Таблица градусов косинуса синуса тангенса. Cинус, косинус, тангенс и котангенс - все, что нужно знать на ОГЭ и ЕГЭ

Главная / Налоги

Таблица основных тригонометрических функций для углов 0, 30, 45, 60, 90, … градусов

Из тригонометрических определений функций $\sin$, $\cos$, $\tan$ и $\cot$ можно узнать их значения для углов $0$ и $90$ градусов:

$\sin⁡0°=0$, $\cos0°=1$, $\tan 0°=0$, $\cot 0°$ не определяется;

$\sin90°=1$, $\cos90°=0$, $\cot90°=0$, $\tan 90°$ не определяется.

В школьном курсе геометрии при изучении прямоугольных треугольников находят тригонометрические функции углов $0°$, $30°$, $45°$, $60°$ и $90°$.

Найденные значения тригонометрических функций для указанных углов в градусах и радианах соответственно ($0$, $\frac{\pi}{6}$, $\frac{\pi}{4}$, $\frac{\pi}{3}$, $\frac{\pi}{2}$) для удобства запоминания и использования заносят в таблицу, которую называют тригонометрической таблицей , таблицей основных значений тригонометрических функций и т.п.

При использовании формул приведения, тригонометрическая таблица может быть расширена до угла $360°$ и соответственно $2\pi$ радиан:

Применяя свойства периодичности тригонометрических функций, каждый угол, который будет отличаться от уже известного на $360°$, можно рассчитать и записать в таблицу. Например, тригонометрическая функция для угла $0°$ будет иметь такое же значение и для угла $0°+360°$, и для угла $0°+2 \cdot 360°$, и для угла $0°+3 \cdot 360°$ и т.д.

С помощью тригонометрической таблицы можно определить значения всех углов единичной окружности.

В школьном курсе геометрии предполагается запоминание основных значений тригонометрических функций, собранных в тригонометрической таблице, для удобства решения тригонометрических задач.

Использование таблицы

В таблице достаточно найти необходимую тригонометрическую функцию и значение угла или радиан, для которых эту функцию нужно вычислить. На пересечении строки с функцией и столбца со значением получим искомое значение тригонометрической функции заданного аргумента.

На рисунке можно увидеть, как найти значение $\cos⁡60°$, которое равно $\frac{1}{2}$.

Аналогично используется расширенная тригонометрическая таблица. Преимуществом ее использования является, как уже упоминалось, вычисление тригонометрической функции практически любого угла. Например, легко можно найти значение $\tan 1 380°=\tan (1 380°-360°)=\tan(1 020°-360°)=\tan(660°-360°)=\tan300°$:

Таблицы Брадиса основных тригонометрических функций

Возможность расчета тригонометрической функции абсолютно любого значения угла для целого значения градусов и целого значения минут дает использование таблиц Брадиса. Например, найти значение $\cos⁡34°7"$. Таблицы разделены на 2 части: таблицу значений $\sin$ и $\cos$ и таблицу значений $\tan$ и $\cot$.

Таблицы Брадиса дают возможность получить приближенное значение тригонометрических функций с точностью до 4-х знаков после десятичной запятой.

Использование таблиц Брадиса

Используя таблицы Брадиса для синусов, найдем $\sin⁡17°42"$. Для этого в столбце слева таблицы синусов и косинусов находим значение градусов – $17°$, а в верхней строке находим значение минут – $42"$. На их пересечении получаем искомое значение:

$\sin17°42"=0,304$.

Для нахождения значения $\sin17°44"$ нужно воспользоваться поправкой в правой части таблицы. В данном случае к значению $42"$, которое есть в таблице, нужно добавить поправку для $2"$, которая равна $0,0006$. Получим:

$\sin17°44"=0,304+0,0006=0,3046$.

Для нахождения значения $\sin17°47"$ также пользуемся поправкой в правой части таблицы, только в этом случае за основу берем значение $\sin17°48"$ и отнимаем поправку для $1"$:

$\sin17°47"=0,3057-0,0003=0,3054$.

При расчете косинусов выполняем аналогичные действия, но градусы смотрим в правом столбце, а минуты – в нижней колонке таблицы. Например, $\cos20°=0,9397$.

Для значений тангенса до $90°$ и котангенса малого угла поправок нет. Например, найдем $\tan 78°37"$, который по таблице равен $4,967$.

1. Тригонометрические функции представляют собой элементарные функции, аргументом которых является угол . С помощью тригонометрических функций описываются соотношения между сторонами и острыми углами в прямоугольном треугольнике. Области применения тригонометрических функций чрезвычайно разнообразны. Так, например, любые периодические процессы можно представить в виде суммы тригонометрических функций (ряда Фурье). Данные функции часто появляются при решении дифференциальных и функциональных уравнений.

2. К тригонометрическим функциям относятся следующие 6 функций: синус , косинус , тангенс ,котангенс , секанс и косеканс . Для каждой из указанных функций существует обратная тригонометрическая функция.

3. Геометрическое определение тригонометрических функций удобно ввести с помощью единичного круга . На приведенном ниже рисунке изображен круг радиусом r=1. На окружности обозначена точка M(x,y). Угол между радиус-вектором OM и положительным направлением оси Ox равен α.

4. Синусом угла α называется отношение ординаты y точки M(x,y) к радиусу r:
sinα=y/r.
Поскольку r=1, то синус равен ординате точки M(x,y).

5. Косинусом угла α называется отношение абсциссы x точки M(x,y) к радиусу r:
cosα=x/r

6. Тангенсом угла α называется отношение ординаты y точки M(x,y) к ee абсциссе x:
tanα=y/x,x≠0

7. Котангенсом угла α называется отношение абсциссы x точки M(x,y) к ее ординате y:
cotα=x/y,y≠0

8. Секанс угла α − это отношение радиуса r к абсциссе x точки M(x,y):
secα=r/x=1/x,x≠0

9. Косеканс угла α − это отношение радиуса r к ординате y точки M(x,y):
cscα=r/y=1/y,y≠0

10. В единичном круге проекции x, y точки M(x,y) и радиус r образуют прямоугольный треугольник, в котором x,y являются катетами, а r − гипотенузой. Поэтому, приведенные выше определения тригонометрических функций в приложении к прямоугольному треугольнику формулируются таким образом:
Синусом угла α называется отношение противолежащего катета к гипотенузе.
Косинусом угла α называется отношение прилежащего катета к гипотенузе.
Тангенсом угла α называется противолежащего катета к прилежащему.
Котангенсом угла α называется прилежащего катета к противолежащему.
Секанс угла α представляет собой отношение гипотенузы к прилежащему катету.
Косеканс угла α представляет собой отношение гипотенузы к противолежащему катету.

11. График функции синус
y=sinx, область определения: x∈R, область значений: −1≤sinx≤1

12. График функции косинус
y=cosx, область определения: x∈R, область значений: −1≤cosx≤1

13. График функции тангенс
y=tanx, область определения: x∈R,x≠(2k+1)π/2, область значений: −∞

14. График функции котангенс
y=cotx, область определения: x∈R,x≠kπ, область значений: −∞

15. График функции секанс
y=secx, область определения: x∈R,x≠(2k+1)π/2, область значений:secx∈(−∞,−1]∪∪}

© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация