Квадратные неравенства. Исчерпывающее руководство (2019). Решение квадратных неравенств методом интервалов

Главная / Общество

В этой статье собран материал, покрывающий тему «решение квадратных неравенств ». Сначала показано, что представляют собой квадратные неравенства с одной переменной, дан их общий вид. А дальше детально разобрано как решать квадратные неравенства. Показаны основные подходы к решению: графический способ, метод интервалов и путем выделение квадрата двучлена в левой части неравенства. Приведены решения характерных примеров.

Навигация по странице.

Что такое квадратное неравенство?

Естественно, прежде чем говорить о решении квадратных неравенств, надо отчетливо понимать, что такое квадратное неравенство. Иными словами, нужно по виду записи уметь отличать квадратные неравенства от неравенств других видов.

Определение.

Квадратное неравенство – это неравенство вида a·x 2 +b·x+c<0 (вместо знака > может быть любой другой знак неравенства ≤, >, ≥), где a , b и c – некоторые числа, причем a≠0 , а x – переменная (переменная может быть обозначена и любой другой буквой).

Сразу дадим еще одно название квадратных неравенств – неравенства второй степени . Это название объясняется тем, что в левой части неравенств a·x 2 +b·x+c<0 находится второй степени - квадратный трехчлен. Термин «неравенства второй степени» используется в учебниках алгебры Ю. Н. Макарычева, а Мордкович А. Г. придерживается названия «квадратные неравенства».

Также иногда можно слышать, что квадратные неравенства называют квадратичными неравенствами. Это не совсем корректно: определение «квадратичные» относится к функциям, заданным уравнениями вида y=a·x 2 +b·x+c . Итак, есть квадратные неравенства и квадратичные функции , но не квадратичные неравенства.

Покажем несколько примеров квадратных неравенств: 5·x 2 −3·x+1>0 , здесь a=5 , b=−3 и c=1 ; −2,2·z 2 −0,5·z−11≤0 , коэффициенты этого квадратного неравенства есть a=−2,2 , b=−0,5 и c=−11 ; , в этом случае .

Обратите внимание, что в определении квадратного неравенства коэффициент a при x 2 считается отличным от нуля. Это и понятно, равенство коэффициента a нулю фактически «уберет» квадрат, и мы будем иметь дело с линейным неравенством вида b·x+c>0 без квадрата переменной. А вот коэффициенты b и c могут быть равными нулю, причем как по отдельности, так и одновременно. Вот примеры таких квадратных неравенств: x 2 −5≥0 , здесь коэффициент b при переменной x равен нулю; −3·x 2 −0,6·x<0 , здесь c=0 ; наконец, в квадратном неравенстве вида 5·z 2 >0 и b , и c равны нулю.

Как решать квадратные неравенства?

Теперь можно озадачиться вопросом как решать квадратные неравенства. В основном для решения используются три основных метода:

  • графический способ (или, как у А. Г. Мордковича, функционально-графический),
  • метод интервалов,
  • и решение квадратных неравенств через выделение квадрата двучлена в левой части.

Графическим способом

Сразу оговоримся, что метод решения квадратных неравенств, к рассмотрению которого мы приступаем, в школьных учебниках алгебры не называют графическим. Однако по сути это он и есть. Более того, первое знакомство с графическим способом решения неравенств обычно и начинается тогда, когда встает вопрос, как решать квадратные неравенства.

Графический способ решения квадратных неравенств a·x 2 +b·x+c<0 (≤, >, ≥) заключается в анализе графика квадратичной функции y=a·x 2 +b·x+c для нахождения промежутков, в которых указанная функция принимает отрицательные, положительные, неположительные или неотрицательные значения. Эти промежутки и составляют решения квадратных неравенств a·x 2 +b·x+c<0 , a·x 2 +b·x+c>0 , a·x 2 +b·x+c≤0 и a·x 2 +b·x+c≥0 соответственно.

Методом интервалов

Для решения квадратных неравенств с одной переменной помимо графического метода достаточно удобен метод интервалов , который сам по себе очень универсален, и подходит для решения различных неравенств, а не только квадратных. Его теоретическая сторона лежит за пределами курса алгебры 8, 9 классов, когда учатся решать квадратные неравенства. Поэтому здесь мы не будем вдаваться в теоретическое обоснование метода интервалов, а сосредоточимся на том, как с его помощью решаются именно квадратные неравенства.

Суть метода интервалов, по отношению к решению квадратных неравенств a·x 2 +b·x+c<0 (≤, >, ≥), состоит в определении знаков, которые имеют значения квадратного трехчлена a·x 2 +b·x+c на промежутках, на которые разбивается координатная ось нулями этого трехчлена (при их наличии). Промежутки со знаками минус составляют решения квадратного неравенства a·x 2 +b·x+c<0 , со знаками плюс – неравенства a·x 2 +b·x+c>0 , а при решении нестрогих неравенств к указанным промежуткам добавляются точки, отвечающие нулям трехчлена.

Познакомиться со всеми деталями этого метода, его алгоритмом, правилами расстановки знаков на промежутках и рассмотреть готовые решения типовых примеров с приведенными иллюстрациями Вы можете, обратившись к материалу статьи решение квадратных неравенств методом интервалов .

Путем выделения квадрата двучлена

Кроме графического метода и метода интервалов существуют и другие подходы, позволяющие решать квадратные неравенства. И мы подошли к одному из них, в основе которого лежит выделение квадрата двучлена в левой части квадратного неравенства.

Принцип этого способа решения квадратных неравенств состоит в выполнении равносильных преобразований неравенства , позволяющих перейти к решению равносильного неравенства вида (x−p) 2 , ≥), где p и q – некоторые числа.

А как осуществляется переход к неравенству (x−p) 2 , ≥) и как его решить разъясняет материал статьи решение квадратных неравенств путем выделения квадрата двучлена . Там же представлены примеры решения квадратных неравенств этим способом и даны необходимые графические иллюстрации.

Неравенства, сводящиеся к квадратным

На практике очень часто приходится сталкиваться с неравенствами, приводящимися с помощью равносильных преобразований к квадратным неравенствам вида a·x 2 +b·x+c<0 (знаки, естественно, могут быть и другими). Их можно назвать неравенствами, сводящимися к квадратным неравенствам.

Начнем с примеров самых простых неравенств, которые сводятся к квадратным. Иногда, чтобы перейти к квадратному неравенству, достаточно переставить в данном неравенстве слагаемые или перенести их из одной части в другую. Например, если перенести все слагаемые из правой части неравенства 5≤2·x−3·x 2 в левую, то получим квадратное неравенство в оговоренном выше виде 3·x 2 −2·x+5≤0 . Еще пример: переставив в левой части неравенства 5+0,6·x 2 −x<0 слагаемые по убыванию степени переменной, придем к равносильному квадратному неравенству в привычной форме 0,6·x 2 −x+5<0 .

В школе на уроках алгебры, когда учатся решать квадратные неравенства, одновременно разбираются и с решением рациональных неравенств , сводящихся к квадратным. Их решение предполагает перенос всех слагаемых в левую часть с последующим преобразованием образовавшегося там выражения к виду a·x 2 +b·x+c путем выполнения . Рассмотрим пример.

Пример.

Найдите множество решений неравенства 3·(x−1)·(x+1)<(x−2) 2 +x 2 +5 .иррациональное неравенство равносильно квадратному неравенству x 2 −6·x−9<0 , а логарифмическое неравенство – неравенству x 2 +x−2≥0 .

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
  • Мордкович А. Г. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. - 2-е изд., стер. - М.: Мнемозина, 2008. - 287 с.: ил. ISBN 978-5-346-01027-2.

Урок и презентация на тему: "Квадратные неравенства, примеры решений"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 9 класса
Электронное учебное пособие "Понятная геометрия" для 7-9 классов
Образовательный комплекс 1С: "Геометрия, 9 класс"

Ребята, мы уже умеем решать квадратные уравнения. Теперь давайте научимся решать и квадратные неравенства.
Квадратным неравенством называется неравенство вот такого вида:

$ax^2+bx+c>0$.

Знак неравенства может стоять любой, коэффициенты а, b, c – любые числа ($а≠0$).
Все правила, которые мы определили для линейных неравенств, работают и тут. Эти правила повторите самостоятельно!

Введем еще одно важное правило:
Если у трехчлена $ax^2+bx+c$ отрицательный дискриминант, то если подставить любое значение х, знак трехчлена будет такой же, как и знак у коэффициента а.

Примеры решения квадратного неравенства

можно решать путем построения графиков или построения интервалов. Давайте посмотрим примеры решений неравенств.

Примеры.
1. Решить неравенство: $x^2-2x-8
Решение:
Найдем корни уравнения $x^2-2x-8=0$.
$x_1=4$ и $x_2=-2$.

Построим график квадратного уравнения. Ось абсцисс пересекается в точках 4 и -2.
Наш квадратный трехчлен принимает значения меньшие нуля там, где график функции расположен ниже оси абсцисс.
Посмотрев на график функции, получаем ответ: $x^2-2x-8 Ответ: $-2

2. Решить неравенство: $5x-6

Решение:
Преобразуем неравенство: $-x^2+5x-6 Разделим неравенство на минус один. Не забудем поменять знак: $x^2-5x+6>0$.
Найдем корни трехчлена: $x_1=2$ и $x_2=3$.

Построим график квадратного уравнения, ось абсцисс пересекается в точках 2 и 3.


Наш квадратный трехчлен принимает значения большие нуля там, где график функции расположен выше оси абсцисс. Посмотрев на график функции, получаем ответ: $5x-6 Ответ: $x 3$.

3. Решить неравенство: $2^2+2x+1≥0$.

Решение:
Найдем корни нашего трехчлена, для этого вычислим дискриминант: $D=2^2-4*2=-4 Дискриминант меньше нуля. Воспользуемся правилом, которые мы ввели в начале. Знак неравенства будет такой же, как и знак коэффициента при квадрате. В нашем случае коэффициент положительный, значит наше уравнение будет положительном для любого значения х.
Ответ: При всех х, неравенство больше нуля.

4. Решить неравенство: $x^2+x-2
Решение:
Найдем корни трехчлена и расположим их на координатной прямой: $x_1=-2$ и $x_2=1$.

Если $x>1$ и $x Если $x>-2$ и $x Ответ: $x>-2$ и $x

Задачи на решение квадратных неравенств

Решить неравенства:
а) $x^2-11x+30 б) $2x+15≥x^2$.
в) $3x^2+4x+3 г) $4x^2-5x+2>0$.

Универсальным методом решения неравенств по праву считается метод интервалов. Именно его проще всего использовать для решения квадратных неравенств с одной переменной. В этом материале мы рассмотрим все аспекты применения метода интервалов для решения квадратных неравенств. Для облегчения усвоения материала мы рассмотрим большое количество примеров разной степени сложности.

Yandex.RTB R-A-339285-1

Алгоритм применения метода интервалов

Рассмотрим алгоритм применения метода интервалов в адаптированном варианте, который пригоден для решения квадратных неравенств. Именно с таким вариантом метода интервалов знакомят учеников на уроках алгебры. Не будем усложнять задачу и мы.

Перейдем собственно к алгоритму.

У нас есть квадратный трехчлен a · x 2 + b · x + c из левой части квадратного неравенства. Находим нули из этого трехчлена.

В системе координат изображаем координатную прямую. Отмечаем на ней корни. Для удобства можем ввести разные способы обозначения точек для строгих и нестрогих неравенств. Давайте договоримся, что «пустыми» точками мы будем отмечать координаты при решении строгого неравенства, а обычными точками - нестрогого. Отметив точки, мы получаем на координатной оси несколько промежутков.

Если на первом шаге мы нашли нули, то определяем знаки значений трехчлена для каждого из полученных промежутков. Если нули мы не получили, то производим это действие для всей числовой прямой. Отмечаем промежутки знаками « + » или « - ».

Дополнительно мы будем вводить штриховку в тех случаях, когда будем решать неравенства со знаками > или ≥ и < или ≤ . В первом случае штриховка будет наноситься над промежутками, отмеченными « + », во втором над участками, отмеченными « - ».

Отметив знаки значений трехчлена и нанеся штриховку над отрезками, мы получаем геометрический образ некоторого числового множества, которое фактически является решением неравенства. Нам остается лишь записать ответ.

Остановимся подробнее на третьем шаге алгоритма, который предполагает определение знака промежутка. Существует несколько подходов определения знаков. Рассмотрим их по порядку, начав с наиболее точного, хотя и не самого быстрого. Этот метод предполагает вычисление значений трехчлена в нескольких точках полученных промежутков.

Пример 1

Для примера возьмем трехчлен x 2 + 4 · x − 5 .

Корни этого трехчлена 1 и - 5 разбивают координатную ось на три промежутка (− ∞ , − 5) , (− 5 , 1) и (1 , + ∞) .

Начнем с промежутка (1 , + ∞) . Для того, чтобы упростить себе задачу, примем х = 2 . Получаем 2 2 + 4 · 2 − 5 = 7 .

7 – положительное число. Это значит, что значения данного квадратного трехчлена на интервале (1 , + ∞) положительные и его можно обозначить знаком « + ».

Для определения знака промежутка (− 5 , 1) примем x = 0 . Имеем 0 2 + 4 · 0 − 5 = − 5 . Ставим над интервалом знак « - ».

Для промежутка (− ∞ , − 5) возьмем x = − 6 , получаем (− 6) 2 + 4 · (− 6) − 5 = 7 . Отмечаем этот интервал знаком « + ».

Намного быстрее определить знаки можно с учетом следующих фактов.

При положительном дискриминанте квадратный трехчлен с двумя корнями дает чередование знаков его значений на промежутках, на которые разбивается числовая ось корнями этого трехчлена. Это значит, что нам вовсе не обязательно определять знаки для каждого из интервалов. Достаточно провести вычисления для одного и проставить знаки для остальных, учитывая принцип чередования.

При желании, можно и вовсе обойтись без вычислений, сделав выводы о знаках по значению старшего коэффициента. Если a > 0 , то мы получаем последовательность знаков + , − , + , а если a < 0 – то − , + , − .

У квадратных трехчленов с одним корнем, когда дискриминант равен нулю, мы получаем два промежутка на координатной оси с одинаковыми знаками. Это значит, что мы определяем знак для одного из промежутков и для второго ставим такой же.

Здесь также применим метод определения знака на основе значения коэффициента a: если a > 0 , то будет + , + , а если a < 0 , то − , − .

Если квадратный трехчлен не имеет корней, то знаки его значений для всей координатной прямой совпадают как со знаком старшего коэффициента a , так и со знаком свободного члена c .

Например, если мы возьмем квадратный трехчлен − 4 · x 2 − 7 , он не имеет корней (его дискриминант отрицательный). Коэффициент при x 2 есть отрицательное число − 4 , и свободный член − 7 тоже отрицателен. Это значит, что на промежутке (− ∞ , + ∞) его значения отрицательны.

Рассмотрим примеры решения квадратных неравенств с использованием рассмотренного выше алгоритма.

Пример 2

Решите неравенство 8 · x 2 − 4 · x − 1 ≥ 0 .

Решение

Используем для решения неравенства метод интервалов. Для этого найдем корни квадратного трехчлена 8 · x 2 − 4 · x − 1 . В связи с тем, что коэффициент при х четный, нам будет удобнее вычислить не дискриминант, а четвертую часть дискриминанта: D " = (− 2) 2 − 8 · (− 1) = 12 .

Дискриминант больше нуля. Это позволяет нам найти два корня квадратного трехчлена: x 1 = 2 - 12 9 , x 1 = 1 - 3 4 и x 2 = 2 + 12 8 , x 2 = 1 + 3 4 . Отметим эти значения на числовой прямой. Так как уравнение нестрогое, то на графике мы используем обычные точки.

Теперь по методу интервалов определяем знаки трех полученных интервалов. Коэффициент при x 2 равен 8 , то есть, положителен, следовательно, последовательность знаков будет + , − , + .

Так как мы решаем неравенство со знаком ≥ , то изображаем штриховку над промежутками со знаками плюс:

Запишем аналитически числовое множество по полученному графическому изображению. Мы можем сделать это двумя способами:

Ответ: (- ∞ ; 1 - 3 4 ] ∪ [ 1 + 3 4 , + ∞) или x ≤ 1 - 3 4 , x ≥ 1 + 3 4 .

Пример 3

Выполните решение квадратного неравенства - 1 7 · x 2 + 2 · x - 7 < 0 методом интервалов.

Решение

Для начала найдем корни квадратного трехчлена из левой части неравенства:

D " = 1 2 - - 1 7 · - 7 = 0 x 0 = - 1 - 1 7 x 0 = 7

Это строгое неравенство, поэтому на графике используем «пустую» точку. С координатой 7 .

Теперь нам нужно определить знаки на полученных промежутках (− ∞ , 7) и (7 , + ∞) . Так как дискриминант квадратного трехчлена равен нулю, а старший коэффициент отрицательный, то мы проставляем знаки − , − :

Так как мы решаем неравенство со знаком < , то изображаем штриховку над интервалами со знаками минус:

В данном случае решениями являются оба промежутка (− ∞ , 7) , (7 , + ∞) .

Ответ: (− ∞ , 7) ∪ (7 , + ∞) или в другой записи x ≠ 7 .

Пример 4

Имеет ли квадратное неравенство x 2 + x + 7 < 0 решения?

Решение

Найдем корни квадратного трехчлена из левой части неравенства. Для этого найдем дискриминант: D = 1 2 − 4 · 1 · 7 = 1 − 28 = − 27 . Дискриминант меньше нуля, значит, действительных корней нет.

Графическое изображение будет иметь вид числовой прямой без отмеченных на ней точек.

Определим знак значений квадратного трехчлена. При D < 0 он совпадает со знаком коэффициента при x 2 , то есть, со знаком числа 1 , оно положительное, следовательно, имеем знак + :

Штриховку мы могли бы нанести в данном случае над промежутками со знаком « - ». Но таких промежутков у нас нет. Следовательно, чертеж сохраняет вот такой вид:

В результате вычислений мы получили пустое множество. Это значит, что данное квадратное неравенство решений не имеет.

Ответ: Нет.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Понятие математического неравенства возникло в глубокой древности. Это произошло тогда, когда у первобытного человека появилась потребность при счёте и действиях с различными предметами сравнивать их количество и величину. Начиная с античных времён неравенствами пользовались в своих рассуждениях Архимед, Евклид и другие прославленные деятели науки: математики, астрономы, конструкторы и философы.

Но они, как правило, применяли в своих работах словесную терминологию. Впервые современные знаки для обозначения понятий «больше» и «меньше» в том виде, каком их сегодня знает каждый школьник, придумали и применили на практике в Англии. Оказал такую услугу потомкам математик Томас Гарриот. А случилось это около четырёх столетий назад.

Известно множество видов неравенств. Среди них простые, содержащие одну, две и больше переменных, квадратные, дробные, сложные соотношения и даже представленные системой выражений. А понять, как решать неравенства, лучше всего на различных примерах.

Не опоздать на поезд

Для начала представим себе, что житель сельской местности спешит на железнодорожную станцию, которая находится на расстоянии 20 км от его деревни. Чтобы не опоздать на поезд, отходящий в 11 часов, он должен вовремя выйти из дома. В котором часу это необходимо сделать, если скорость его движения составляет 5 км/ч? Решение этой практической задачи сводится к выполнению условий выражения: 5 (11 - Х) ≥ 20, где Х - время отправления.

Это понятно, ведь расстояние, которое необходимо преодолеть селянину до станции равно скорости движения, умноженной на количество часов в пути. Прийти раньше человек может, но вот опоздать ему никак нельзя. Зная, как решать неравенства, и применив свои умения на практике, в итоге получим Х ≤ 7, что и является ответом. Это значит, что селянину следует отправиться на железнодорожную станцию в семь утра или несколько ранее.

Числовые промежутки на координатной прямой

Теперь выясним, как отобразить описываемые соотношения на Полученное выше неравенство не является строгим. Оно означает, что переменная может принимать значения меньше 7, а может быть равным этому числу. Приведём другие примеры. Для этого внимательно рассмотрим четыре рисунка, представленных ниже.

На первом из них можно увидеть графическое изображение промежутка [-7; 7]. Он состоит из множества чисел, размещённых на координатной прямой и находящихся между -7 и 7, включая границы. При этом точки на графике изображаются в виде закрашенных кругов, а запись промежутка производится с использованием

Второй рисунок является графическим представлением строгого неравенства. В данной случае пограничные числа -7 и 7, показанные выколотыми (не закрашенными) точками, не включаются в указанное множество. А запись самого промежутка производится в круглых скобках следующим образом: (-7; 7).

То есть, выяснив, как решать неравенстватакого типа, и получив подобный ответ, можно заключить, что он состоит из чисел, находящихся между рассматриваемыми границами, кроме -7 и 7. Следующие два случая необходимо оценивать аналогичным образом. На третьем рисунке даются изображения промежутков (-∞; -7] U ∪ или в другой записи x 1 ≤x≤x 2 ,

где x 1 и x 2 – корни квадратного трехчлена a·x 2 +b·x+c , причем x 1


Здесь мы видим параболу, ветви которой направлены вверх, и которая касается оси абсцисс, то есть, имеет с ней одну общую точку, обозначим абсциссу этой точки как x 0 . Представленному случаю отвечает a>0 (ветви направлены вверх) и D=0 (квадратный трехчлен имеет один корень x 0 ). Для примера можно взять квадратичную функцию y=x 2 −4·x+4 , здесь a=1>0 , D=(−4) 2 −4·1·4=0 и x 0 =2 .

По чертежу отчетливо видно, что парабола расположена выше оси Ox всюду, кроме точки касания, то есть, на промежутках (−∞, x 0) , (x 0 , ∞) . Для наглядности выделим на чертеже области по аналогии с предыдущим пунктом.

Делаем выводы: при a>0 и D=0

  • решением квадратного неравенства a·x 2 +b·x+c>0 является (−∞, x 0)∪(x 0 , +∞) или в другой записи x≠x 0 ;
  • решением квадратного неравенства a·x 2 +b·x+c≥0 является (−∞, +∞) или в другой записи x∈R ;
  • квадратное неравенство a·x 2 +b·x+c<0 не имеет решений (нет интервалов, на которых парабола расположена ниже оси Ox );
  • квадратное неравенство a·x 2 +b·x+c≤0 имеет единственное решение x=x 0 (его дает точка касания),

где x 0 - корень квадратного трехчлена a·x 2 +b·x+c .


В этом случае ветви параболы направлены вверх, и она не имеет общих точек с осью абсцисс. Здесь мы имеем условия a>0 (ветви направлены вверх) и D<0 (квадратный трехчлен не имеет действительных корней). Для примера можно построить график функции y=2·x 2 +1 , здесь a=2>0 , D=0 2 −4·2·1=−8<0 .

Очевидно, парабола расположена выше оси Ox на всем ее протяжении (нет интервалов, на которых она ниже оси Ox , нет точки касания).

Таким образом, при a>0 и D<0 решением квадратных неравенств a·x 2 +b·x+c>0 и a·x 2 +b·x+c≥0 является множество всех действительных чисел, а неравенства a·x 2 +b·x+c<0 и a·x 2 +b·x+c≤0 не имеют решений.

И остаются три варианта расположения параболы с направленными вниз, а не вверх, ветвями относительно оси Ox . В принципе их можно и не рассматривать, так как умножение обеих частей неравенства на −1 позволяет перейти к равносильному неравенству с положительным коэффициентом при x 2 . Но все же не помешает получить представление и об этих случаях. Рассуждения здесь аналогичные, поэтому запишем лишь главные результаты.

Алгоритм решения

Итогом всех предыдущих выкладок выступает алгоритм решения квадратных неравенств графическим способом :

    На координатной плоскости выполняется схематический чертеж, на котором изображается ось Ox (ось Oy изображать не обязательно) и эскиз параболы, отвечающей квадратичной функции y=a·x 2 +b·x+c . Для построения эскиза параболы достаточно выяснить два момента:

    • Во-первых, по значению коэффициента a выясняется, куда направлены ее ветви (при a>0 – вверх, при a<0 – вниз).
    • А во-вторых, по значению дискриминанта квадратного трехчлена a·x 2 +b·x+c выясняется, пересекает ли парабола ось абсцисс в двух точках (при D>0 ), касается ее в одной точке (при D=0 ), или не имеет общих точек с осью Ox (при D<0 ). Для удобства на чертеже указываются координаты точек пересечения или координата точки касания (при наличии этих точек), а сами точки изображаются выколотыми при решении строгих неравенств, или обычными при решении нестрогих неравенств.
  • Когда чертеж готов, по нему на втором шаге алгоритма

    • при решении квадратного неравенства a·x 2 +b·x+c>0 определяются промежутки, на которых парабола располагается выше оси абсцисс;
    • при решении неравенства a·x 2 +b·x+c≥0 определяются промежутки, на которых парабола располагается выше оси абсцисс и к ним добавляются абсциссы точек пересечения (или абсцисса точки касания);
    • при решении неравенства a·x 2 +b·x+c<0 находятся промежутки, на которых парабола ниже оси Ox ;
    • наконец, при решении квадратного неравенства вида a·x 2 +b·x+c≤0 находятся промежутки, на которых парабола ниже оси Ox и к ним добавляются абсциссы точек пересечения (или абсцисса точки касания);

    они и составляют искомое решение квадратного неравенства, а если таких промежутков нет и нет точек касания, то исходное квадратное неравенство не имеет решений.

Остается лишь решить несколько квадратных неравенств с использованием этого алгоритма.

Примеры с решениями

Пример.

Решите неравенство .

Решение.

Нам требуется решить квадратное неравенство, воспользуемся алгоритмом из предыдущего пункта. На первом шаге нам нужно изобразить эскиз графика квадратичной функции . Коэффициент при x 2 равен 2 , он положителен, следовательно, ветви параболы направлены вверх. Выясним еще, имеет ли парабола с осью абсцисс общие точки, для этого вычислим дискриминант квадратного трехчлена . Имеем . Дискриминант оказался больше нуля, следовательно, трехчлен имеет два действительных корня: и , то есть, x 1 =−3 и x 2 =1/3 .

Отсюда понятно, что парабола пересекает ось Ox в двух точках с абсциссами −3 и 1/3 . Эти точки изобразим на чертеже обычными точками, так как решаем нестрогое неравенство. По выясненным данным получаем следующий чертеж (он подходит под первый шаблон из первого пункта статьи):

Переходим ко второму шагу алгоритма. Так как мы решаем нестрогое квадратное неравенство со знаком ≤, то нам нужно определить промежутки, на которых парабола расположена ниже оси абсцисс и добавить к ним абсциссы точек пересечения.

Из чертежа видно, что парабола ниже оси абсцисс на интервале (−3, 1/3) и к нему добавляем абсциссы точек пересечения, то есть, числа −3 и 1/3 . В результате приходим к числовому отрезку [−3, 1/3] . Это и есть искомое решение. Его можно записать в виде двойного неравенства −3≤x≤1/3 .

Ответ:

[−3, 1/3] или −3≤x≤1/3 .

Пример.

Найдите решение квадратного неравенства −x 2 +16·x−63<0 .

Решение.

По обыкновению начинаем с чертежа. Числовой коэффициент при квадрате переменной отрицательный, −1 , поэтому, ветви параболы направлены вниз. Вычислим дискриминант, а лучше – его четвертую часть: D"=8 2 −(−1)·(−63)=64−63=1 . Его значение положительно, вычислим корни квадратного трехчлена: и , x 1 =7 и x 2 =9 . Так парабола пересекает ось Ox в двух точках с абсциссами 7 и 9 (исходное неравенство строгое, поэтому эти точки будем изображать с пустым центром).Теперь можно сделать схематический рисунок:

Так как мы решаем строгое квадратное неравенство со знаком <, то нас интересуют промежутки, на которых парабола расположена ниже оси абсцисс:

По чертежу видно, что решениями исходного квадратного неравенства являются два промежутка (−∞, 7) , (9, +∞) .

Ответ:

(−∞, 7)∪(9, +∞) или в другой записи x<7 , x>9 .

При решении квадратных неравенств, когда дискриминант квадратного трехчлена в его левой части равен нулю, нужно быть внимательным с включением или исключением из ответа абсциссы точки касания. Это зависит от знака неравенства: если неравенство строгое, то она не является решением неравенства, а если нестрогое – то является.

Пример.

Имеет ли квадратное неравенство 10·x 2 −14·x+4,9≤0 хотя бы одно решение?

Решение.

Построим график функции y=10·x 2 −14·x+4,9 . Ее ветви направлены вверх, так как коэффициент при x 2 положительный, и она касается оси абсцисс в точке с абсциссой 0,7 , так как D"=(−7) 2 −10·4,9=0 , откуда или 0,7 в виде десятичной дроби. Схематически это выглядит так:

Так как мы решаем квадратное неравенство со знаком ≤, то его решением будут промежутки, на которых парабола ниже оси Ox , а также абсцисса точки касания. Из чертежа видно, что нет ни одного промежутка, где бы парабола была ниже оси Ox , поэтому его решением будет лишь абсцисса точки касания, то есть, 0,7 .

Ответ:

данное неравенство имеет единственное решение 0,7 .

Пример.

Решите квадратное неравенство –x 2 +8·x−16<0 .

Решение.

Действуем по алгоритму решения квадратных неравенств и начинаем с построения графика. Ветви параболы направлены вниз, так как коэффициент при x 2 отрицательный, −1 . Найдем дискриминант квадратного трехчлена –x 2 +8·x−16 , имеем D’=4 2 −(−1)·(−16)=16−16=0 и дальше x 0 =−4/(−1) , x 0 =4 . Итак, парабола касается оси Ox в точке с абсциссой 4 . Выполним чертеж:

Смотрим на знак исходного неравенства, он есть <. Согласно алгоритму, решение неравенства в этом случае составляют все промежутки, на которых парабола расположена строго ниже оси абсцисс.

В нашем случае это открытые лучи (−∞, 4) , (4, +∞) . Отдельно заметим, что 4 - абсцисса точки касания - не является решением, так как в точке касания парабола не ниже оси Ox.

Ответ:

(−∞, 4)∪(4, +∞) или в другой записи x≠4 .

Обратите особое внимание на случаи, когда дискриминант квадратного трехчлена, находящегося в левой части квадратного неравенства, меньше нуля. Здесь не нужно спешить и говорить, что неравенство решений не имеет (мы же привыкли делать такой вывод для квадратных уравнений с отрицательным дискриминантом). Дело в том, что квадратное неравенство при D<0 может иметь решение, которым является множество всех действительных чисел.

Пример.

Найдите решение квадратного неравенства 3·x 2 +1>0 .

Решение.

Как обычно начинаем с чертежа. Коэффициент a равен 3 , он положителен, следовательно, ветви параболы направлены вверх. Вычисляем дискриминант: D=0 2 −4·3·1=−12 . Так как дискриминант отрицателен, то парабола не имеет с осью Ox общих точек. Полученных сведений достаточно для схематичного графика:

Мы решаем строгое квадратное неравенство со знаком >. Его решением будут все промежутки, на которых парабола находится выше оси Ox . В нашем случае парабола выше оси абсцисс на всем ее протяжении, поэтому искомым решением будет множество всех действительных чисел.

Ox , а также к ним нужно добавить абсциссы точек пересечения или абсциссу точки касания. Но по чертежу хорошо видно, что таких промежутков нет (так как парабола всюду ниже оси абсцисс), как нет и точек пересечения, как нет и точки касания. Следовательно, исходное квадратное неравенство не имеет решений.

Ответ:

нет решений или в другой записи ∅.

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
  • Мордкович А. Г. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. - 2-е изд., стер. - М.: Мнемозина, 2008. - 287 с.: ил. ISBN 978-5-346-01027-2.


© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация