Слой атмосферы наиболее важный для жизни. Земная атмосфера

Главная / Налоги

Газовая оболочка, окружающая нашу планету Земля, известная как атмосфера, состоит из пяти основных слоев. Эти слои берут начало на поверхности планеты, от уровня моря (иногда ниже) и поднимаются до космического пространства в следующей последовательности:

  • Тропосфера;
  • Стратосфера;
  • Мезосфера;
  • Термосфера;
  • Экзосфера.

Схема основных слоев атмосферы Земли

В промежутке между каждым из этих основных пяти слоев находятся переходные зоны, называемые «паузами», где происходят изменения температуры, состава и плотности воздуха. Вместе с паузами, атмосфера Земли в общей сложности включает 9 слоев.

Тропосфера: где происходит погода

Из всех слоев атмосферы тропосфера является тем, с которым мы больше всего знакомы (осознаете ли вы это или нет), так как мы живем на ее дне - поверхности планеты. Она окутывает поверхность Земли и простирается вверх на несколько километров. Слово тропосфера означает «изменение шара». Очень подходящее название, так как этот слой, где происходит наша повседневная погода.

Начиная с поверхности планеты, тропосфера поднимается на высоту от 6 до 20 км. Нижняя треть слоя, ближайшая к нам, содержит 50% всех атмосферных газов. Это единственная часть всего состава атмосферы, которая дышит. Благодаря тому, что воздух нагревается снизу земной поверхностью, поглощающей тепловую энергию Солнца, с увеличением высоты температура и давление тропосферы понижаются.

На вершине находится тонкий слой, называемый тропопаузой, который является всего лишь буфером между тропосферой и стратосферой.

Стратосфера: дом озона

Стратосфера - следующий слой атмосферы. Он простирается от 6-20 км до 50 км над земной поверхностью Земли. Это слой, в котором летают большинство коммерческих авиалайнеров и путешествуют воздушные шары.

Здесь воздух не течет вверх и вниз, а движется параллельно поверхности в очень быстрых воздушных потоках. По мере того, как вы поднимаетесь, температура увеличивается, благодаря обилию природного озона (O 3) - побочного продукта солнечной радиации и кислорода, который обладает способностью поглощать вредные ультрафиолетовые лучи солнца (любое повышение температуры с высотой в метеорологии, известно как "инверсия").

Поскольку стратосфера имеет более теплые температуры внизу и более прохладные наверху, конвекция (вертикальные перемещения воздушных масс) встречается редко в этой части атмосферы. Фактически, вы можете рассматривать из стратосферы бушующую в тропосфере бурю, поскольку слой действует как «колпачок» для конвекции, через который не проникают штормовые облака.

После стратосферы снова следует буферный слой, на этот раз называемый стратопаузой.

Мезосфера: средняя атмосфера

Мезосфера находится примерно на расстоянии 50-80 км от поверхности Земли. Верхняя область мезосферы является самым холодным естественным местом на Земле, где температура может опускаться ниже -143° C.

Термосфера: верхняя атмосфера

После мезосферы и мезопаузы следует термосфера, расположенная между 80 и 700 км над поверхностью планеты, и содержит менее 0,01% всего воздуха в атмосферной оболочке. Температуры здесь достигают до +2000° C, но из-за сильной разреженности воздуха и нехватки молекул газа для переноса тепла, эти высокие температуры воспринимаются, как очень холодные.

Экзосфера: граница атмосферы и космоса

На высоте около 700-10000 км над земной поверхностью находится экзосфера - внешний край атмосферы, граничащий с космосом. Здесь метеорологические спутники вращаются вокруг Земли.

Как насчет ионосферы?

Ионосфера не является отдельным слоем, а на самом деле этот термин используется для обозначения атмосферы на высоте от 60 до 1000 км. Она включает в себя самые верхние части мезосферы, всю термосферу и часть экзосферы. Ионосфера получила свое название, потому что в этой части атмосферы излучение Солнца ионизируется, когда проходит магнитные поля Земли на и . Это явления наблюдается с земли как северное сияние.

Голубая планета...

Эта тема должна была появится на сайте одной из первых. Ведь и вертолеты – атмосферные летательные аппараты. Атмосфера Земли – их, так сказать, среда обитания:-). А физические свойства воздуха как раз и определяют качество этого обитания:-). То есть это одна из основ. И об основе всегда пишут вначале. Но сообразил я об этом только сейчас. Однако лучше, как известно, поздно, чем никогда… Коснемся этого вопроса, в дебри и ненужные сложности однако не залезая:-).

Итак… Атмосфера Земли . Это газовая оболочка нашей голубой планеты. Такое название всем известно. А почему голубая? Просто потому, что «голубая» (а также синяя и фиолетовая) составляющая солнечного света (спектра) наиболее хорошо рассеивается в атмосфере, окрашивая ее тем самым в голубовато-синеватые, иногда с оттенком фиолетового тона (в солнечный день, конечно:-)).

Состав атмосферы Земли.

Состав атмосферы достаточно широк. Перечислять в тексте все составляющие не буду, для этого есть хорошая иллюстрация.Состав всех этих газов практически постоянен, за исключением углекислого газа (СО 2 ). Кроме того в атмосфере обязательно содержится вода в виде паров, взвеси капель или кристаллов льда. Количество воды непостоянно и зависит от температуры и, в меньшей степени, от давления воздуха. Кроме того атмосфера Земли (особенно нынешняя) содержит и определенное количество я бы сказал «всякой гадости»:-). Это SO 2 , NH 3 , CO , HCl , NO , кроме того есть там пары ртути Hg . Правда все это находится там в небольших количествах, слава богу:-).

Атмосферу Земли принято делить на несколько следующих друг за другом по высоте над поверхностью зон.

Первая, самая близкая к земле - это тропосфера . Это самый нижний и, так сказать, основной слой для жизнедеятельности разного вида. В нем содержится 80% массы всего атмосферного воздуха (хотя по объему она составляет всего около 1% всей атмосферы) и около 90% всей атмосферной воды. Основная масса всех ветров, облаков, дождей и снегов 🙂 — оттуда. Тропосфера простирается до высот порядка 18 км в тропических широтах и до 10 км в полярных. Температура воздуха в ней падает с подъемом на высоту примерно 0,65º на каждые 100 м.

Атмосферные зоны.

Зона вторая – стратосфера . Надо сказать, что между тропосферой и стратосферой выделяют еще одну узкую зону – тропопаузу . В ней прекращается падение температуры с высотой. Тропопауза имеет среднюю толщину 1,5- 2 км, но границы ее нечетки и тропосфера часто перекрывает стратосферу.

Так вот стратосфера имеет высоту в среднем от 12 км до 50 км. Температура в ней до 25 км остается неизменной (порядка -57ºС), затем где-то до 40 км повышается примерно до 0ºС и далее до 50 км остается неизменной. Стратосфера – относительно спокойная часть атмосферы земли. Неблагоприятные погодные условия в ней практически отсутствуют. Именно в стратосфере располагается знаменитый озоновый слой на высотах от 15-20 км до 55-60 км.

Далее следует небольшой пограничный слой стратопауза , температура в которой сохраняется около 0ºС, и затем следующая зона мезосфера. Она простирается до высот 80-90 км, и в ней температура падает примерно до 80ºС. В мезосфере обычно становятся видны мелкие метеоры, которые начинают в ней светиться и там же сгорают.

Следующий узкий промежуток – мезопауза и за ней зона термосфера . Ее высота – до 700-800 км. Здесь температура опять начинает повышаться и на высотах порядка 300 км может достигать величин порядка 1200ºС. Далее она остается постоянной. Внутри термосферы до высоты около 400 км расположена ионосфера. Здесь воздух сильно ионизирован из-за воздействия солнечной радиации и обладает большой электропроводностью.

Следующая и, вобщем-то, последняя зона – экзосфера . Это так называемая зона рассеяния . Здесь в основном присутствует очень сильно разреженный водород и гелий (с преобладанием водорода). На высотах порядка 3000 км экзосфера переходит в ближнекосмический вакуум.

Вот примерно где-то так. Почему примерно? Потому что слои эти достаточно условны. Возможны различные изменения высоты, состава газов, воды, величины температуры, ионизации и так далее. Кроме того существует еще немало терминов, определяющих строение и состояние атмосферы земли.

Например гомосфера и гетеросфера . В первой атмосферные газы хорошо перемешаны, и их состав достаточно однороден. Вторая расположена выше первой и такого перемешивания там уже практически нет. Газы в ней разделяет гравитация. Граница между этими слоями расположена на высоте 120 км, и называется она турбопауза .

С терминами пожалуй покончим, но обязательно еще добавлю, что условно принято считать, что граница атмосферы расположена на высоте 100 км над уровнем моря. Эта граница называется Линия Кармана .

Добавлю еще две картинки для иллюстрации строения атмосферы. Первая, правда, на немецком, но зато полная и достаточно легка в понимании:-). Ее можно увеличить и хорошо рассмотреть. Вторая показывает изменение температуры атмосферы с высотой.

Строение атмосферы Земли.

Изменение температуры воздуха с высотой.

Современные пилотируемые орбитальные космические аппараты летают на высотах около 300-400 км . Однако это уже не авиация, хотя область, конечно, в определенном смысле близкородственная, и мы о ней еще непременно поговорим:-).

Зона авиации – это тропосфера. Современные атмосферные летательные аппараты могут летать и в нижних слоях стратосферы. Например практический потолок МИГ-25РБ – 23000 м .

Полет в стратосфере.

И именно физические свойства воздуха тропосферы определяют каким будет полет, насколько будет эффективна система управления самолета, как будет влиять на него турбулентность в атмосфере, как будут работать двигатели.

Первое основное свойство – это температура воздуха . В газодинамике она может определяться по шкале Цельсия либо по шкале Кельвина .

Температура t 1 на заданной высоте Н по шкале Цельсия определяется:

t 1 = t — 6,5Н , где t – температура воздуха у земли.

Температура по шкале Кельвина называется абсолютной температурой , ноль по этой шкале – это абсолютный ноль. При абсолютном нуле прекращается тепловое движение молекул. Абсолютный ноль по шкале Кельвина соответствует -273º по шкале Цельсия.

Соответственно температура Т на высоте Н по шкале Кельвина определяется:

T = 273K + t — 6,5H

Давление воздуха . Атмосферное давление измеряется в Паскалях (Н/м 2), в старой системе измерения в атмосферах (атм.). Существует еще такое понятие как барометрическое давление. Это давление, измеренное в миллиметрах ртутного столба при помощи ртутного барометра. Барометрическое давление (давление на уровне моря) равное 760 мм рт. ст. называется стандартным. В физике 1 атм. как раз и равна 760 мм рт.ст.

Плотность воздуха . В аэродинамике чаще всего пользуются таким понятием, как массовая плотность воздуха. Это масса воздуха в 1 м 3 объема. Плотность воздуха с высотой меняется, воздух становится более разреженным.

Влажность воздуха . Показывает количество воды, находящееся в воздухе. Существует понятие «относительная влажность ». Это отношение массы водяного пара к максимально возможной при данной температуре. Понятие 0%, то есть когда воздух совершенно сухой может существовать вобщем-то только в лаборатории. С другой стороны 100%-ная влажность вполне реальна. Это означает, что воздух впитал в себя всю воду, которую мог впитать. Что-то типа абсолютно «полной губки». Высокая относительная влажность снижает плотность воздуха, а малая, соответственно повышает.

В связи с тем, что полеты самолетов происходят при разных атмосферных условиях, то и их полетные и аэродинамические параметры на одном режиме полета могут быть различными. Поэтому для правильной оценки этих параметров введена Международная стандартная атмосфера (МСА) . Она показывает изменение состояния воздуха с подъемом на высоту.

За основные приняты параметры состояния воздуха при нулевой влажности:

давление P = 760 мм рт. ст. (101,3 кПА);

температура t = +15°C (288 К);

массовая плотность ρ = 1,225 kg/m 3 ;

Для МСА принято (как уже было сказано выше:-)), что температура падает в тропосфере на 0,65º на каждые 100 метров высоты.

Стандартная атмосфера (пример до 10000 м).

Таблицы МСА используются при градуировании приборов, а также для штурманских и инженерных расчетов.

Физические свойства воздуха включают в себя также такие понятия как инертность, вязкость и сжимаемость.

Инертность — свойство воздуха, характеризующее его способность сопротивляться изменению состояния покоя или равномерного прямолинейного движения. Мерой инертности является массовая плотность воздуха. Чем она выше, тем выше инертность и сила сопротивления среды при движении в ней самолета.

Вязкость . Определяет сопротивление трения об воздух при движении самолета.

Сжимаемость определяет изменение плотности воздуха при изменении давления. На малых скоростях движения летательного аппарата (до 450 км/ч) изменения давления при обтекании его воздушным потоком не происходит, но при больших скоростях начинает проявляться эффект сжимаемости. Особенно сказывается его влияние на сверхзвуке. Это отдельная область аэродинамики и тема для отдельной статьи:-).

Ну вот кажется пока все… Пора закончить это слегка нудноватое перечисление, без которого однако не обойтись:-). Атмосфера Земли , ее параметры, физические свойства воздуха также важны для летательного аппарата, как и параметры самого аппарата, и о них нельзя было не упомянуть.

Пока, до следующих встреч и более интересных тем 🙂 …

P.S. На сладкое предлагаю посмотреть ролик снятый из кабины спарки МИГ-25ПУ при его полете в стратосферу. Снимал, видимо, турист, у которого есть деньги для таких полетов:-). Снято в основном все через лобовое стекло. Обратите внимание на цвет неба…

АТМОСФЕРА Земли (греческий atmos пар + sphaira шар) - газовая оболочка, окружающая Землю. Масса атмосферы составляет около 5,15·10 15 Биологическое значение атмосферы огромно. В атмосфере осуществляется массо-энергообмен между живой и неживой природой, между растительным и животным миром. Азот атмосферы усваивают микроорганизмы; из углекислого газа и воды за счет энергии Солнца растения синтезируют органические вещества и выделяют кислород. Наличие атмосферы обеспечивает сохранение на Земле воды, также являющейся важным условием существования живых организмов.

Исследования, проведенные с помощью высотных геофизических ракет, искусственных спутников Земли и межпланетных автоматических станций, установили, что земная атмосфера простирается на тысячи километров. Границы атмосферы непостоянны, на них влияют гравитационное поле Луны и давление потока солнечных лучей. Над экватором в области земной тени атмосфера достигает высот около 10 000км, а над полюсами границы ее удалены от поверхности земли на 3000 км. Основная масса атмосферы (80-90%) находится в пределах высот до 12-16 км, что объясняется экспоненциальным (нелинейным) характером уменьшения плотности (разрежением) ее газовой среды по мере увеличения высоты над уровнем моря.

Существование большинства живых организмов в естественных условиях возможно в еще более узких границах атмосферы, до 7-8 км, где имеет место необходимое для активного протекания биологических процессов сочетание таких атмосферных факторов, как газовый состав, температура, давление, влажность. Гигиеническое значение имеют также движение и ионизация воздуха, атмосферные осадки, электрическое состояние атмосферы.

Газовый состав

Атмосфера представляет собой физическую смесь газов (табл. 1), преимущественно азота и кислорода (78,08 и 20,95 об. %). Соотношение газов атмосферы практически одинаково до высот 80-100 км. Постоянство основной части газового состава атмосеры обусловливается относительным уравновешиванием процессов газообмена между живой и неживой природой и непрерывным перемешиванием масс воздуха в горизонтальном и вертикальном направлениях.

Таблица 1. ХАРАКТЕРИСТИКА ХИМИЧЕСКОГО СОСТАВА СУХОГО АТМОСФЕРНОГО ВОЗДУХА У ЗЕМНОЙ ПОВЕРХНОСТИ

Состав газовый

Объемная концентрация, %

Кислород

Углекислый газ

Закись азота

Двуокись серы

От 0 до 0,0001

От 0 до 0,000007 летом, от 0 до 0,000002 зимой

Двуокись азота

От 0 до 0,000002

Окись углерода

На высотах более 100 км происходит изменение процентного содержания отдельных газов, связанное с их диффузным расслоением под влиянием гравитации и температуры. Кроме того, под действием коротковолновой части ультрафиолетовых и рентгеновских лучей на высоте 100 км и более происходит диссоциация молекул кислорода, азота и углекислого газа на атомы. На больших высотах эти газы находятся в виде сильно ионизированных атомов.

Содержание углекислого газа в атмосфере различных районов Земли менее постоянно, что связано отчасти с неравномерным рассредоточением крупных промышленных предприятий, загрязняющих воздух, а также неравномерностью распределения на Земле растительности, водных бассейнов, поглощающих углекислый газ. Также изменчиво в атмосфере и содержание аэрозолей (см.) - взвешенных в воздухе частиц размером от нескольких миллимикрон до нескольких десятков микрон, - образующихся в результате вулканических извержений, мощных искусственных взрывов, загрязнений индустриальными предприятиями. Концентрация аэрозолей быстро убывает с высотой.

Самая непостоянная и важная из переменных компонентов атмосферы - водяной пар, концентрация которого у земной поверхности может колебаться от 3% (в тропиках) до 2×10 -10 % (в Антарктиде). Чем выше температура воздуха, тем больше влаги при прочих равных условиях может находиться в атмосфере и наоборот. Основная масса паров воды сосредоточена в атмосфере до высот 8-10 км. Содержание водяного пара в атмосфере зависит от сочетанного влияния процессов испарения, конденсации и горизонтального переноса. На больших высотах в связи с понижением температуры и конденсации паров воздух практически сухой.

Атмосфера Земли, помимо молекулярного и атомарного кислорода, содержит в незначительном количестве и озон (см.), концентрация которого весьма непостоянна и меняется в зависимости от высоты и времени года. Больше всего озона содержится в области полюсов к концу полярной ночи на высоте 15-30 км с резким убыванием вверх и вниз. Озон возникает в результате фотохимического действия на кислород ультрафиолетовой солнечной радиации преимущественно на высотах 20-50 км. Двухатомные молекулы кислорода частично распадаются при этом на атомы и, присоединяясь к неразложенным молекулам, образуют трехатомные молекулы озона (полимерная, аллотропная форма кислорода).

Наличие в атмосфере группы так называемых инертных газов (гелия, неона, аргона, криптона, ксенона) связано с непрерывным протеканием процессов естественного радиоактивного распада.

Биологическое значение газов атмосферы очень велико. Для большинства многоклеточных организмов определенное содержание молекулярного кислорода в газовой или водной среде является непременным фактором их существования, обусловливающим при дыхании высвобождение энергии из органических веществ, созданных первоначально в ходе фотосинтеза. Не случайно, что верхние границы биосферы (часть поверхности земного шара и нижняя часть атмосферы, где существует жизнь) определяются наличием достаточного количества кислорода. В процессе эволюции организмы приспособились к определенному уровню содержания кислорода в атмосфере; изменение содержания кислорода в сторону уменьшения или увеличения оказывает неблагоприятный эффект (см. Высотная болезнь , Гипероксия , Гипоксия).

Выраженным биологическим действием обладает и озон-аллотропная форма кислорода. При концентрациях, не превышающих 0,0001 мг/л, что характерно для курортных местностей и морских побережий, озон оказывает целебное действие - стимулирует дыхание и сердечно-сосудистую деятельность, улучшает сон. С увеличением концентрации озона проявляется его токсическое действие: раздражение глаз, некротическое воспаление слизистых оболочек дыхательных путей, обострение легочных заболеваний, вегетативные неврозы. Вступая в соединение с гемоглобином, озон образует метгемоглобин, что приводит к нарушению дыхательной функции крови; затрудняется перенос кислорода из легких к тканям, развиваются явления удушья. Сходное неблагоприятное влияние на организм оказывает и атомарный кислород. Озон играет значительную роль в создании термических режимов различных слоев атмосферы вследствие чрезвычайно сильного поглощения солнечной радиации и земного излучения. Наиболее интенсивно озон поглощает ультрафиолетовые и инфракрасные лучи. Солнечные лучи с длиной волны меньше 300 нм почти полностью поглощаются атмосферным озоном. Таким образом, Земля окружена своеобразным «озоновым экраном», защищающим многие организмы от губительного действия ультрафиолетового излучения Солнца, Азот атмосферного воздуха имеет важное биологическое значение прежде всего как источник так наз. фиксированного азота - ресурса растительной (а в конечном счете и животной) пищи. Физиологическая значимость азота определяется его участием в создании необходимого для жизненных процессов уровня атмосферного давления. При определенных условиях изменения давления азот играет основную роль в развитии ряда нарушений в организме (см. Декомпрессионная болезнь). Предположения о том, что азот ослабляет токсическое действие на организм кислорода и усваивается из атмосферы не только микроорганизмами, но и высшими животными, являются спорными.

Инертные газы атмосферы (ксенон, криптон, аргон, неон, гелий) при создаваемом ими в обычных условиях парциальном давлении могут быть отнесены к числу биологически индифферентных газов. При значительном повышении парциального давления эти газы оказывают наркотическое действие.

Наличие углекислого газа в атмосфере обеспечивает накопление солнечной энергии в биосфере за счет фотосинтеза сложных соединений углерода, которые в процессе жизни непрерывно возникают, изменяются и разлагаются. Эта динамическая система поддерживается в результате деятельности водорослей и наземных растений, улавливающих энергию солнечного света и использующих ее для превращения углекислого газа (см.) и воды в разнообразные органические соединения с выделением кислорода. Протяженность биосферы вверх ограничена частично и тем, что на высотах более 6-7 км хлорофиллсодержащие растения не могут жить из-за низкого парциального давления углекислого газа. Углекислый газ является весьма активным и в физиологическом отношении, так как играет важную роль в регуляции обменных процессов, деятельности центральной нервной системы, дыхания, кровообращения, кислородного режима организма. Однако эта регуляция опосредована влиянием углекислого газа, образуемого самим организмом, а не поступающего из атмосферы. В тканях и крови животных и человека парциальное давление углекислого газа примерно в 200 раз превышает величину его давления в атмосфере. И лишь при значительном увеличении содержания углекислого газа в атмосфере (более 0,6-1%) наблюдаются нарушения в организме, обозначаемые термином гиперкапния (см.). Полное устранение углекислого газа из вдыхаемого воздуха не может непосредственно оказать неблагоприятного влияния на организм человека и животных.

Углекислый газ играет определенную роль в поглощении длинноволнового излучения и поддержании «оранжерейного эффекта», повышающего температуру у поверхности Земли. Изучается также проблема влияния на термические и другие режимы атмосферы углекислого газа, поступающего в громадных количествах в воздух как отход промышленности.

Водяные пары атмосферы (влажность воздуха) также оказывают влияние на организм человека, в частности на теплообмен с окружающей средой.

В результате конденсации водяного пара в атмосфере образуются облака и выпадают атмосферные осадки (дождь, град, снег). Водяные пары, рассеивая солнечное излучение, участвуют в создании теплового режима Земли и нижних слоев атмосферы, в формировании метеорологических условий.

Атмосферное давление

Атмосферное давление (барометрическое) - давление, оказываемое атмосферой под влиянием гравитации на поверхность Земли. Величина этого давления в каждой точке атмосферы равна весу вышележащего столба воздуха с единичным основанием, простирающегося над местом измерения до границ атмосферы. Измеряют атмосферное давление барометром (см.) и выражают в миллибарах, в ньютонах на квадратный метр или высотой столба ртути в барометре в миллиметрах, приведенной к 0° и нормальной величине ускорения силы тяжести. В табл. 2 приведены наиболее употребительные единицы измерения атмосферного давления.

Изменение давления происходит вследствие неравномерного нагревания масс воздуха, расположенных над сушей и водой в различных географических широтах. При повышении температуры плотность воздуха и создаваемое им давление уменьшаются. Огромное скопление быстродвижущегося воздуха с пониженным давлением (с уменьшением давления от периферии к центру вихря) называют циклоном, с повышенным давлением (с повышением давления к центру вихря) - антициклоном. Для прогноза погоды важны непериодические изменения атмосферного давления, происходящие в движущихся обширных массах и связанные с возникновением, развитием и разрушением антициклонов и циклонов. Особенно большие изменения атмосферного давления связаны с быстрым перемещением тропических циклонов. При этом атмосферное давление может изменяться на 30-40 мбар за сутки.

Падение атмосферного давления в миллибарах на расстоянии, равном 100 км, называется горизонтальным барометрическим градиентом. Обычно величины горизонтального барометрического градиента составляют 1-3 мбар, но в тропических циклонах иногда возрастают до десятков миллибар на 100 км.

С подъемом на высоту атмосферное давление понижается в логарифмической зависимости: вначале очень резко, а затем все менее заметно (рис. 1). Поэтому кривая изменения барометрического давления носит экспоненциальный характер.

Убывание давления на единицу расстояния по вертикали называется вертикальным барометрическим градиентом. Часто пользуются обратной ему величиной - барометрической ступенью.

Так как барометрическое давление есть сумма парциальных давлений газов, образующих воздух, то очевидно, что с подъемом на высоту наряду с уменьшением общего давления атмосферы снижается и парциальное давление газов, составляющих воздух. Величина парциального давления любого газа в атмосфере вычисляется по формуле

где Р х - парциальное давление газа, Ρ z - атмосферное давление на высоте Ζ, Х% - процентное содержание газа, парциальное давление которого следует определить.

Рис. 1. Изменение барометрического давления в зависимости от высоты над уровнем моря.

Рис. 2. Изменение парциального давления кислорода в альвеолярном воздухе и насыщения артериальной крови кислородом в зависимости от изменения высоты при дыхании воздухом и кислородом. Дыхание кислородом начинается с высоты 8,5 км (эксперимент в барокамере).

Рис. 3. Сравнительные кривые средних величин активного сознания у человека в минутах на разных высотах после быстрого подъема при дыхании воздухом (I) я кислородом (II). На высотах более 15 км активное сознание нарушается одинаково при дыхании кислородом и воздухом. На высотах до 15 км дыхание кислородом значительно продлевает период активного сознания (эксперимент в барокамере).

Поскольку процентный состав газов атмосферы относительно постоянен, то для определения парциального давления любого газа требуется лишь знать общее барометрическое давление на данной высоте (рис. 1 и табл. 3).

Таблица 3. ТАБЛИЦА СТАНДАРТНОЙ АТМОСФЕРЫ (ГОСТ 4401-64) 1

Геометрическая высота (м)

Температура

Барометрическое давление

Парциальное давление кислорода (мм рт. ст.)

мм рт. ст.

1 Дана в сокращенном виде и дополнена графой «Парциальное давление кислорода» .

При определении парциального давления газа во влажном воздухе нужно вычесть из величины барометрического давления давление (упругость) насыщенных паров.

Формула для определения парциального давления газа во влажном воздухе будет несколько иной, чем для сухого воздуха:

где рH 2 O - упругость водяных паров. При t° 37° упругость насыщенного водяного пара равна 47 мм рт. ст. Эта величина используется при вычислении парциальных давлений газов альвеолярного воздуха в наземных и высотных условиях.

Влияние на организм повышенного и пониженного давления. Изменения барометрического давления в сторону повышения или понижения оказывают разнообразное действие на организм животных и человека. Влияние повышенного давления связано с механическим и проникающим физико-химическим действием газовой среды (так наз. компрессионный и проникающий эффекты).

Компрессионный эффект проявляется: общим объемным сжатием, обусловленным равномерным повышением сил механического давления на органы и ткани; механонаркозом, обусловленным равномерной объемной компрессией при очень высоком барометрическом давлении; местным неравномерным давлением на ткани, которые ограничивают газосодержащие полости при нарушенной связи наружного воздуха с воздухом, находящимся в полости, например, среднего уха, придаточных полостях носа (см. Баротравма); увеличением плотности газа в системе внешнего дыхания, что вызывает возрастание сопротивления дыхательным движениям, особенно при форсированном дыхании (физическая нагрузка, гиперкапния).

Проникающий эффект может привести к токсическому действию кислорода и индифферентных газов, повышение содержания которых в крови и тканях вызывает наркотическую реакцию, первые признаки к-рой при использовании азото-кислородной смеси у человека возникают при давлении 4-8 ата. Увеличение парциального давления кислорода вначале снижает уровень функционирования сердечно-сосудистой и дыхательной систем вследствие выключения регулирующего влияния физиологической гипоксемии. При увеличении парциального давления кислорода в легких более 0,8-1 ата проявляется его токсическое действие (поражение легочной ткани, судороги, коллапс).

Проникающий и компрессионный эффекты повышенного давления газовой среды используются в клинической медицине при лечении различных болезней с общим и местным нарушением кислородного обеспечения (см. Баротерапия , Кислородная терапия).

Понижение давления оказывает на организм еще более выраженное действие. В условиях крайне разреженной атмосферы основным патогенетическим фактором, приводящим за несколько секунд к потере сознания, а за 4-5 мин.- к гибели, является уменьшение парциального давления кислорода во вдыхаемом воздухе, а затем в альвеолярном воздухе, крови и тканях (рис. 2 и 3). Умеренная гипоксия вызывает развитие приспособительных реакций системы дыхания и гемодинамики, направленных на поддержание кислородного снабжения в первую очередь жизненно важных органов (мозга, сердца). При выраженном недостатке кислорода угнетаются окислительные процессы (за счет дыхательных ферментов), нарушаются аэробные процессы выработки энергии в митохондриях. Это приводит вначале к расстройству функций жизненно важных органов, а затем к необратимым структурным повреждениям и гибели организма. Развитие приспособительных и патологических реакций, изменение функционального состояния организма и работоспособности человека при понижении атмосферного давления определяется степенью и скоростью уменьшения парциального давления кислорода во вдыхаемом воздухе, длительностью пребывания на высоте, интенсивностью выполняемой работы, исходным состоянием организма (см. Высотная болезнь).

Понижение давления на высотах (даже при исключении недостатка кислорода) вызывает в организме серьезные нарушения, объединяемые понятием «декомпрессионные расстройства», к которым относятся: высотный метеоризм, баротит и баросинусит, высотная декомпрессионная болезнь и высотная тканевая эмфизема.

Высотный метеоризм развивается вследствие расширения газов в желудочно-кишечном тракте при уменьшении барометрического давления на брюшную стенку при подъеме на высоты от 7-12 км и более. Определенное значение имеет и выход газов, растворенных в кишечном содержимом.

Расширение газов приводит к растяжению желудка и кишечника, поднятию диафрагмы, изменению положения сердца, раздражению рецепторного аппарата этих органов и возникновению патологических рефлексов, нарушающих дыхание и кровообращение. Нередко возникают резкие боли в области живота. Сходные явления иногда возникают и у водолазов при подъеме с глубины на поверхность.

Механизм развития баротита и баросинусита, проявляющихся чувством заложенности и боли соответственно в среднем ухе или придаточных полостях носа, подобен развитию высотного метеоризма.

Снижение давления, помимо расширения газов, содержащихся в полостях тела, обусловливает также и выход газов из жидкостей и тканей, в которых они были растворены в условиях давления на уровне моря или на глубине, и образование пузырьков газа в организме.

Этот процесс выхода растворенных газов (прежде всего азота) вызывает развитие декомпрессионной болезни (см.).

Рис. 4. Зависимость температуры кипения воды от высоты над уровнем моря и барометрического давления. Цифры давления расположены под соответствующими цифрами высоты.

При уменьшении атмосферного давления понижается температура кипения жидкостей (рис. 4). На высоте более 19 км, где барометрическое давление равно (или меньше) упругости насыщенных паров при температуре тела (37°), может произойти «закипание» межтканевой и межклеточной жидкости организма, в результате чего в крупных венах, в полости плевры, желудка, перикарда, в рыхлой жировой клетчатке, то есть в участках с низким гидростатическим и внутритканевым давлением, образуются пузыри водяного пара, развивается высотная тканевая эмфизема. Высотное «кипение» не затрагивает клеточные структуры, локализуясь только в межклеточной жидкости и крови.

Массивные пузыри пара могут блокировать работу сердца и циркуляцию крови и нарушать работу жизненно важных систем и органов. Это является серьезным осложнением острого кислородного голодания, развивающегося на больших высотах. Профилактика высотной тканевой эмфиземы может быть обеспечена созданием внешнего противодавления на тело высотным снаряжением.

Сам процесс понижения барометрического давления (декомпрессия) при определенных параметрах может стать повреждающим фактором. В зависимости от скорости декомпрессию разделяют на плавную (медленную) и взрывную. Последняя протекает за время менее 1 секунды и сопровождается сильным хлопком (как при выстреле), образованием тумана (конденсация паров воды из-за охлаждения расширяющегося воздуха). Обычно взрывная декомпрессия происходит на высотах при разрушении остекления герметичной кабины или скафандра с избыточным давлением.

При взрывной декомпрессии прежде всего страдают легкие. Быстрое нарастание внутрилегочного избыточного давления (более чем на 80 мм рт. ст.) приводит к значительному растяжению легочной ткани, что может вызвать разрыв легких (при их расширении в 2,3 раза). Взрывная декомпрессия может вызвать повреждение и желудочно-кишечного тракта. Величина возникающего избыточного давления в легких будет во многом зависеть от скорости истечения из них воздуха в процессе декомпрессии и объема воздуха в легких. Особенно опасно, если верхние дыхательные пути в момент декомпрессии окажутся закрытыми (при глотании, задержке дыхания) или декомпрессия совпадет с фазой глубокого вдоха, когда легкие наполняются большим количеством воздуха.

Температура атмосферы

Температура атмосферы с увеличением высоты вначале понижается (в среднем от 15° у земли до -56,5° на высоте 11-18 км). Вертикальный температурный градиент в этой зоне атмосферы составляет около 0,6° на каждые 100 м; он изменяется в течение суток и года (табл. 4).

Таблица 4. ИЗМЕНЕНИЯ ВЕРТИКАЛЬНОГО ТЕМПЕРАТУРНОГО ГРАДИЕНТА НАД СРЕДНЕЙ ПОЛОСОЙ ТЕРРИТОРИИ СССР

Рис. 5. Изменение температуры атмосферы на различных высотах. Границы сфер обозначены пунктиром.

На высотах 11 - 25 км температура становится постоянной и составляет -56,5°; затем температура начинает повышаться, достигая на высоте 40 км 30-40°, на высоте 50-60 км 70° (рис. 5), что связано с интенсивным поглощением озоном солнечной радиации. С высоты 60- 80 км температура воздуха вновь несколько снижается (до 60°), а затем прогрессивно повышается и составляет на высоте 120 км 270°, на 220 км 800°, на высоте 300 км 1500°, а

на границе с космическим пространством - больше 3000°. Следует заметить, что вследствие большой разреженности и малой плотности газов на этих высотах их теплоемкость и способность к нагреванию более холодных тел очень незначительна. В этих условиях передача тепла от одного тела к другому происходит только посредством лучеиспускания. Все рассматриваемые изменения температуры в атмосфере связаны с поглощением воздушными массами тепловой энергии Солнца - прямой и отраженной.

В нижней части атмосферы у поверхности Земли распределение температуры зависит от притока солнечной радиации и поэтому имеет в основном широтный характер, то есть линии равной температуры - изотермы - параллельны широтам. Так как атмосфера в нижних слоях нагревается от земной поверхности, то на горизонтальное изменение температуры сильно влияет распределение материков и океанов, термические свойства которых различны. Обычно в справочниках указывается температура, измеренная при сетевых метеорологических наблюдениях термометром, установленным на высоте 2 м над поверхностью почвы. Наиболее высокие температуры (до 58е) наблюдаются в пустынях Ирана, а в СССР - на юге Туркменистана (до 50°), наиболее низкие (до -87°) в Антарктиде, а в СССР - в районах Верхоянска и Оймякона (до -68°). Зимой вертикальный температурный градиент в отдельных случаях вместо 0,6° может превышать 1° на 100 м или даже принимать отрицательное значение. Днем в теплое время года он может быть равен многим десяткам градусов на 100 м. Различают также горизонтальный градиент температуры, который обычно относят к расстоянию 100 км по нормали к изотерме. Величина горизонтального градиента температуры - десятые доли градуса на 100 км, а во фронтальных зонах он может превышать 10° на 100 м.

Организм человека способен поддерживать тепловой гомеостаз (см.) в довольно узких пределах колебаний температуры наружного воздуха - от 15 до 45°. Существенные различия температуры атмосферы у Земли и на высотах требуют применения специальных защитных технических средств для обеспечения теплового баланса между организмом человека и внешней средой в высотных и космических полетах.

Характерные изменения параметров атмосферы (температуры, давления, химического состава, электрического состояния) позволяют условно разделить атмосферу на зоны, или слои. Тропосфера - ближайший слой к Земле, верхняя граница которого простирается на экваторе до 17-18 км, на полюсах - до 7-8 км, в средних широтах - до 12-16 км. Для тропосферы характерно экспоненциальное падение давления, наличие постоянного вертикального температурного градиента, горизонтальные и вертикальные перемещения воздушных масс, значительные изменения влажности воздуха. В тропосфере находится основная масса атмосферы, а также значительная часть биосферы; здесь возникают все основные виды облаков, формируются воздушные массы и фронты, развиваются циклоны и антициклоны. В тропосфере из-за отражения снежным покровом Земли солнечных лучей и охлаждения приземных слоев воздуха имеет место так называемая инверсия, то есть возрастание температуры в атмосфере снизу вверх вместо обычного убывания.

В теплое время года в тропосфере происходит постоянное турбулентное (беспорядочное, хаотичное) перемешивание воздушных масс и перенос тепла потоками воздуха (конвекция). Конвекция уничтожает туманы и уменьшает запыленность нижнего слоя атмосферы.

Вторым слоем атмосферы является стратосфера .

Она начинается от тропосферы узкой зоной (1-3 км) с постоянной температурой (тропопауза) и простирается до высот около 80 км. Особенностью стратосферы является прогрессирующая разреженность воздуха, исключительно высокая интенсивность ультрафиолетового излучения, отсутствие водяных паров, наличие большого количества озона и постепенное повышение температуры. Высокое содержание озона обусловливает ряд оптических явлений (миражи), вызывает отражение звуков и оказывает существенное влияние на интенсивность и спектральный состав электромагнитных излучений. В стратосфере происходит постоянное перемешивание воздуха, поэтому состав его аналогичен воздуху тропосферы, хотя плотность его у верхних границ стратосферы крайне мала. Преобладающие ветры в стратосфере - западные, а в верхней зоне наблюдается переход к восточным ветрам.

Третьим слоем атмосферы является ионосфера , которая начинается от стратосферы и простирается до высот 600-800 км.

Отличительные признаки ионосферы - крайняя разреженность газовой среды, высокая концентрация молекулярных и атомарных ионов и свободных электронов, а также высокая температура. Ионосфера оказывает влияние на распространение радиоволн, обусловливая их преломление, отражение и поглощение.

Основным источником ионизации высоких слоев атмосферы является ультрафиолетовое излучение Солнца. При этом из атомов газов выбиваются электроны, атомы превращаются в положительные ионы, а выбитые электроны остаются свободными или захватываются нейтральными молекулами с образованием отрицательных ионов. На ионизацию ионосферы оказывают влияние метеоры, корпускулярное, рентгеновское и гамма-излучение Солнца, а также сейсмические процессы Земли (землетрясения, вулканические извержения, мощные взрывы), которые генерируют акустические волны в ионосфере, усиливающие амплитуду и скорость колебаний частиц атмосферы и способствующие ионизации газовых молекул и атомов (см. Аэроионизация).

Электрическая проводимость в ионосфере, связанная с высокой концентрацией ионов и электронов, очень велика. Повышенная электропроводимость ионосферы играет важную роль в отражении радиоволн и возникновении полярных сияний.

Ионосфера - это область полетов искусственных спутников Земли и межконтинентальных баллистических ракет. В настоящее время космическая медицина изучает возможные влияния на организм человека условий полета в этой части атмосферы.

Четвертый, внешний слой атмосферы - экзосфера . Отсюда атмосферные газы рассеиваются в мировое пространство за счет диссипации (преодоления молекулами сил земного тяготения). Затем происходит постепенный переход от атмосферы к межпланетному космическому пространству. От последнего экзосфера отличается наличием большого количества свободных электронов, образующих 2-й и 3-й радиационные пояса Земли.

Разделение атмосферы на 4 слоя весьма условно. Так, по электрическим параметрам всю толщу атмосферы делят на 2 слоя: нейтросферу, в которой преобладают нейтральные частицы, и ионосферу. По температуре различают тропосферу, стратосферу, мезосферу и термосферу, разделенные соответственно тропо-, страто- и мезопаузами. Слой атмосферы, расположенный между 15 и 70 км и характеризующийся высоким содержанием озона, называют озоносферой.

Для практических целей удобно пользоваться Международной стандартной атмосферой (MCA), для к-рой принимают следующие условия: давление на уровне моря при t° 15° равно 1013 мбар (1,013 X 10 5 нм 2 , или 760 мм рт. ст.); температура уменьшается на 6,5° на 1 км до уровня 11 км (условная стратосфера), а затем остается постоянной. В СССР принята стандартная атмосфера ГОСТ 4401 - 64 (табл. 3).

Осадки. Поскольку основная масса водяного пара атмосферы сосредоточена в тропосфере, то и процессы фазовых переходов воды, обусловливающие осадки, протекают преимущественно в тропосфере. Тропосферные облака обычно закрывают около 50% всей земной поверхности, тогда как облака в стратосфере (на высотах 20-30 км) и вблизи мезопаузы, получившие название соответственно перламутровых и серебристых, наблюдаются сравнительно редко. В результате конденсации водяного пара в тропосфере образуются облака и выпадают осадки.

По характеру выпадения осадки разделяются на 3 типа: обложные, ливневые, моросящие. Количество осадков определяется толщиной слоя выпавшей воды в миллиметрах; измерение осадков производят дождемерами и осадкомерами. Интенсивность осадков выражается в миллиметрах в 1 минуту.

Распределение осадков в отдельные сезоны и дни, а также по территории крайне неравномерно, что обусловлено циркуляцией атмосферы и влиянием поверхности Земли. Так, на Гавайских островах в среднем за год выпадает 12 000мм, а в наиболее сухих областях Перу и Сахары осадки не превышают 250 мм, а иногда не выпадают по нескольку лет. В годовой динамике выпадения осадков различают следующие типы: экваториальный - с максимумом выпадения после весеннего и осеннего равноденствия; тропический - с максимумом осадков летом; муссонный - с очень резко выраженным пиком летом и сухой зимой; субтропический - с максимумом осадков зимой и сухим летом; континентальный умеренных широт - с максимумом выпадения осадков летом; морской умеренных широт - с максимумом осадков зимой.

Весь атмосферно-физический комплекс климатометеорологических факторов, составляющий погоду, широко используется для укрепления здоровья, закаливания и в лечебных целях (см. Климатотерапия). Наряду с этим установлено, что резкие колебания этих атмосферных факторов могут отрицательно влиять на физиологические процессы в организме, вызывая развитие различных патологических состояний и обострение болезней, получивших название метеотропных реакций (см. Климатопатология). Особое значение в этом отношении имеют частые длительные возмущения атмосферы и резкие скачкообразные колебания метеофакторов.

Метеотропные реакции наблюдаются чаще у людей, страдающих заболеваниями сердечно-сосудистой системы, полиартритами, бронхиальной астмой, язвенной болезнью, заболеваниями кожи.

Библиография: Белинский В. А. и Побияхо В. А. Аэрология, Л., 1962, библиогр.; Биосфера и ее ресурсы, под ред. В. А. Ковды, М., 1971; Данилов А. Д. Химия ионосферы, Л., 1967; Колобков Н. В. Атмосфера и ее жизнь, М., 1968; Калитин H.H. Основы физики атмосферы в применении к медицине, Л., 1935; Матвеев Л. Т. Основы общей метеорологии, Физика атмосферы, Л., 1965, библиогр.; Минх А. А. Ионизация воздуха и ее гигиеническое значение, М., 1963, библиогр.; он же, Методы гигиенических исследований, М., 1971, библиогр.; Тверской П. Н. Курс метеорологии, Л., 1962; Уманский С. П. Человек в космосе, М., 1970; Хвостиков И. А. Высокие слои атмосферы, Л., 1964; X р г и а н A. X. Физика атмосферы, Л., 1969, библиогр.; Хромов С. П. Метеорология и климатология для географических факультетов, Л., 1968.

Влияние на организм повышенного и пониженного давления - Армстронг Г. Авиационная медицина, пер. с англ., М., 1954, библиогр.; Зальцман Г.Л. Физиологические основы пребывания человека в условиях повышенного давления газов среды, Л., 1961, библиогр.; Иванов Д. И. и Хромушкин А. И. Системы жизнеобеспечения человека при высотных и космических полетах, М., 1968, библиогр.; Исаков П. К. и др. Теория и практика авиационной медицины, М., 1971, библиогр.; Коваленко Е. А. и Черняков И. Н. Кислород тканей при экстремальных факторах полета, М., 1972, библиогр.; Майлс С. Подводная медицина, пер. с англ., М., 1971, библиогр.; Busby D. Е. Space clinical medicine, Dordrecht, 1968.

И. H. Черняков, M. Т. Дмитриев, С. И. Непомнящий.

Вместе с Землей вращается и газовая оболочка нашей планеты, называемая атмосферой. Процессы, которые в ней происходят, определяют погоду на нашей планете, также именно атмосфера защищает животный и растительный мир от губительного влияния ультрафиолетовых лучей, обеспечивает оптимальную температуру и так далее. , определить не так уж и просто, и вот почему.

Атмосфера земли км

Атмосфера представляет собой газовое пространство. Ее верхняя граница выражена нечетко, поскольку газы, чем выше, тем больше разрежаются и переходят в космическое пространство постепенно. Если же говорить приблизительно о том, какой диаметр атмосферы земли, то ученые называют цифру около 2-3 тысяч километров.

Состоит атмосфера Земли из четырех слоев, которые также плавно переходят один в другой. Это:

  • тропосфера;
  • стратосфера;
  • мезосфера;
  • ионосфера (термосфера).

Кстати, интересный факт: планета земля без атмосферы была бы такой же тихой, как Луна, поскольку звук – это колебания воздушных частиц. А то что небо – голубого света, объясняется спецификой разложения солнечных лучей, проходящих через атмосферу.

Особенности каждого слоя атмосферы

Толщина тропосферы составляет от восьми до десяти километров (в умеренных широтах – до 12, а над экватором – до 18 километров). Воздух в этом слое нагревается от суши и воды, поэтому чем больше радиус атмосферы Земли , тем температура ниже. Здесь сосредоточено 80 процентов всей массы атмосферы и концентрируется водяной пар, формируются грозы, бури, облака, осадки, происходит перемещение воздуха в вертикальном и горизонтальном направлениях.

Стратосфера расположена от тропосферы на высоте от восьми до 50 километров. Воздух тут разрежен, поэтому солнечные лучи не рассеиваются, и цвет неба становится фиолетовым. Этот слой за счет озона поглощает ультрафиолет.

Мезосфера располагается еще выше – на высоте 50-80 километров. Тут уже небо кажется черным, а температура слоя составляет до минус девяноста градусов. Далее идет термосфера, тут температура уже резко повышается а потом останавливается на высоте 600 км на отметке 240 градусов.

Наиболее разряженный слой – ионосфера, для него характерна высокая наэлектризованность, а еще он отражает радиоволны разной длины, как зеркало. Именно здесь формируется северное сияние.

Обновлено: Март 31, 2016 автором: Анна Волосовец

Атмосфера имеет слоистую структуру. Границы между слоями не резкие и их высота зависит от широты и времени года. Слоистая структура - результат температурных изменений на разных высотах. Погода формируется в тропосфере (нижние примерно 10 км: около 6 км над полюсами и более 16 км над экватором). И верхняя граница тропософеры выше летом, чем зимой.

От поверхности Земли вверх эти слои:

Тропосфера

Стратосфера

Мезосфера

Термосфера

Экзосфера

Тропосфера

Нижняя часть атмосферы, до высоты 10-15 км, в которой сосредоточено 4/5 всей массы атмосферного воздуха, носит название тропосферы. Для нее характерно, что температура здесь с высотой падает в среднем на 0.6°/100 м (в отдельных случаях распределение температуры по вертикали варьирует в широких пределах). В тропосфере содержится почти весь водяной пар атмосферы и возникают почти все облака. Сильно развита здесь и турбулентность, особенно вблизи земной поверхности, а также в так называемых струйных течениях в верхней части тропосферы.

Высота, до которой простирается тропосфера, над каждым местом Земли меняется изо дня в день. Кроме того, даже в среднем она различна под разными широтами и в разные сезоны года. В среднем годовом тропосфера простирается над полюсами до высоты около 9 км, над умеренными широтами до 10-12 км и над экватором до 15-17 км. Средняя годовая температура воздуха у земной поверхности около +26° на экваторе и около -23° на северном полюсе. На верхней границе тропосферы над экватором средняя температура около -70°, над северным полюсом зимой около -65°, а летом около -45°.

Давление воздуха на верхней границе тропосферы соответственно ее высоте в 5-8 раз меньше, чем у земной поверхности. Следовательно, основная масса атмосферного воздуха находится именно в тропосфере. Процессы, происходящие в тропосфере, имеют непосредственное и решающее значение для погоды и климата у земной поверхности.

В тропосфере сосредоточен весь водяной пар и именно поэтому все облака образуются в пределах тропосферы. Температура уменьшается с высотой.

Солнечные лучи легко проходят через тропосферу, а тепло, которое излучает нагретая солнечными лучами Земля, накапливается в тропосфере: такие газы, как углекислый газ, метан а также пары воды удерживают тепло. Такой механизм прогревания атмосферы от Земли, нагретой солнечной радиацией, называется парниковый эффект. Именно потому, что источником тепла для атмосферы является Земля, температура воздуха с высотой уменьшается

Граница между турбулентной тропосферой и спокойной стратосферой называется тропопауза. Здесь образуются быстро движущиеся ветры, называемые "реактивные потоки".

Когда-то предполагали, что температура атмосферы падает и выше тропософеры, однако измерения в высоких слоях атмосферы показали, что это не так:сразу выше тропопаузы температура почти постоянна, а затем начинает увеличиваться Сильные горизонтальные ветры дуют в стратосфере не образуя турбулентности. Воздух стратосферы очень сухой и поэтому облака редки. Образуются так называемые перламутровые облака.

Стратосфера очень важна для жизни на Земле, так именно в этом слое находится небольшое количество озона, которое поглощает сильное ультрафиолетовое излучение, вредное для жизни. Поглощая ультрафиолетовое излучение, озон нагревает стратосферу.

Стратосфера

Над тропосферой до высоты 50-55 км лежит стратосфера, характеризующаяся тем, что температура в ней в среднем растет с высотой. Переходный слой между тропосферой и стратосферой (толщиной 1-2 км) носит название тропопаузы.

Выше были приведены данные о температуре на верхней границе тропосферы. Эти температуры характерны и для нижней стратосферы. Таким образом, температура воздуха в нижней стратосфере над экватором всегда очень низкая; притом летом много ниже, чем над полюсом.

Нижняя стратосфера более или менее изотермична. Но, начиная с высоты около 25 км, температура в стратосфере быстро растет с высотой, достигая на высоте около 50 км максимальных, притом положительных значений (от +10 до +30°). Вследствие возрастания температуры с высотой турбулентность в стратосфере мала.

Водяного пара в стратосфере ничтожно мало. Однако на высотах 20-25 км наблюдаются иногда в высоких широтах очень тонкие, так называемые перламутровые облака. Днем они не видны, а ночью кажутся светящимися, так как освещаются солнцем, находящимся под горизонтом. Эти облака состоят из переохлажденных водяных капелек. Стратосфера характеризуется еще тем, что преимущественно в ней содержится атмосферный озон, о чем было сказано выше

Мезосфера

Над стратосферой лежит слой мезосферы, примерно до 80 км. Здесь температура с высотой падает до нескольких десятков градусов ниже нуля. Вследствие быстрого падения температуры с высотой в мезосфере сильно развита турбулентность. На высотах, близких к верхней границе мезосферы (75-90 км), наблюдаются еще особого рода облака, также освещаемые солнцем в ночные часы, так называемые серебристые. Наиболее вероятно, что они состоят из ледяных кристаллов.

На верхней границе мезосферы давление воздуха раз в 200 меньше, чем у земной поверхности. Таким образом, в тропосфере, стратосфере и мезосфере вместе, до высоты 80 км, заключается больше чем 99,5% всей массы атмосферы. На вышележащие слои приходится ничтожное количество воздуха

На высоте около 50 км над Землей температура снова начинает падать, обозначая верхнюю границу стратосферы и начало следующего слоя - мезосферы. Мезосфера имеет самую холодную температуру в атмосфере: от -2 до - 138 градусов Цельсия. Здесь же находятся самые высокие облака: в ясную погоду их можно видеть при закате. Они называются noctilucent (светящиеся ночью).

Термосфера

Верхняя часть атмосферы, над мезосферой, характеризуется очень высокими температурами и потому носит название термосферы. В ней различаются, однако, две части: ионосфера, простирающаяся от мезосферы до высот порядка тысячи километров, и лежащая над нею внешняя часть - экзосфера, переходящая в земную корону.

Воздух в ионосфере чрезвычайно разрежен. Мы уже указывали, что на высотах 300-750 км его средняя плотность порядка 10-8-10-10 г/м3. Но и при такой малой плотности каждый кубический сантиметр воздуха на высоте 300 км еще содержит около одного миллиарда (109) молекул или атомов, а на высоте 600 км - свыше 10 миллионов (107). Это на несколько порядков больше, чем содержание газов в межпланетном пространстве.

Ионосфера, как говорит само название, характеризуется очень сильной степенью ионизации воздуха - содержание ионов здесь во много раз больше, чем в нижележащих слоях, несмотря на сильную общую разреженность воздуха. Эти ионы представляют собой в основном заряженные атомы кислорода, заряженные молекулы окиси азота и свободные электроны. Их содержание на высотах 100-400 км - порядка 1015-106 на кубический сантиметр.

В ионосфере выделяется несколько слоев, или областей, с максимальной ионизацией, в особенности на высотах 100- 120 км и 200-400 км. Но и в промежутках между этими слоями степень ионизации атмосферы остается очень высокой. Положение ионосферных слоев и концентрация ионов в них все время меняются. Спорадические скопления электронов с особенно большой концентрацией носят название электронных облаков.

От степени ионизации зависит электропроводность атмосферы. Поэтому в ионосфере электропроводность воздуха в общем в 1012 раз больше, чем у земной поверхности. Радиоволны испытывают в ионосфере поглощение, преломление и отражение. Волны длиной более 20 м вообще не могут пройти сквозь ионосферу: они отражаются уже электронными слоями небольшой концентрации в нижней части ионосферы (на высотах 70- 80 км). Средние и короткие волны отражаются вышележащими ионосферными слоями.

Именно вследствие отражения от ионосферы возможна дальняя связь на коротких волнах. Многократное отражение от ионосферы и земной поверхности позволяет коротким волнам зигзагообразно распространяться на большие расстояния, огибая поверхность Земного шара. Так как положение и концентрация ионосферных слоев непрерывно меняются, меняются и условия поглощения, отражения и распространения радиоволн. Поэтому для надежной радиосвязи необходимо непрерывное изучение состояния ионосферы. Наблюдения над распространением радиоволн как раз являются средством для такого исследования.

В ионосфере наблюдаются полярные сияния и близкое к ним по природе свечение ночного неба - постоянная люминесценция атмосферного воздуха, а также резкие колебания магнитного поля - ионосферные магнитные бури.

Ионизация в ионосфере обязана своим существованием действию ультрафиолетовой радиации Солнца. Ее поглощение молекулами атмосферных газов приводит к возникновению заряженных атомов и свободных электронов, о чем говорилось выше. Колебания магнитного поля в ионосфере и полярные сияния зависят от колебаний солнечной активности. С изменениями солнечной активности связаны изменения в потоке корпускулярной радиации, идущей от Солнца в земную атмосферу. А именно корпускулярная радиация имеет основное значение для указанных ионосферных явлений.

Температура в ионосфере растет с высотой до очень больших значений. На высотах около 800 км она достигает 1000°.

Говоря о высоких температурах ионосферы, имеют в виду то, что частицы атмосферных газов движутся там с очень большими скоростями. Однако плотность воздуха в ионосфере так мала, что тело, находящееся в ионосфере, например летящий спутник, не будет нагреваться путем теплообмена с воздухом. Температурный режим спутника будет зависеть от непосредственного поглощения им солнечной радиации и от отдачи его собственного излучения в окружающее пространство. Термосфера находится выше мезосферы на высоте от 90 до 500 км над поверхностью Земли. Молекулы газа здесь сильно рассеянны, поглощают рентгеновское излучение и коротковолновую часть ультрафиолетового излучения. Из-за этого температура может достигать 1000 градусов Цельсия.

Термосфера в основном соответствует ионосфере, где ионизированный газ отражает радиоволны обратно к Земле - это явление дает возможным устанавливать радиосвязь.

Экзосфера

Выше 800-1000 км атмосфера переходит в экзосферу и постепенно в межпланетное пространство. Скорости движения частиц газов, особенно легких, здесь очень велики, а вследствие чрезвычайной разреженности воздуха на этих высотах частицы могут облетать Землю по эллиптическим орбитам, не сталкиваясь между собою. Отдельные частицы могут при этом иметь скорости, достаточные для того, чтобы преодолеть силу тяжести. Для незаряженных частиц критической скоростью будет 11,2 км/сек. Такие особенно быстрые частицы могут, двигаясь по гиперболическим траекториям, вылетать из атмосферы в мировое пространство, "ускользать", рассеиваться. Поэтому экзосферу называют еще сферой рассеяния.

Ускользанию подвергаются преимущественно атомы водорода, который является господствующим газом в наиболее высоких слоях экзосферы.

Недавно предполагалось, что экзосфера, и с нею вообще земная атмосфера, кончается на высотах порядка 2000-3000 км. Но из наблюдений с помощью ракет и спутников создалось представление, что водород, ускользающий из экзосферы, образует вокруг Земли так называемую земную корону, простирающуюся более чем до 20 000 км. Конечно, плотность газа в земной короне ничтожно мала. На каждый кубический сантиметр здесь приходится в среднем всего около тысячи частиц. Но в межпланетном пространстве концентрация частиц (преимущественно протонов и электронов) по крайней мере, в десять раз меньше.

С помощью спутников и геофизических ракет установлено существование в верхней части атмосферы и в околоземном космическом пространстве радиационного пояса Земли, начинающегося на высоте нескольких сотен километров и простирающегося на десятки тысяч километров от земной поверхности. Этот пояс состоит из электрически заряженных частиц - протонов и электронов, захваченных магнитным полем Земли и движущихся с очень большими скоростями. Их энергия - порядка сотен тысяч электрон-вольт. Радиационный пояс постоянно теряет частицы в земной атмосфере и пополняется потоками солнечной корпускулярной радиации.

атмосфера температура стратосфера тропосфера



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация