Гпк рф злоупотребление процессуальными правами. Злоупотребление процессуальными правами. Участник процесса мешает получить доказательства

Главная / Налоги

Разберем два вида решения систем уравнения:

1. Решение системы методом подстановки.
2. Решение системы методом почленного сложения (вычитания) уравнений системы.

Для того чтобы решить систему уравнений методом подстановки нужно следовать простому алгоритму:
1. Выражаем. Из любого уравнения выражаем одну переменную.
2. Подставляем. Подставляем в другое уравнение вместо выраженной переменной, полученное значение.
3. Решаем полученное уравнение с одной переменной. Находим решение системы.

Чтобы решить систему методом почленного сложения (вычитания) нужно:
1.Выбрать переменную у которой будем делать одинаковые коэффициенты.
2.Складываем или вычитаем уравнения, в итоге получаем уравнение с одной переменной.
3. Решаем полученное линейное уравнение . Находим решение системы.

Решением системы являются точки пересечения графиков функции.

Рассмотрим подробно на примерах решение систем.

Пример №1:

Решим методом подстановки

Решение системы уравнений методом подстановки

2x+5y=1 (1 уравнение)
x-10y=3 (2 уравнение)

1. Выражаем
Видно что во втором уравнении имеется переменная x с коэффициентом 1,отсюда получается что легче всего выразить переменную x из второго уравнения.
x=3+10y

2.После того как выразили подставляем в первое уравнение 3+10y вместо переменной x.
2(3+10y)+5y=1

3.Решаем полученное уравнение с одной переменной.
2(3+10y)+5y=1 (раскрываем скобки)
6+20y+5y=1
25y=1-6
25y=-5 |: (25)
y=-5:25
y=-0,2

Решением системы уравнения является точки пересечений графиков, следовательно нам нужно найти x и у, потому что точка пересечения состоит их x и y.Найдем x, в первом пункте где мы выражали туда подставляем y.
x=3+10y
x=3+10*(-0,2)=1

Точки принято записывать на первом месте пишем переменную x, а на втором переменную y.
Ответ: (1; -0,2)

Пример №2:

Решим методом почленного сложения (вычитания).

Решение системы уравнений методом сложения

3x-2y=1 (1 уравнение)
2x-3y=-10 (2 уравнение)

1.Выбираем переменную, допустим, выбираем x. В первом уравнении у переменной x коэффициент 3, во втором 2. Нужно сделать коэффициенты одинаковыми, для этого мы имеем право домножить уравнения или поделить на любое число. Первое уравнение домножаем на 2, а второе на 3 и получим общий коэффициент 6.

3x-2y=1 |*2
6x-4y=2

2x-3y=-10 |*3
6x-9y=-30

2.Из первого уравнения вычтем второе, чтобы избавиться от переменной x.Решаем линейное уравнение.
__6x-4y=2

5y=32 | :5
y=6,4

3.Находим x. Подставляем в любое из уравнений найденный y, допустим в первое уравнение.
3x-2y=1
3x-2*6,4=1
3x-12,8=1
3x=1+12,8
3x=13,8 |:3
x=4,6

Точкой пересечения будет x=4,6; y=6,4
Ответ: (4,6; 6,4)

Хочешь готовиться к экзаменам бесплатно? Репетитор онлайн бесплатно . Без шуток.

Содержание темы «Уравнения. Решение уравнений. Решение текстовых (прикладных) задач с помощью уравнений». Обеспечение вариативности обучения на примере изучения этой темы

Ответ. Уравнение - это равенство с переменой. Если соединить f(х) и g(х) два выражения с переменной х- и областью определению х, тогда высказывательная форма вида f(х) и g(х) называются уравнением с одной переменной. Значение переменой х из множества х, при котором уравнение обращается в истинное числовое равенство, называется корнем уравнения. Решить уравнение это значит найти множество его корней. Например: Ур-е 4x=5x+2,на множество R действий. Чисел,2-2 - это единственный корень.

Решение уравнений методом подбора - это средство понимания учащимся смысла понятий уравнения, а так же решение уравнений. Два уравнения f1(х)=g1(х) и f2(х)=g2(х) называется равносильными, если множества их корней совпадают. Например: Уравнение равносильны. Так как оба имеют своими корнями 3 и -3. Замена уравнения равносильным ему уравнениям называется равносильным преобразованием. Так если уравнение заданно на множестве и - выражение, определенное на том же множестве. Тогда уравнения равносильны. Из этой теоремы вытекают следствия, которые используется при решении управлений. 1) Если к обеим частям управления прибавить одно и то же число, то получим уравнение, равносильное данному. 2) Если какое-либо слагаемое перенести из одной части уравнения в другую, поменять знак слагаемого на противоположный, то получим уравнение, равносильное данному. Если оби части уравнения умножить или разделить на одно и то же число, отмеченное от нуля, то получим уравнение, равносильное данному. Решим уравнение: 1)Приведем выражение, состоящее в левой и правой частях уравнения, к общему знаменателю

2. Отбросим общий знаменатель 6-2х=х: Умножили на 6 обе части уравнения, получили уравнения, равносильное данному. 3) Выражение -2х переносим в правую часть уравнения с противоположным знаком: 6=х=2х. 4) Приводим подобные члены в правой части уравнения: 6=3х.5) Разделим обе части уравнения на 3:х=2. Т.к. все преобразования, которые мы выполнили, решая данное уравнение, были равносильными, то можно утверждать, что2-корень этого уравнения. В НКМ теорет. Основой решения уравнений являются взаимосвязь между компонентами и рез-ми действий. Например: реш. Ур. (хЧ9):24=3 обосновывается следующим образом. Т.к. неизвестное находится в делимом, то что бы найти делимое, надо делитель умножить на частное: хЧ9=24Ч3, или хЧ9=72. Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель. Х=72:9,или х=8, корень ур-я 8.

Использование уравнений - это инструмент решения задач, при знакомстве учащихся решению задач способом составления уравнений, можно использовать задачи, которые учащихся решали ариф-им способом. Для этой цели предлагается задания, по данному рисунку придумай задачу, которую можно записать уравнением 40Чх=28Ч20 хсм 20см 40см 28см

Формирование понятия переменной проходит в 3-этапах: 1 этап: решение заданий с окошками. Например: 3+ +5, + =6. Восстановить в записи пропущенное число. Вначале используются наглядные пособия. Так же используются арифметические задачи с пропущенными данными. 2 этап. Решить простую задачу с буквенными данными. Полученное буквенное выражение выступает как обобщенная запись, решением всех задач определенного типа. На основе рассмотрения большого числа однородных выражений, учащихся устанавливают общие Свойства этих выражений - это обобщение происходит с помощью буквенной записи, т. е. учащихся приходят к пониманию, что Свойства записаны с помощью букв, справедливо для любых значений переменной. Например: 15*20,2*15; 40*10, 11*40 и т. д. Так же дается задание заменить буквы числами, чтобы равенство было верно. Например: 23*а=а*23 (одни и те же буквы принимают одинаковые значение. Изучение уравнений проходит в 4 этапе: 1. Упражнение с окошками, ис-ся методом с подвохом. На этом этапе раскрывается связь м/у компонентами и рез-ом сложении. Формируется правило на нахождение неизвестного слагаемого. Метод подбора формирует о том, что значит решить уравнение. 2. Для обозначения использовать буквы. Вводится термин - уравнение. Ученики учатся узнавать уравнение: Например: 5+2=7,6-х=3, 9-х. Накопление опыта решения подбором, позволяет усовершенствовать методику подбора. Например:6-х=4, т. е. х не больше 6, иначе смысла нет в записи. Одновременно учатся читать урав. и записывать их: Например, 8-х=3. 3. Решение простых задач с помощью ур-я. Последовательность выясняется что известно: неизв. обозначается за х, исходя из условия сост-ют уравнение. Ур-е решается, полученное число истолковывается в с соответствии требованиям задачи. Самым трудным моментом являются запись задачи виде ур-я, поэтому широко используется модели: геом-е, граф. И т. д. 4. Составление задач по уравнению.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Департамент образования, науки и молодежной политики Воронежской области

Государственное бюджетное профессиональное
образовательное учреждение Воронежской области
«Лискинский промышленно-транспортный техникум имени А.К. Лысенко»

(ГБПОУ ВО «ЛПТТ имени А.К. Лысенко»)

Методическое пособие

по математике

«Основные приёмы решения систем уравнений»

Преподаватель Варова О.А.

2017 г.

Решением системы называют числа, при подстановке которых в уравнения системы каждое уравнение становится верным числовым равенством. Решить систему уравнений – значит найти все её решения или установить, что система не имеет решения.

Основная идея решения систем уравнений состоит в постепенном переходе от одной системы к другой более простой, но равносильной заданной. Метод подстановки, метод алгебраического сложения и метод введения новых переменных абсолютно корректны с точки зрения равносильности. Если же в процессе решения системы использовались неравносильные преобразования (возведение в квадрат обеих частей уравнения, умножение уравнений или преобразования, которые привели к расширению области определения какого-либо уравнения системы), то все найденные решения следует проверить подстановкой в исходную систему.

Рассмотрим теперь конкретные системы алгебраических уравнений и продемонстрируем различные методы их решений. Предварительно отметим, что, строго говоря, невозможно выделить один метод решения достаточно сложной системы, поскольку, как правило, последовательно задействуются различные приёмы. Но методически очень полезно в каждом примере выделить один метод, не заостряя внимания на других.

Основные методы решения систем уравнений.

1. Метод подстановки.

Системы уравнений появляются при решении задач, в которых неизвестной является не одна величина, а несколько. Это величины связаны определёнными зависимостями, которые записываются в виде уравнений.

Один из основных методов решения систем – метод подстановки.

а) Рассмотрим, например, систему двух уравнений с двумя неизвестными

х и у:

Часто удаётся одно уравнение преобразовать так, чтобы неизвестное явно выражалось как функция другого. Тогда, подставляя его во второе уравнение, получим уравнение с одним неизвестным.

б) Решим систему трёх уравнений с тремя неизвестными методом подстановки:

2. Метод алгебраического сложения.

а) Решим систему Умножим первое уравнение на 2 и складывая полученное уравнение со вторым, приходим к уравнению 22х=33, х=1,5. Подставив в любое уравнение значение х, получим у=-0,5.

б) Решим систему:

Умножая первое уравнение на 5, а второе на 7 и складывая полученные результаты, приходим к уравнению

Заметим, что пара чисел (0;0), являясь решением полученного уравнения, не удовлетворяет исходной системе. Поэтому подстановкой x = ty сводим уравнение к виду Разделив обе части на получим уравнение

Таким образом , исходная система равносильна совокупности систем:

Решая первую систему получим х=4, у=5 и х=-4, у=-5; решение второй – х=3у=х=-3у=

в) Решим систему:

Складывая почленно уравнения данной системы, получаем уравнение которое равносильно следующему (х+у-7)(х+у+7)=0.

Система равносильная исходной, распадается на две системы:

Совокупность этих систем равносильна исходной системе, т.е. каждое решение исходной системы является решением или системы (А), или системы (В) и всякое решение систем (А) и (В) есть решение исходной системы.

Система (А) приводится к виду

Отсюда ясно, что она имеет решение (4;3). Аналогично система (В) имеет решение (-4;-3). Объединив эти решения, находим все решения исходной системы.

Ответ: (4;3),(-4;-3).

г) Решим систему:

Обратим внимание на то, что левые части уравнений содержат одни и те же комбинации неизвестных. Поэтому целесообразно умножить уравнения на подходящие множители с тем, чтобы исключить из системы одно из неизвестных. Из системы исключим сложив второе уравнение с первым, умноженным на -3. В результате получим уравнение которое путём замены xy = t приведём к виду Очевидно, что Таким образом, исходная система распадается на системы:

В первом случае находим Если х=1, то у=2, а если х=-1, то у=-2.

Во втором случае, исключая у, получаем Поэтому вторая из двух последних систем не имеет действительных решений.

Ответ: (1;2), (-1;-2).

3. Метод введения новых переменных.

а ) Решим систему: (А)

Полагая преобразуем систему к виду (Б)

Эта система равносильна каждой из следующих систем:

и

Квадратное уравнение имеет корни Значит система (Б) имеет решения: () и (;, а система (А) имеет решения (2;3) и (3;2).

Рассмотренная система состоит из симметрических уравнений (м етод решения симметричных систем см.ниже).

б) Решим систему:

z =

Тогда первое уравнение примет вид z + = 2. Решим его:

Возвращаясь к переменным х,у, получаем уравнение

Преобразуем его: 3х-2у=2х, х=2у.

Итак, первое уравнение данной системы заменим более простым х=2у, получим систему:

для решения которой используем метод подстановки, подставив первое уравнение во второе.

Соответственно получим: .

Т.к. в процессе решения системы использовался «ненадёжный» метод – возведение в квадрат обеих частей одного из уравнений, - найденные пары значений надо проверить подстановкой в заданную систему. Проверка показывает, что посторонних корней нет.

Ответ: (2;1), (1;

в) Решим систему: (А)

Преобразуем первое уравнение системы:

Введём новые неизвестные u = x + y , v = xy . После упрощения получим (Б)

Система (Б) равносильна каждой из следующих систем:

Последняя система имеет два решения:

Поэтому система (А) равносильна совокупности систем: и

Система (В) имеет решения (2;1) и (1;2); система (Г) решений не имеет.

Ответ: (2; 1), (1;.

г) Решим систему:

«Переделаем» данное разложение уравнений, записав систему в ином виде:

Пусть и учитывая, что запишем исходную систему иначе:

Отсюда и тогда

Таким образом, исходная система равносильная системе

Распадается на две линейные системы:

Ответ: (4; 3), (3;.

4. Метод использования графика.

Каждое из уравнений системы можно рассматривать как уравнение кривой. Поэтому решения системы двух уравнений с двумя неизвестными можно интерпретировать как координаты точек пересечения двух кривых.

5. Метод решения симметричных систем.

Система уравнений называется симметричной, если она составлена из выражений, симметричных относительно неизвестных:

,

Возьмём две буквы.

Два выражения – сумма u = и произведение v = являются основными симметричными выражениями относительно

Другие симметричные выражения можно так же выразить через u и v :

Теорема Виета выражает основные симметричные выражения относительно корней квадратного уравнения

Любое выражение, симметричное относительно корней квадратного уравнения, можно выразить через его коэффициенты, не находя самих корней.

Можно сформулировать теорему, обратную теореме Виета: если числа удовлетворяют системе уравнений то они являются корнями уравнения.

Симметричную систему можно упростить заменой симметричных выражений выражениями через сумму и произведений неизвестных.

а)Например, систему заменой можно привести к системе

Зная по теореме, обратной к теореме Виета, находим х и у из квадратного уравнения

Ответ:

Решение некоторых уравнений полезно сводить к решению симметричных систем.

б)Например, при решении линейной системы часто можно воспользоваться её симметрией:

Сложим все уравнения и получим 10

Теперь вычтем это уравнение из первого, из второго – предварительно умножив это уравнение на 2 и из третьего – предварительно умножив это уравнение на 3, получим:

Разность первой пары уравнений даёт 4

второго и третьего уравнений 4

6.Метод обращения к одному из следствий.

а)Решить систему уравнений:

На первый взгляд кажется, что надо избавиться от дробей, приводя их к общему знаменателю. Однако этот приём не упрощает систему и не даёт возможность исключить одно из неизвестных. К успеху приводит почленное перемножение уравнений системы:

Введём новую переменную z = xy . Получим: (z -6)(z +24)= т.е. ху=8.

Это уравнение рассмотрим совместно с первым:

Теперь воспользуемся методом подстановки . Выразим из второго уравнения через и подставим полученное выражение вместо в первое уравнение:

После упрощений второе уравнение примет вид Его корни Но:

Итак, получили 2 решения: (4;2) и (-4;-2). Но поскольку в процессе решения системы применялся «ненадёжный» метод, найденные пары значений надо проверить подстановкой в заданную систему. Проверка показывает, что пары чисел (4;2) и (-4;-2) являются решениями исходной системы.

Ответ: (4;2) и (-4;-2).

б)Решить систему:

На первый взгляд кажется, что надо избавиться от дробей, приводя их к общему знаменателю. Однако этот приём не упрощает систему и не даёт возможность исключить одно из неизвестных. К успеху приводит почленное перемножение уравнений системы. В результате этой операции получаем уравнение которое вместе с первым уравнением образует систему, являющуюся следствием данной. Исключив из полученной системы, приходим к уравнению Его корни Соответствующие значения найдём из уравнения. Проверка показывает, что пары чисел (2;3) и (-2;-3) являются решениями исходной системы.

Ответ: (2;3) и (-2;-3).

в)Решить систему:

На первый взгляд кажется, что надо попытаться разложить левую часть уравнений на множители, применив метод группировки. Однако это очень сложно. К успеху приводит приём, состоящий в том, что одно из уравнений системы рассматривается как квадратное относительно х или у.

Представим первое уравнение системы как квадратное относительно х:

Представим второе уравнение системы как квадратное относительно х:

и запишем формулу для вычисления корней

Следовательно, исходная система равносильна совокупности систем:

Первая из систем не имеет решения, другие системы имеют соответственно решения: (-2;0), (-3;3), (-4;2).

Ответ: (-2;0), (-3;3), (-4;2).

Методы решения иррациональных систем.

Системы иррациональных уравнений обычно сводят к системам рациональных уравнений с помощью операции возведения обеих частей уравнения в натуральную степень n . При этом следует иметь в виду, что если n - чётное число, то в результате этой операции получается уравнение, являющееся следствием исходного, т.е. среди его корней могут оказаться посторонние, поэтому необходимо сделать проверку. Но если n - нечётное число, то полученное уравнение равносильно исходному.

Но не следует торопиться «освобождаться от корней», применяя упомянутый метод. Он может оказаться неэффективен в начале решения, т.к. приводит к громоздким выражениям. Нужно присмотреться к системе и попытаться упростить её. Например: 1. Решим систему:

Сравнивая левые части уравнений системы, замечаем, что они представляют собой сопряжённые выражения. В таком случае следует воспользоваться приёмом почленного умножения уравнений. Осложнений не будет, т.к. После почленного умножения получаем у=16. Подставляя это значение в первое уравнение, получим. Возведя в квадрат обе части уравнения, получаем Снова возводим в квадрат обе части уравнения, приведя его к виду: , а у=16, то. Значит х=20.

В преобразованиях было дважды применено возведение обеих частей уравнения в чётную степень, т.е. дважды могли получить посторонние корни. Поэтому значения х=20 и у=16 следует проверить подстановкой в исходную систему.

Ответ: (20; 16).

2. Решить систему уравнений:

Воспользуемся методом введения новой переменной: z =

Тогда первое уравнение системы примет вид

Решим это уравнение:

Возвращаясь к переменной х, у, получаем уравнение

Решим это уравнение: 3х-2у=2х, х=2у, а это первое уравнение системы. Получили более простую систему уравнений:

Для решения которой используем метод подстановки, подставив первое уравнение во второе: ,

Получим

Т.к. в процессе решения системы использовался «ненадёжный» (с точки зрения равносильности) метод – возведение в квадрат обеих частей одного из уравнений, - найденные значения надо проверить подстановкой в заданную систему. Проверка показывает, что посторонних корней нет.

Ответ: (2;1); (1;

Пять решений одной системы уравнений.

Математики считают, что полезнее решить одну задачу несколькими способами, чем несколько задач – одним. При поиске новых методов решения задачи иногда обнаруживается связь между разными разделами математики. Приведу один пример.

Решить систему уравнений:

1 способ. Выразим в 1 уравнении через, подставив полученное выражение во 2 уравнение и преобразовав его, получим:

Решим это уравнение как квадратное относительно

D =)= D при всех значениях

Следовательно уравнение (3) имеет решение только при D ,т.е. при

Тогда =1. Подставляя найденные значения, находим

Ответ:

2 способ. Возводим первое уравнение в квадрат и вычтем второе, получим:

или xy + xz + yz =3=

2 xy - 2 xz - 2 yz =0, или

3 способ. Рассмотрим геометрическую интерпретацию. Уравнение (1) описывает плоскость, пересекающую координатные оси в точках А(3;0;0), В(0;3;0) и С(0;0;3), а уравнение (2) – сферу с центром в начале координат и радиусом равным

Для выяснения того, что представляет собой пересечение сферы с плоскостью, нужно сравнить радиус сферы с расстоянием от её центра до плоскости. Расстояние от точки О до плоскости АВС можно найти, вычислив высоту О D тетраэдра ОАВС, записав двумя способами объём тетраэдра

Треугольник АВС правильный, т.к. его стороны являются гипотенузами равных прямоугольных треугольников и равны 3 Тогда

Подставляя найденные значения в соотношение (4), получим, что т.е. радиус сферы в точности равен расстоянию от её центра до плоскости. Это означает, что плоскость касается сферы и исходная система имеет единственное решение, которое легко угадывается:

4 способ. Докажем, что система не имеет других решений. Введём другие переменные: a = x +1, b = y +1, c = z +1. Тогда уравнение примет вид a + b + c =0. (5) Преобразуем второе уравнение:

)=0.

С учётом соотношения (5) получим, что система имеет единственное нулевое решение, что влечёт за собой единственное решение в старых переменных.

5 способ. Рассмотрим случайную величину принимающую с равной вероятностью значения Тогда левые части уравнений исходной системы представляют собой соответственно 3 М и 3М

М Следовательно М =М и дисперсия D =М- (М=0, т.е. = const и, значит,

Итак, одну и ту же задачу мы решили с помощью алгебры, геометрии и теории вероятностей!

Литература:

1.Башмаков М.И.

Математика: учебник для учреждений нач. и сред. проф. образования / М.И. Башмаков. -4-е изд., стер. - М.: Издательский центр «Академия», 2012. – 256с.

2.Мордкович А.Г.

Алгебра и начала математического анализа.10 класс. В 2 ч. Ч.1. Учебник для учащихся общеобразовательных учреждений (профильный уровень)/ А.Г.Мордкович, П.В.Семёнов.- 7-е изд., стер. – М.: Мнемозина, 2010. – 424 с.: ил.

3.Мордкович А.Г.

Алгебра и начала математического анализа.11 класс. В 2 ч. Ч.1. Учебник для учащихся общеобразовательных учреждений (профильный уровень)/ А.Г.Мордкович, П.В.Семёнов.- 4-е изд., стер. – М.: Мнемозина, 2010. – 287 с.: ил.

4.Журнал «Математика в школе» №6, 2008.

    Решение № 2-423/2018 2-423/2018~М-407/2018 М-407/2018 от 28 сентября 2018 г. по делу № 2-423/2018

    Балтийский городской суд (Калининградская область) - Гражданские и административные

    Ответчика, по установленному судом возможному месту жительства вернулись в адрес суда с почтовой отметкой «истёк срок хранения». В соответствии с п. 1 ст. 165.1 ГК РФ заявления, уведомления, извещения, требования или иные юридически значимые сообщения, с которыми закон или сделка связывает гражданско-правовые последствия для другого лица, влекут для этого лица такие...

    Решение № 2-1893/2018 2-1893/2018~М-1722/2018 М-1722/2018 от 28 сентября 2018 г. по делу № 2-1893/2018

    Белореченский районный суд (Краснодарский край) - Гражданские и административные

    Займа в размерах и в порядке, определенных договором. В договоре займа указано, что в случае не возврата суммы долга в установленный срок, ответчик обязуется уплатить 10 % от суммы долга. В случае невозврата суммы займа в установленный договором займа срок в соответствии со ст. 811 ГК РФ если иное не предусмотрено законом или договором...

    Решение № 2-3792/2018 2-3792/2018~М-3203/2018 М-3203/2018 от 28 сентября 2018 г. по делу № 2-3792/2018

    Ленинский районный суд г. Новосибирска (Новосибирская область) - Гражданские и административные

    3 статьи 1064 Гражданского кодекса РФ в возмещении вреда может быть отказано, если вред причинен по просьбе или с согласия потерпевшего. С учетом положений статей 10 , 169 Гражданского кодекса РФ , при установлении факта соглашения о причинении вреда, противоречащего основам правопорядка, в целях получения неосновательного обогащения за счет третьего лица, причиненный вред не подлежит...

    Решение № 2-3124/2018 2-3124/2018~М-2670/2018 М-2670/2018 от 28 сентября 2018 г. по делу № 2-3124/2018

    Ленинский районный суд г. Уфы (Республика Башкортостан) - Гражданские и административные

    Жительства, повестка вручается кому-либо из проживающих совместно с ним взрослых членов семьи с их согласия для последующего вручения адресату. В соответствии со ст.20 ГК РФ местом жительства признается место, где гражданин постоянно или преимущественно проживает. Гражданин, сообщивший кредиторам, а также другим лицам сведения об ином месте своего жительства, несет риск вызванных...

    Решение № 2-2194/2018 2-2194/2018~М-2213/2018 М-2213/2018 от 28 сентября 2018 г. по делу № 2-2194/2018

    Норильский городской суд (Красноярский край) - Гражданские и административные

    Материалы дела, суд приходит к выводу, что заявленные исковые требования подлежат частичному удовлетворению по следующим основаниям. Согласно пп.6 п.1 ст.8 Гражданского кодекса РФ (далее по тексту ГК РФ ) и аналогичных положений п.2 ст.307 ГК РФ обязательства возникают вследствие причинения вреда. В соответствии со ст. 15 ГК РФ , лицо, ...

    Решение № 2-3024/2018 2-3024/2018~М-2480/2018 М-2480/2018 от 28 сентября 2018 г. по делу № 2-3024/2018

    Октябрьский районный суд г. Тамбова (Тамбовская область) - Гражданские и административные

    Части. Возможность установления процентов на сумму займа по соглашению сторон не может рассматриваться как нарушающая принцип свободы договора, в том числе во взаимосвязи со ст. 10 ГК РФ о пределах осуществления гражданских прав. При этом, проценты, предусмотренные ст. 809 ГК РФ , являются платой за пользование денежными средствами и не могут быть снижены. При...

    Решение № 2-4284/2018 2-4284/2018~М-743/2018 М-743/2018 от 28 сентября 2018 г. по делу № 2-4284/2018

    Центральный районный суд г. Красноярска (Красноярский край) - Гражданские и административные

    Выплате страхового возмещения в полном объеме с учетом ограничения, установленного п.6 ст.16.1 Закона об ОСАГО, а также с учетом положений ст. 333 ГК РФ не более 10 000 руб.. Согласно абзацу третьему пункта 21 статьи 12 Закона об ОСАГО при несоблюдении срока направления потерпевшему мотивированного отказа в страховом возмещении страховщик...

    Решение № 2-3857/2018 2-3857/2018~М-3373/2018 М-3373/2018 от 28 сентября 2018 г. по делу № 2-3857/2018

    Центральный районный суд г. Тольятти (Самарская область) - Гражданские и административные

    Существу схожи с выводами судебной экспертизы. Приобретенный истцом сотовый телефон отнесен к технически сложным товарам, что следует из Перечня технически сложных товаров, утвержденного Постановлением Правительства РФ от 10 . 11.2011 года № 924. Пунктом 13 Постановления Пленума Верховного суда РФ от 28.05.2012 года № 17 «О рассмотрении судами гражданских дел по спорам о...

    Железнодорожный районный суд г. Воронежа (Воронежская область) - Гражданские и административные

    Не обладал информацией о выборе новой управляющей организации (части 3 - 7.1, 8 - 10 статьи 155 ЖК РФ , статья 10 и пункт 1 статьи 408 ГК РФ ). В таком случае вновь выбранная управляющая организация имеет право требовать взыскания с предыдущей управляющей организации уплаченных нанимателем (собственником) денежных средств по правилам, установленным главой 60 ГК ...



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация