадиен стирол (ABS)
  • Акрилонитрил стирол акрилат (АSA)
  • Ударопрочный полистирол (HIPS)
  • Нейлон
  • Поликарбонат (PC)
  • Полиэфирэфиркетон (PEEK)
  • Полиэтилентерефталат (PET)
  • Полиэтилентерефталат триметилена (PETT)
  • Модифицированный гликолем полиэтилентерефталат (PET-G)
  • Полилактид (PLA)
  • Полипропилен (PP)
  • Поливиниловый спирт (PVA)
  • Термопластичный эластомер (TPE)
  • Полиэфиримид ULTEM

Как и в случае металлов, рассмотрим детально три материала из этого списка.

АП с Акрилонитрил бутадиен стиролом (ABS)

До сих пор весьма популярным материалом 3d печати является ABS. Хотя в целом PLA более популярен, но почти всегда для производства лучше использовать ABS благодаря его прочности, долговечности и невысокой стоимости. Для применения на 3d принтере, ABS необходимо нагреть до относительно высокой температуры в 230-250О C, и поэтому он требует подогрева основания принтера для обеспечения правильного охлаждения и предотвращения деформаций.

Детали из ABS получают с использованием методов наплавления (FDM), послойного склеивания, стереолитографии (SLA) или фотополимерной печати. Основным недостатком ABS является его токсичность, выделяемые ядовитые испарения при достижении точки плавления. Полученные на 3d принтерах детали из ABS часто используются для отливки конечных продуктов или инструментальных приложениях.

3d печать с нейлоном

Нейлон (полиамид) представляет собой синтетический полимер. Он прочнее, чем ABS, хотя и дороже. Он гибкий и демонстрирует прекрасную память материала. Послойное склеивание деталей, полученных на 3d принтере, также выводит нейлон на уровень выше среднего.

Чувствительность нейлона к влаге требует его применения в АП либо в вакууме, либо при высокой температуре. Хранить его нужно в герметичных контейнерах. Некоторые детали из нейлона могут сжиматься, что делает его менее точным материалом, чем ABS.

Популярные марки нейлона для АП: Taulman 618, Taulman 645 и Bridge Nylon.

Аддитивное производство с поликарбонатом (PC)

Поликарбонат (торговая марка Lexan), представляет собой легкий и плотный материал с великолепной прочностью на растяжение. Его прозрачность позволяет использовать его для разнообразных приложений, даже при производстве солнцезащитных очков. Усиленный углеродом PC, может применяться для создания впускных коллекторов и других деталей, подвергаемых воздействию высокой температуры.

PC растворяется в дихлорметане, и плавится при температуре 260-300О С, что довольно много для 3d печати. Несмотря на прозрачность, при необходимости PC может быть окрашен. Как и ABS, он требует нагрева основания принтера для обеспечения склеивания и снижения деформации.

Материалы для 3d печати

Эти компоненты M781 были получены на 3d принтерах во время шестимесячной совместной программы RDECOM, ManTech и America Makes. Их цена на тысячи долларов ниже, чем у аналогичных компонентов, созданных стандартными методами производства.

Несмотря на весь прогресс, 3d печать остается скорее нишевой технологией, чем основным направлением в производстве. Кавола объясняет сегодняшнее место АП в секторе в целом, рассматривая две крайности спектра производства;

«Одной крайностью является производство деталей Lego, затрачивая по полцента на каждую, — говорит он. — Вы никогда не сможете конкурировать здесь, используя 3d печать, по крайней мере, не при моей жизни. Другая крайность — применение 3d печати в стоматологии, где все делается в единичном экземпляре. Поэтому наилучшая возможность для 3d печати в производстве находится там, где выпускаются от 100 до 1000 деталей».

Когда вопрос касается материалов, Стайлз отмечает один из аспектов, которые следует учитывать. «Люди должны знать стоимость сырья и производства, — говорит он. — Многие просто не понимают, насколько дорогостоящим может быть процесс АП. Понимание затрат может помочь принимать информированное решение о применении 3d печати традиционной технологии, такой как литье под давлением или обработка на станках с ЧПУ».

Трехмерная печать, появившись в 1980-е годы, прошла колоссальный эволюционный путь, разделившись на два основных направления – быстрое создание моделей и аддитивное производство. Об основных вехах этого пути - .

Революционные преимущества

Детали изготавливаются непосредственно по компьютерному файлу, содержащему 3D-модель, виртуально нарезанную на тонкие слои, который передается в АП-систему, для послойного формирования конечного изделия. АП-технологии обеспечивают гибкость, позволяющую быстрое производство сложной кастомизирoванной продукции и запасных частей, которые либо не могут быть изготовлены с помощью традиционных производственных технологий, либо требуются в малых объемах. Сложная конфигурация (например, наличие в детали внутренних каналов охлаждения), которую нельзя получить станочной обработкой, может быть легко воспроизведена селективным нанесением материала.

К преимуществам цифровых моделей относится не только произвольность формы, но и возможность их моментальной передачи в любую точку мира, что позволяет организовать локальное производство в мировых масштабах. Еще одной важной особенностью технологий АП является близость получаемой формы изделия к заданной, что существенно сокращает расходы материала и отходы производства.

Совместное исследование European Aeronautic Defense and Space Company (Бристоль, ) и EOS Innovation Center (Уорвик, Великобритания) показало, что экономия сырья при АП может достигать 75%. Благодаря всем этим качествам АП, в сравнении с традиционными производственными технологиями, обладает значительным потенциалом в том, что касается сокращения затрат, энергосбережения и снижения вредных выбросов в атмосферу.

Уникальные возможности АП обеспечивают следующие преимущества:

  • сокращение сроков и стоимости запуска изделия в производство благодаря отсутствию необходимости в специализированной инструментальной оснастке;
  • возможность и экономическая целесообразность мелкосерийного производства;
  • оперативные изменения в проекте на этапе производства;
  • функциональная оптимизация продукции (например, реализация оптимальной формы каналов охлаждения);
  • экономическая целесообразность производства кастомизированной продукции;
  • сокращение потерь и отходов производства;
  • возможности для упрощения логистики, сокращения времени поставок, уменьшения объемов складских запасов;
  • персонализация дизайна.

Рынок аддитивных технологий

2018: Frost & Sullivan прогнозирует рост рынка до $21,5 млрд к 2025 году

Обзор мирового рынка

Ежегодные темпы роста мирового рынка аддитивных технологий составляют 15%. При сохранении CAGR на таком уровне Frost & Sullivan прогнозирует увеличение объема рынка с $5,31 млрд в 2018 году до $21,5 млрд в 2025 году. По мнению аналитиков, к тому времени до 51% рынка будет приходиться на авиационную промышленность, сферу здравоохранения и автомобилестроение. Отрасли, в которых в 2025 году будет наиболее заметно использование технологий аддитивного производства, показаны на рис. 1:


Страны Северной Америки были и, по данным за 2018 года, остаются крупнейшим потребителем аддитивных технологий в мире. В 2015 году объем североамериканского рынка оценивался $2,35 млрд с перспективой роста до $7,65 млрд к 2025 году. Второй по величине - это рынок стран Европы и Ближнего Востока. В 2015 году его суммарный объем составлял $1,81 млрд, а к 2025 году он может увеличиться до $7,18 млрд.

Одним из самых быстро растущих является рынок Азиатско-Тихоокеанского региона. В период 2015-2025 гг. ежегодные темпы роста составят 18,6%, а объем увеличится более чем в 5 раз - с $1,01 млрд в 2015 до $5,56 млрд в 2025 году. При этом на долю Китая будет приходится порядка 70%, считают в Frost & Sullivan.


В странах Северной Америки технологии 3D-печати активно внедряются в аэрокосмической, оборонной и автомобильной отраслях. В последние годы резко увеличилось количество стартап-проектов как в этих, так и других сферах.

Внедрение аддитивных технологий в Европе и на Ближнем Востоке происходит медленнее, чем в странах Северной Америки. Основной фокус здесь делается на использование 3D-печати на основе лазерных технологий в судостроительной отрасли и в промышленности. В то же время в последние годы отмечается рост инвестиций в технологии 3D-печати со стороны автомобилестроительных компаний.

По информации Frost & Sullivan, с точки зрения вклада в общий рынок аддитивных технологий, Россия пока сильно отстает от стран-технологических лидеров. Причем отставание отмечается по всем основным направлениям - производство оборудования для 3D-печати, масштабы применения технологий в ключевых промышленных отраслях, производство сырья и вспомогательных материалов и т.д. По состоянию на февраль 2018 года, доля России в структуре мирового рынка аддитивного производства составляет около 1%.

Потребности России в металлических порошках для 3D-принтеров, а также оборудовании закрываются преимущественно за счет импорта продукции. Основные объемы поставок сырья приходятся на Германию и Великобританию .

Среди крупнейших потребителей порошковых материалов на российском рынке в Frost & Sullivan назвали такие предприятия, как «Авиадвигатель» и НПО «Сатурн» (в обоих случаях - разработка газотурбинных технологий и двигателей), а также «Новомет-Пермь » (производство погружных электроцентробежных насосов для добычи нефти). Значительную работу по развитию и продвижению аддитивных технологий проводят госкорпорации «Росатом » и «Роскосмос ».

По мнению аналитиков, стимулирование разработок в области аддитивного производства в России необходимо поддерживать как с помощью государственного субсидирования (компенсации затрат предприятий на производство и НИОКР), так и за счет прямых инвестиций. Одним из крупнейших игроков, оказывающих финансовую поддержку проектам в сфере аддитивных технологий, является Фонд развития промышленности , выдающий компаниям льготные займы.

Прогнозы развития

  • Применение гранул и порошковых материалов в 3D-печати позволит отказаться от использования треугольных и цилиндрических форм при изготовлении изделий;
  • Применение углеродистого (графитового) волокна и металлопорошков позволит улучшить механические, химические и термические характеристики изделий (в частности, для нефтегазовой и оборонной отраслей);
  • Производители систем компьютерного проектирования и моделирования (CAD , CAE) ведут разработки решений для 3D-печати, которые позволят снизить погрешность при изготовлении изделий и повысить точность производства;
  • Оптимизация характеристик и развитие аддитивных технологий позволит повысить точность, скорость и качество 3D-печати. К 2020 году скорость работы 3D-принтеров увеличится вдвое;
  • Одним из ключевых направлений развития сервисных услуг на рынке 3D-печати станет лизинг 3D-принтеров ;
  • Развитие получит производство 3D-принтеров, позволяющих создавать крупногабаритные изделия с высокой точностью;
  • Материал «графен», известный своими физическими и электрическими свойствами, будет применяться для производства металлических жил (волокон) и элементов питания.

2016: Топ-5 изготовителей систем АП

В число ведущих изготовителей систем АП на 2016 г входят:

  • ExOne (США),
  • Stratasys (Израиль),
  • Voxejet (Германия).

По числу смонтированных систем на 2016 г. с большим отрывом лидируют США, собравшие у себя 38% промышленных установок. Значительное количество установок эксплуатируется также в Японии (9,7%), Германии (9,4%) и Китае (8,7%). Доля России составляет 1,4%.

2012: Рост объема рынка на 28,6%

Консультант Терри Уолер (Terry Wohler) составляет и поддерживает наиболее полный свод знаний о технологиях АП (www.wohlerassociates.com), а также регулярно публикует отчеты, которые приобрели репутацию наиболее авторитетного источника информации о финансировании, тенденциях, возможностях, коллективных проектах, исследованиях и перспективных технологиях в этой области.

Согласно отчету Уолера, опубликованному в ноябре 2013 г., в 2012 г. общемировой сектор продукции и услуг АП показал совокупный годовой прирост 28,6%, что, в пересчете, соответствует рынку объемом $2,204 млрд. По прогнозам Уолера, к 2021 г. объем рынка АП составит более $10 млрд. Исследования McKinsey Global Institute свидетельствуют о том, что влияние АП на мировой ВВП может к 2025 г. достичь $550 млрд. в год.

Еще одним показателем, который отслеживает Уолер, является количество проданных установок АП. В 2012 г. было продано почти 8000 промышленных систем (с ценой выше $5,000). В структуре доходов, полученных от производства и услуг в области АП, доля, приходящаяся на изготовление составных частей конечной продукции, выросла практически с нуля в 2003 г. до 28% в 2012 г.

Технологии и оборудование

С середины 1990-х к 2016 г. были разработаны несколько процессов и систем АП, а возможности их применения существенно расширились и уже охватывают диапазон от быстрого прототипирования и изготовления простых физических макетов до поддержки в разработке дизайна продукции, создания литейных моделей и, в последнее время, непосредственного производства серийных изделий. В частности, GE Aviation объявил о серийном выпуске топливных форсунок для двигателя LEAP. Первые АП-системы производили изделия преимущественно из полимерных материалов (пластиков), тогда как к 2016 г. установки способны производить детали из металла. В аддитивных процессах с использованием металлов детали формируются путем последовательной послойной наплавки или спекания металлического порошка. Такая возможность привлекательна тем, что позволяет изготовление деталей точной или близкой к заданной формы без инструментальной оснастки с минимальной последующей механообработкой, либо вообще без нее. Это представляет особый интерес для авиационно-космической промышленности и биомедицины, поскольку делает возможным выпуск изделий с высокими эксплуатационными характеристиками при низких общих затратах.

На 2016 г. рынок АП-установок делится на три сегмента. Самые высокие темпы роста отмечаются для дешевых 3D-принтеров , ориентированных на создание концептуальных макетов и пригодных для эксплуатации в офисной среде.

Второй набор технологий, занимающий промежуточное положение по стоимости, предназначен для создания прототипов деталей с различной степенью точности и/или функциональности. Дешевые и средние по стоимости установки обычно ориентированы на полимерные материалы.

Установки высокого класса, составляющих третий сегмент, позволяют производство полимерных, металлических и керамических деталей; их цены варьируются от $200 000 до $2 000 000. Установки высокого класса могут быть оптимизированы в расчете на изготовление крупногабаритных деталей, достижение высокой производительности, использование нескольких материалов или с любой другой целью, что повышает стоимость системы.

Энергопотребление и влияние на окружающую среду

Исчерпывающее сравнение АП и других производственных процессов с точки зрения энергопотребления, расходования водных ресурсов, захоронения отходов и использования первичных материалов проведено к 2016 г. в рамках проекта ATKINS. Результаты проекта указывают на то, что с точки зрения влияния на окружающую среду АП имеет явные преимущества, однако энергопотребление этой технологии (13,1 кг CO2 на изделие) значительно выше показателей для технологий литья (1,9 кг CO2). Впрочем, другие исследования потребления энергии в различных процессах АП ведут к заметным расхождениям в данных, что указывает на необходимость дальнейшего, более целенаправленного изучения этой проблемы.

Аналогичным образом у технологий АП есть значительный потенциал в вопросе снижения выброса парниковых газов посредством оптимизации дизайна изделий и сокращения потерь материала. Результаты проекта ATIKINS приводят к заключению, что оптимальный дизайн должен приводить к 40%-ному снижению веса и экономии материала. Выполненный в рамках проекта анализ показывает, что снижение веса магистрального самолета на 100 кг на протяжении всего жизненного цикла влечет за собой экономию $2,5 млн на топливных расходах и сокращает выбросы углекислого газа на 1,3 млн т.

Имеется несколько отчетов по результатам исследований влияния АП на окружающую среду. Однако многие вопросы к 2016 г. остаются неразрешенными, и точная оценка экологических последствий АП требует дальнейших исследований. При этом очевидно, что наибольший потенциал в вопросах снижения влияния на окружающую среду имеют изделия, спроектированные таким образом, чтобы в полной мере задействовать уникальные возможности по снижению веса, предлагаемые технологиями АП.

Применения аддитивного производства

На 2016 г. преобладающей областью использования АП-процессов остается быстрое прототипирование. Некоторую часть приложений технологии АП составляет также быстрое изготовление инструментальной оснастки, в частности производство пресс-форм.

По мере совершенствования существующих и разработки новых, более развитых технологий АП они находят себе все более широкое применение. К 2016 г. эти технологии используются для изготовления разнообразной продукции, в том числе инструментов для формования, деталей для авиационно-космической, оборонной и автомобильной промышленности, электроники и многого другого.

Авиационно-космическая промышленность

Эта сфера проявляет острый интерес к АП-технологиям с момента их появления; возможность устранить множество ограничений на пути от проекта к производству позволяет реализовать в проекте решения, повышающие эффективность и снижающие вес деталей. Более того, по самой своей природе этот рынок требует мелкосерийного производства высококачественных деталей, поэтому избавление от инструментальной оснастки, предлагаемое АП-технологиями, приносит существенные выгоды. Сертификационные требования в этой сфере являются весьма жесткими. Тем не менее ряд систем и материалов прошел сертификацию, и на 2016 г АП-технологии используются для мелкосерийного производства деталей летательных аппаратов.

Ведущие страны мира активно включаются в 3D-гонку. Так, в 2012 г. в Янгстоуне, Огайо, открылся Национальный инновационный институт аддитивного производства NAMII - первый центр аддитивных технологий из пятнадцати создаваемых в США. Машинный парк института уже насчитывает 10 аддитивных машин, три из которых являются самыми современными машинами для создания металлических деталей.

Терминология и классификация

Суть аддитивных технологий заключается в соединении материалов для создания объектов из данных 3D-модели слой за слоем. Этим они отличаются от обычных субтрактивных технологий производства, подразумевающих механическую обработку - удаление вещества из заготовки.

Аддитивные технологии классифицируют:

  • по используемым материалам (жидким, сыпучим, полимерным, металлопорошковым);
  • по наличию лазера;
  • по способу фиксирования слоя построения (тепловое воздействие, облучение ультрафиолетом или видимым светом, связующим составом);
  • по способу образования слоя.

Есть два способа формирования слоя. Первый заключается в том, что сначала насыпают на платформу порошковый материал, распределяют его роликом или ножом для создания ровного слоя материала заданной толщины. Происходит селективная обработка порошка лазером или другим способом соединения частиц порошка (плавкой или склеиванием) согласно текущему сечению CAD-модели. Плоскость построения неизменна, а часть порошка остаётся нетронутой. Этот способ называют селективным синтезом, а также селективным лазерным спеканием, если инструментом соединения является лазер. Второй способ состоит в непосредственном осаждении материала в точку подведения энергии.

Организация ASTM, занимающаяся разработкой отраслевых стандартов, разделяет 3D-аддитивные технологии на 7 категорий.

  1. Выдавливание материала. В точку построения по подогретому экструдеру подаётся пастообразный материал, представляющий собой смесь связующего и металлического порошка. Построенная сырая модель помещается в печь для того, чтобы удалить связующее и спечь порошок - так же, как это происходит в традиционных технологиях. Эта аддитивная технология реализована под марками MJS (Multiphase Jet Solidification, многофазное отверждение струи), FDM (Fused Deposition Modeling, моделирование методом послойного наплавления), FFF (Fused Filament Fabrication, производство способом наплавления нитей).
  2. Разбрызгивание материала. Например, в технологии Polyjet воск или фотополимер по многоструйной головке подается в точку построения. Эта аддитивная технология также называется Multi jetting Material.
  3. Разбрызгивание связующего. К ним относятся струйные Ink-Jet-технологии впрыскивания в зону построения не модельного материала, а связующего реагента (технология аддитивного производства ExOne).
  4. Соединение листовых представляет собой полимерную плёнку, металлическую фольгу, листы бумаги и др. Используется, например, в технологии ультразвукового аддитивного производства Fabrisonic. Тонкие пластины из металла свариваются ультразвуком, после чего излишки металла удаляются фрезерованием. Аддитивная технология здесь применяется в сочетании с субстрактивной.
  5. Фотополимеризация в ванне. Технология использует жидкие модельные материалы - фотополимерные смолы. Примером могут служить SLA-технология компании 3D Systems и DLP-технология компаний Envisiontec, Digital Light Procession.
  6. Плавка материала в заранее сформированном слое. Используется в SLS-технологиях, использующих в качестве источника энергии лазер или термоголовку (SHS компании Blueprinter).
  7. Прямое подведение энергии в место построения. Материал и энергия для его плавления поступают в точку построения одновременно. В качестве рабочего органа используется головка, оснащённая системой подвода энергии и материала. Энергия поступает в виде сконцентрированного пучка электронов (Sciaky) или луча лазера (POM, Optomec,). Иногда головка устанавливается на «руке» робота.

Эта классификация гораздо больше говорит о тонкостях аддитивных технологий, чем предыдущие.

Сферы применения

Рынок аддитивных технологий в динамике развития опережает остальные отрасли производства. Его средний ежегодный рост оценивается в 27% и, по оценке компании IDC, к 2019 г. составит 26,7 млрд долларов США по сравнению с 11 млрд в 2015 г.

Однако АТ-рынку ещё предстоит раскрыть неиспользованный потенциал в сфере производства товаров широкого потребления. До 10% средств компаний от стоимости производства товара расходуется на его прототипирование. И много компаний уже заняли данный сегмент рынка. Но остальные 90% идут в производство, поэтому создание приложений для быстрого изготовления товаров станет основным направлением развития этой отрасли в будущем.

В 2014 г. доля быстрого прототипирования на рынке аддитивных технологий хотя и уменьшилась, оставалась наибольшей - 35%, доля быстрого производства росла и достигла 31%, доля в создании инструментов оставалась осталась на уровне 25%, остальное приходилось на исследования и образование.

По отраслям экономики применение АТ-технологий распределилось так:

  • 21% - производство потребительских товаров и электроники;
  • 20% - автомобилестроение;
  • 15% - медицина, включая стоматологию;
  • 12% - авиастроение и космическая отрасль производства;
  • 11% - производство средств производства;
  • 8% - военная техника;
  • 8% - образование;
  • 3% - строительство.

Любители и профессионалы

Рынок АТ-технологий разделяется на любительский и профессиональный. Любительский рынок включает 3D-принтеры и их обслуживание, которое включает сервис, расходные материалы, программное обеспечение, и рассчитан на отдельных энтузиастов, сферу образования и визуализацию идей и облегчения коммуникации на начальной стадии развития нового бизнеса.

Профессиональные 3D-принтеры дорогостоящи и подходят для расширенного воспроизводства. У них большая зона построения, производительность, точность, надёжность, расширен ассортимент модельных материалов. Эти машины на порядок сложнее и требуют освоения особых навыков работы с самими устройствами, с модельными материалами и программным обеспечением. Как правило, оператором профессиональной машины становится специалист по аддитивным технологиям с высшим техническим образованием.

Аддитивные технологии в 2015 году

Согласно отчёту Wohlers Report 2015, с 1988 по 2014 г. в мире было установлено 79 602 промышленных 3D-принтера. При этом 38,1% устройств стоимостью более 5 тыс. долларов США приходится на США, 9,3% - на Японию, 9,2% - на Китай, и 8,7% - на Германию. Остальные страны мира находятся в значительном отрыве от лидеров. С 2007 по 2014 годовой объём продаж настольных принтеров вырос с 66 до 139 584 устройств. В 2014 г. 91,6% продаж приходился на настольные 3D-принтеры и 8,4% - на промышленные установки аддитивного производства, прибыль от которых, однако, составила 86,6% от общего объёма, или 1,12 млрд долларов США в абсолютном выражении. Настольные машины довольствовались 173,2 млн долларов США и 13,4%. В 2016 г. ожидается рост продаж до 7,3 млрд долларов США, в 2018 г. - 12,7 млрд, в 2020 г. рынок достигнет 21,2 млрд долларов.

Согласно Wohlers, FDM-технология превалирует, насчитывая около 300 брендов по всему миру, ежедневно пополняясь новыми модификациями. Некоторые из них продаются только локально, поэтому очень сложно, если вообще возможно, найти информацию о количестве брендов выпускаемых 3D-принтеров. С уверенностью можно сказать, что их количество на рынке увеличивается с каждым днём. Наблюдается большое разнообразие в размерах и применяемых технологиях. Например, берлинская компания BigRep производит огромный FDM-принтер под названием BigRep ONE.2 по цене 36 тыс. евро, способный печатать объекты размером до 900 х 1055 х 1100 мм с разрешением 100-1000 микрон, двумя экструдерами и возможностью использовать разные материалы.

Промышленность - за

Авиационная промышленность усиленно инвестирует в аддитивное производство. Применение аддитивных технологий позволит снизить расход материалов, затрачиваемых на изготовление деталей, в 10 раз. Ожидается, что компания GE Aviation будет ежегодно печатать 40 тыс. форсунок. А компания Airbus к 2018 г. собирается печатать до 30 т деталей ежемесячно. Компания отмечает значительный прогресс в характеристиках произведённых таким способом деталей по сравнению с традиционным. Оказалось, что кронштейн, который был рассчитан на 2,3 т нагрузки, в действительности может выдерживать нагрузку до 14 т при снижении его веса вдвое. Кроме того, компания печатает детали из алюминиевого листа и топливные коннекторы. В самолётах Airbus насчитывается 60 тыс. частей, напечатанных на 3D-принтерах Fortus компании Stratasys. Другие компании авиакосмической индустрии также используют технологии аддитивного производства. Среди них: Bell Helicopter, BAE Systems, Bombardier, Boeing, Embraer, Honeywell Aerospace, General Dynamics, Northrop Grumman, Raytheon, Pratt & Whitney, Rolls-Royce и SpaceX.

Цифровые аддитивные технологии уже используются в производстве разнообразных потребительских товаров. Компания Materialise, предоставляющая услуги аддитивного производства, сотрудничает с компанией Hoet Eyeware в изготовлении очков для коррекции зрения и солнечных очков. 3D-модели предоставляются множеством облачных сервисов. Только компании 3D Warehouse и Sketchup предлагают 2,7 млн образцов. Не остаётся в стороне и индустрия моды. RS Print использует систему, измеряющую давление подошвы, для печати индивидуальных стелек. Дизайнеры экспериментируют с бикини, обувью и платьями.

Быстрое прототипирование

Под быстрым прототипированием понимают создание прототипа изделия за максимально короткий срок. Оно входит в число основных применений технологий аддитивного производства. Прототип - это прообраз изделия, необходимый для оптимизации формы детали, оценки её эргономики, проверки возможности сборки и правильности компоновочных решений. Вот почему сокращение срока изготовления детали позволяет значительно сократить время разработки. Также прототип может являться моделью, предназначенной для проведения аэро- и гидродинамических испытаний или проверки функциональности деталей корпуса бытовой и медицинской техники. Много прототипов создаётся в качестве поисковых дизайнерских моделей с нюансами в конфигурации, цветовой гамме раскраски и т. д. Для быстрого прототипирования используются недорогие 3D-принтеры.

Быстрое производство

Аддитивные технологии в промышленности имеют большие перспективы. Малосерийное производство изделий со сложной геометрией и из специфических материалов распространено в судостроении, энергетическом машиностроении, восстановительной хирургии и дентальной медицине, аэрокосмической промышленности. Непосредственное выращивание изделий из металла здесь мотивировано экономической целесообразностью, так как этот оказался менее затратным. С использованием аддитивных технологий производят рабочие органы турбин и валов, импланты и эндопротезы, запасные части для автомобилей и самолётов.

Развитию быстрого производства способствовало и значительное расширение числа доступных металлопорошковых материалов. Если в 2000 годах насчитывалось 5-6 видов порошков, то сейчас предлагается широкая номенклатура, исчисляемая десятками композиций от конструкционных сталей до драгоценных металлов и жаропрочных сплавов.

Перспективны и аддитивные технологии в машиностроении, где их можно использовать при изготовлении инструментов иприспособлений для серийного производства - вставок для термопласт-автоматов, пресс-форм, шаблонов.

Ultimaker 2 - лучший 3D-принтер 2016 года

По мнению журнала CHIP, который провёл тестирование и сравнил характеристики бытовых 3D-принтеров, лучшими принтерами 2016 года являются модели Ultimaker 2 компании Ultimaker, Reniforce RF1000 компании Conrad и Replicator Desktop 3D Printer компании MakerBot.

Ultimaker 2+ в его улучшенной модели использует технологию моделирования методом наплавления. 3D-принтер отличается наименьшей толщиной слоя, равной 0,02 мм, небольшим временем расчёта, низкой стоимостью печати (2600 руб за 1 кг материала). Основные характеристики:

  • размер рабочей камеры - 223 х 223 х 305 мм;
  • вес - 12,3 кг;
  • размер головки - 0,25/0,4/0,6/0,8 мм;
  • температура головки - 180-260°C;
  • разрешение слоя - 150-60/200-20/400-20/600-20 микрон;
  • скорость печати - 8-24 мм 3 /с;
  • точность XYZ - 12,5-12,55 микрон;
  • материал - PLA, ABS, CPE диаметром 2,85 мм;
  • программное обеспечение - Cura;
  • поддерживаемые типы файлов - STL, OBJ, AMF;
  • - 221 Вт;
  • цена - 1 895 евро базовая модель и 2 495 евро расширенная.

По отзывам покупателей, принтер лёгок в установке и использовании. Отмечают высокое разрешение, саморегулирующееся ложе, большое разнообразие используемого материала, использование открытого программного обеспечения. К недостаткам принтера относят открытую конструкцию принтера, которая может привести к ожогу горячим материалом.

LulzBot Mini 3D Printer

В обзоре журнала PC Magazine Ultimaker 2 и Replicator Desktop 3D Printer также вошли в тройку лучших, но здесь на первом месте оказался принтер LulzBot Mini 3D Printer. Его спецификации таковы:

  • размер рабочей камеры - 152 х 152 х 158 мм;
  • вес - 8,55 кг;
  • температура головки - 300°C;
  • толщина слоя - 0,05-0,5 мм;
  • скорость печати - 275 мм/с при высоте слоя 0,18 мм;
  • материал - PLA, ABS, HIPS, PVA, PETT, полиэстер, нейлон, поликарбонат, PETG, PCTE, PC-ABS, и др. диаметром 3 мм;
  • программное обеспечение - Cura, OctoPrint, BotQueue, Slic3r, Printrun, MatterControl и др.;
  • потребляемая мощность - 300 Вт;
  • цена - 1 250 долларов США.

Sciaky EBAM 300

Одной из лучших промышленных машин аддитивного производства является EBAM 300 компании Sciaky. Электронно-лучевая пушка наносит слои металла со скоростью до 9 кг в час.

  • размер рабочей камеры - 5791 х 1219 х 1219 мм;
  • давление вакуумной камеры - 1х10 -4 Тор;
  • потребляемая мощность - до 42 кВт при напряжении 60 кВ;
  • технология - экструзия;
  • материал - титан и сплавы титана, тантал, инконель, вольфрам, ниобий, нержавеющая сталь, алюминий, сталь, сплав меди с никелем (70/30 и 30/70);
  • максимальный объём - 8605,2 л;
  • цена - 250 тыс. долларов США.

Аддитивные технологии в России

Машины промышленного класса в России не выпускаются. Пока только ведутся разработки в "Росатоме", лазерном центре МГТУ им. Баумана, университете «Станкин», политехническом университете Петербурга, Уральском федеральном университете. «Воронежсельиммаш», выпускающий учебно-бытовые 3D-принтеры «Альфа», разрабатывает промышленную аддитивную установку.

Такая же ситуация и с расходными материалами. Лидером разработки порошков и порошковых композиций в России является ВИАМ. Им производится порошок для аддитивных технологий, использующийся при восстановлении лопаток турбин, по заказу пермского «Авиадвигателя». Прогресс есть и у Всероссийского института лёгких сплавов (ВИЛС). Разработки ведутся различными инжиниринговыми центрами по всей Российской Федерации. "Ростех", Уральское отделение РАН, УрФУ ведут свои разработки. Но все они не способны удовлетворить даже небольшой спрос в 20 т порошка в год.

В связи с этим правительство поручило Минобрнауке, Минэкономразвитию, Минпромторгу, Минкомсвязи, РАН, ФАНО, "Роскосмосу", "Росатому", "Росстандарту", институтам развития создать согласованную программу разработок и исследований. Для этого предлагается выделить дополнительные бюджетные ассигнования, а также рассмотреть возможности софинансирования за счёт средств ФНБ и других источников. Рекомендовано поддержать новые в т. ч. аддитивные, РВК, "Роснано", фонду «Сколково», экспортному агентству "ЭКСАР", "Внешэкономбанку". Также правительство в лице Минпромторга подготовит раздел государственной программы по развитию и повышению конкурентоспособности промышленности.

Технологический процесс не стоит на месте, с каждым днем происходит усовершенствование цифровых технологий, что позволяет использовать новшества в различных сферах жизни человека. Аддитивные технологии - одни из самых передовых и востребованных во всем мире.

Аддитивные технологии – что это такое?

Аддитивные технологии (Additive Manufacturing – от слова аддитивность – прибавляемый) – это послойное наращивание и синтез объекта с помощью компьютерных 3d технологий. Изобретение принадлежит Чарльзу Халлу, в 1986 г. сконструировавшему первый стереолитографический трехмерный принтер. Что значит аддитивный процесс послойного создания модели и как он происходит? В современной промышленности это несколько разных процессов, в результате которых моделируется 3d объект:

  • UV-облучение;
  • экструзия;
  • струйное напыление;
  • сплавление;
  • ламинирование.

Материалы, используемые в аддитивных технологиях:

  • воск;
  • гипсовый порошок;
  • жидкие фотополимеры;
  • металлические порошки;
  • разного рода полиамиды;
  • полистирол.

Применение аддитивных технологий

Технологический прогресс способствует производству множества полезных вещей для быта, здоровья и безопасности человека, например аддитивные технологии в авиастроении помогают создавать более высокоэкономичный и легкий по весу авиатранспорт, при этом его аэродинамические свойства сохраняются в полном объеме. Это стало возможным в результате применения принципов строения костей птичьего крыла в проектировании крыльев самолета. Другие сферы применения аддитивных технологий:

  • строительство;
  • сельскохозяйственная промышленность;
  • машиностроение;
  • судостроение;
  • космонавтика;
  • медицина и фармакология.

Аддитивные 3d технологии

Динамически развивающиеся быстрыми темпами аддитивные технологии 3d печати используются в прогрессивных производствах. Существует несколько инновационных видов аддитивных технологий:

  1. FDM (Fused deposition modeling) – изделие формируется послойно из расплавленной пластиковой нити.
  2. CJP (ColorJet printing) – единственная в мире 3d полноцветная печать с принципом склеивания порошка, состоящего из гипса.
  3. SLS (Selective Laser Sintering) – технология лазерного запекания, при которой образуются особо прочные объекты любых размеров.
  4. MJM (MultiJet Modeling) многоструйное 3d моделирование с использованием фотополимеров и воска.
  5. SLA (Laser Stereolithography) – с помощью лазера происходит послойное отвердевание жидкого полимера.

Аддитивные технологии в машиностроении

Джим Корр, американский инженер использует аддитивное производство в машиностроении уже в течении 15 лет. Проект Urbee, компании Kor Ecologic – это создание первого прототипа 3d автомобиля со скоростью 112 км/ч, его кузов и некоторые детали напечатаны на 3d принтере. Другая компания Local Motors в ноябре 2015 г. представила «умный и безопасный» автомобиль LMSD Swim – 75% деталей которого, выполнены с помощью трехмерной печати используя АБС-пластик и углеволокно.

Аддитивные технологии в строительстве

Аддитивное производство зданий и различных сооружений существенно сокращает время застройки. Строительная 3D печать в тренде по всему миру. Эксперименты, производимые на лазерных 3d-принтерах для обывателей выглядят на грани фантастичных. Аддитивные 3D технологии – положительные аспекты в строительстве:

  • экономия времени и финансовых затрат (скорость возведения в считанные дни снижение затрат на логистику, расходные материалы, наем большого количества персонала);
  • воплощение в жизнь любых дизайнерских решений и сложных геометрических форм (средневековые замки, дома в форме астероидов и галактик);
  • возможность строить дома с учетом сейсмоустойчивости в зонах, склонным к землетрясениям и ураганам.

Самые известные 3d строения:


Аддитивные технологии в медицине

В 2016 г. для медицины стал прорывом благодаря аддитивным 3d технологиям. Качество медицинских услуг возросло в разы. Аддитивный процесс затронул несколько сфер здравоохранения и это снизило смертность среди пациентов, нуждающихся в качественных и срочных медицинских услугах. Преимущества использования аддитивной 3d печати в медицине:

  1. С помощью томографических снимков стала возможной в высокой точностью печать органа с патологией для изучения тонкостей и нюансов предстоящей операции.
  2. Трансплантология шагнула далеко вперед. Аддитивные технологии здесь решают сразу несколько задач – морально-этическую и сокращение времени ожидания, известный факт, что люди по нескольку лет ждут донорские органы, но иногда счет идет не на года, а на дни и даже часы. В скором времени пересадка искусственно выращенных человеческих органов станет реальностью.
  3. Печать стерильного инструментария. В эпоху тяжелых и неизлечимых вирусных инфекций, одноразовые стерильные инструменты сводят на нет заражение во время медицинских манипуляций.

На сегодняшний день, в медицине успешно применяются следующие продукты аддитивных технологий:

  • искусственно выращенная человеческая кожа (актуальна для пересадки людям с высокой площадью ожогов);
  • биосовместимая костная и хрящевая ткань;
  • печать органов с онкологическим процессом и изучения влияния лекарств на опухоли;
  • стоматологические импланты, протезы, коронки;
  • индивидуальные слуховые аппараты;
  • ортопедические протезы.

Аддитивные технологии в фармакологии

При обилии современных медикаментов, для врача важно знать, что такое аддитивный эффект в лекарствах, от этого зависит успех лечения. Совокупное действие принятых препаратов во время лечения должно быть синергичным (взаимодополняющим и усиливающим), но не всегда это так. Все зависит от индивидуальной непереносимости, состояния организма. Аддитивные технологии приходят на помощь и здесь. Уже тестируются напечатанные 3d таблетки Spritam от эпилепсии, в которых заложена информация о пациенте: пол, вес, возраст, состояние печени, индивидуальная дозировка.


Аддитивные технологии в образовании

Аддитивные технологии в школе уже активно внедряются, если еще недавно школьники изучали 3d моделирование в специализированных компьютерных программах, то сейчас уже стала возможной печать смоделированного изображения в объеме. Учащиеся наглядно видят свои изобретения, допущенные ошибки и как механизм работает. К 2018 году Министерство образования планирует обучить аддитивным технологиям в учебных заведениях 3000 педагогов.



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация