Геометрические места точек. Основные геометрические понятия

Главная / Бизнес

Геометрическим местом точек (в дальнейшем ГМТ), называется фигура плоскости, состоящая из точек обладающих некоторым свойством, и не содержащая ни одной точки, не обладающей этим свойством.

Мы будем рассматривать только те ГМТ, которые можно построить с помощью циркуля и линейки.

Рассмотрим ГМТ на плоскости, обладающие простейшими и наиболее часто выражающимися свойствами:

1) ГМТ, отстоящих на данном расстоянии r от данной точки О, есть окружность с центром в точке О радиуса r.

2) ГМТ равноудаленных от двух данных точек А и В, есть прямая, перпендикулярная к отрезку АВ и проходящая через его середину.

3) ГМТ равноудаленных от двух данных пересекающихся прямых, есть пара взаимно перпендикулярных прямых, проходящих через точку пересечения и делящих углы между данными прямыми пополам.

4) ГМТ, отстоящих на одинаковом расстоянии h от прямой, есть две прямые, параллельные этой прямой и находящиеся по разные стороны от нее на данном расстоянии h.

5) Геометрическое место центров окружностей, касающихся данной прямой m в данной на ней точке М, есть перпендикуляр к АВ в точке М (кроме точки М).

6) Геометрическое место центров окружностей, касающихся данной окружности в данной на ней очке М, есть прямая, проходящая через точку М и центр данной окружности (кроме точек М и О).

7) ГМТ, из которых данный отрезок виден под данным углом, составляет две дуги окружностей, описанных на данном отрезке и вмещающих данный угол.

8) ГМТ, расстояния от которых до двух данных точек А и В находятся в отношении m: n, есть окружность (называемая окружностью Аполлония).

9) Геометрическое место середин хорд, проведенных из одной точки окружности, есть окружность, построенная на отрезке, соединяющем данную точку с центром данной окружности, как на диаметре.

10) Геометрическое место вершин треугольников равновеликих данному и имеющих общее основание, составляет две прямые, параллельные основанию и проходящие через вершину данного треугольника и ему симметричного относительно прямой, содержащей основание.

Приведем примеры отыскания ГМТ.

ПРИМЕР 2. Найти ГМТ, являющихся серединами хорд, проведенных из одной точки данной окружности (ГМТ № 9).

Решение . Пусть дана окружность с центром О и на этой окружности выбрана точка А из которой проводятся хорды. Покажем, что искомое ГМТ есть окружность, построенная на АО как на диаметре (кроме точки А) (рис. 3).

Пусть АВ - некоторая хорда и М - ее середина. Соединим М и О. Тогда МО ^ АВ (радиус, делящий хорду пополам, перпендикулярен этой хорде). Но, тогда ÐАМО = 90 0 . Значит М принадлежит окружности с диаметром АО (ГМТ № 7). Т.к. эта окружность проходит через точку О, то О принадлежит нашему ГМТ.


Обратно, пусть М принадлежит нашему ГМТ. Тогда, проведя через М хорду АВ и соединив М и О, получим, что ÐАМО = 90 0 , т.е. МО ^ АВ, а, значит, М - середина хорды АВ. Если же М совпадает с О, то О - середина АС.

Часто метод координат позволяет находить ГМТ.

ПРИМЕР 3. Найти ГМТ, расстояние от которых до двух данных точек А и В находятся в данном отношении m: n (m ≠ n).

Решение . Выберем прямоугольную систему координат так, чтобы точки А и В располагались на оси Ох симметрично относительно начала координат, а ось Оу проходила через середину АВ (рис.4). Положим АВ = 2a. Тогда точка А имеет координаты А (a, 0), точка В - координаты В (-a, 0). Пусть С принадлежит нашему ГМТ, координаты С(х, у) и CB/CA = m/n. Но Значит

(*)

Преобразуем наше равенство. Имеем

Классическое определение вероятности основывается на том, что число всех возможных случаев конечно. Если распределение возможных исходов испытания непрерывно и бесконечно, то при решении задач часто используется понятие геометрической вероятности .

Полагают, что имеется область Ω и в ней область A. На Ω наудачу бросается точка. Событие А – попадание точки в область А.

Геометрической вероятностью события А называется отношение меры области, благоприятствующей появлению события А, к мере всей области Ω, т.е.

Область Ω может быть одномерной, двумерной, трехмерной и n-мерной.

Пример . В круг радиуса R=50 бросается точка. Найти вероятность ее попадания во вписанный в круг квадрат.

Решение . P(A) = =; (R =; a =)

6. Сумма событий и ее свойства. Примеры.

Суммой нескольких событий называется событие, состоящее в наступлении хотя бы одного из данных событий.

Если А и В - совместные события, то их сумма А + В обозначает наступление или события А, или события В, или обоих событий вместе. Если А и В - несовместные события, то их сумма А + В означает наступление или события А, или события В.

Свойства:

    А + В = В + А – коммутативность сложения.

    А + (В + С) = (А + В) + С – ассоциативность сложения.

    А(В + С) = (А+В)(А+С) – законы дистрибутивности.

Примеры.

1) Событие А – попадание в цель при первом выстреле, событие В – попадание в цель при втором выстреле, тогда событие С = А + В есть попадание в цель вообще, безразлично при каком выстреле – при первом, при втором или при обоих вместе.

2) Если событие А – появление карты червонной масти при вынимании карты из колоды, событие В – появление карты бубновой масти, то С = А + В есть появление карты красной масти, безразлично – червонной или бубновой.

7. Теорема сложения вероятностей (с доказательством) и ее следствия. Примеры. 8 Произведение событий и его свойства.



9. Условная вероятность. Зависимые и независимые события. Теорема умножения вероятностей (с доказательством). Примеры

Вероятность Р(В) как мера степени объективной возможности наступления события В имеет смысл при выполнении определенного комплекса условий. При изменении условий вероятность события В может измениться. Так, если к комплексу условий, при котором изучалась вероятность р(В), добавить новое условие А, то полученная вероятность события В, найденная при условии, что событие А произошло, называется условной вероятностью события В и обозначается РА(В), или Р(В/А), или Р(В/А).

Теорема Умножения вероятностей принимает наиболее простой вид, когда события, образующие произведение, независимы.

Событие В называется независимым от события А, если его вероятность не меняется от того, произошло событие А или нет, т.е.

В противном случае, если РА(В) не равно Р(В) событие В называется зависимым от А.

Несколько событий А,В,М… называются независимыми в совокупности, если независимы любые два из них и независимо любое из данных событий и любые комбинации (произведения) остальных событий. В противном случае события А,В,М называются зависимыми.

Вероятность произведения двух или нескольких независимых событий равна произведению вероятностей этих событий.

10. Формулы полной вероятности и Байеса. Примеры.

ФОРМУЛА ПОЛНОЙ ВЕРОЯТНОСТИ

Пусть события H1 , H2 ,K, Hn образуют полную группу попарно несовместных событий. Такие события называются гипотезами. Пусть событие A происходит вместе с гипотезами H1 , H2 ,K, Hn. Тогда для вероятности события A справедлива формула

P (A )  P (H 1)  P H (A )  P (H 2)  P H (A ) K P (H n )  P H (A ) .

Доказательство. A AH 1  AH 2 K AH n . Так как H 1 , H 2 ,K, H n попарно несовместные, тоAH 1 , AH 2 ,K, AH n также попарно несовместные. По правилу сложения вероятностей имеем

P (A )   P (A H i )   P (H i )  P H i (A ) .

Что и требовалось доказать.

Пример. На город примерно 100 дней в году дует ветер с севера и 200 дней в году – с запада. Промышленные предприятия, расположенные на севере, производят выброс вредных веществ каждый третий день, а расположенные на западе – в последний день каждой недели. Как часто город подвергается воздействию вредных выбросов?

Решение. Другими словами, нужно вычислить вероятность того, что в наугад выбранный день город будет накрыт промышленным смогом. Обозначим следующие события: A воздействие вредных выбросов, H1 ветер дует с севера,H2 ветер дует с запада. По условию имеем

Геометрия – одна из наиболее древних математических наук. Первые геометрические факты мы находим в вавилонских клинописных таблицах и египетских папирусах (III тысячелетие до н.э.), а также в других источниках. Название науки «геометрия» - древнегреческого происхождения. Оно составлено из двух древнегреческих слов ge - «Земля» и metreo - «измеряю».

Возникновение геометрических знаний связано с практической деятельностью людей. Это отразилось и в названиях многих геометрических фигур. Например, название фигуры трапеция происходит от греческого слова trapezion - «столик», от которого произошло также слово «трапеза» и другие родственные слова. Термин «линия» возник от латинского linum - «лен, льняная нить».

Еще в древности геометрия превратилась в дедуктивную, строго логическую науку, построенную на основе системы аксиом (см. Аксиоматика и аксиоматический метод). Она непрерывно развивалась, обогащалась новыми теоремами, идеями, методами. Интересы геометров и направления их научных исследований порою менялись в процессе исторического развития этой науки, поэтому нелегко дать точное и исчерпывающее определение, что такое геометрия сегодня, каков ее предмет, содержание и методы.

В замечательной книге «Диалектика природы» Ф. Энгельс определил геометрию как науку о пространственных формах окружающего нас реального мира, т.е. как часть математики, изучающую свойства пространства. Это философское определение полностью отражало состояние геометрии в то время, когда жил и работал Ф. Энгельс. Но в наше время возникли и оформились новые важные разделы геометрии. Каждый из этих разделов имеет свою специфику, которая уже не всегда укладывается в определение геометрии, данное в прошлом веке Ф. Энгельсом. Крупный советский геометр академик А. Д. Александров, которому принадлежат работы не только по геометрии, но и в области философии математики, расширил рамки энгельсовского определения, сказав, что геометрия изучает пространственные и пространственноподобные формы и отношения реального мира. Что это значит и какое это имеет значение для школьной геометрии, попытаемся раскрыть в этой статье.

В III в. до н.э. древнегреческий ученый Евклид написал книгу под названием «Начала» (см, Евклид и его «Начала»). В этой книге Евклид подытожил накопленные к тому времени геометрические знания и попытался дать законченное аксиоматическое изложение этой науки. Написана она была настолько хорошо, что в течение 2000 лет всюду преподавание геометрии велось либо по переводам, либо по незначительным переработкам книги Евклида. Например, таким пособием был учебник А. П. Киселева, по которому советская школа работала до середины этого столетия.

Продуманное и глубоко логическое изложение геометрии, данное в книге Евклида, привело к тому, что математики не мыслили возможности существования геометрии, отличной от евклидовой. Немецкий философ-идеалист XVIII в. И. Кант и многие его последователи считали, что понятия и идеи евклидовой геометрии (единственно возможной, чуть ли не божественной) были заложены в человеческое сознание еще до того, как человек научился что-либо осознавать. Происхождение этой мысли Канта становится понятным, если мы проследим процесс возникновения геометрических знаний в сознании ребенка. Дети много тысяч раз видят, например, прототипы прямых линий в жизни: угол дома или обрез книжной страницы, натянутую нитку или луч света, край стола или двери – все это, запечатленное в сознании ребенка, делает его психологически подготовленным к восприятию понятия «прямая». То же относится к прямым углам и перпендикулярам (которые мы видим с детства на каждом шагу), окружностям (колесо, пуговица, солнечный диск, край тарелки или блюдца), параллелограммам и другим фигурам. Отраженные в сознании, эти представления подготавливают восприятие геометрических понятий. Учитель же систематизирует, упорядочивает эти представления и дает школьникам соответствующий термин, завершающий и закрепляющий образование понятия.

«Геометрия – правительница всех мысленных изысканий». М. В. Ломоносов

Лишь в XIX в. благодаря в первую очередь трудам выдающегося русскою математика Н. И. Лобачевского было установлено, что евклидова геометрия не является единственно возможной. Вслед за тем математики создали и исследовали многие различные «геометрии». Особенно большая заслуга в расширении наших представлений о возможных геометрических пространствах принадлежит немецкому математику XIX в. Г. Ф. Б. Риману. Он открыл способ построения бесконечно многих «геометрий», которые локально, «в малом» устроены почти так же, как и евклидова геометрия, но обладают «кривизной», сказывающейся при рассмотрении больших кусков пространства. По преданию, К. Ф. Гаусс, обогативший математику многими замечательными открытиями (в том числе и в области геометрии), ушел после доклада Римана, глубоко задумавшись над ошеломившими его новыми геометрическими идеями.

Интересно проследить связь геометрических идей с современной физикой. Часто идеи, обогащающие математику новыми понятиями и методами, приходят из физики, химии и других разделов естествознания. Типичным примером может служить понятие вектора, пришедшее в математику из механики. Но в отношении неевклидовых геометрий дело обстоит как раз наоборот: созданные внутри математики под воздействием ее внутренних потребностей и ее собственной логики развития, эти новые геометрические понятия проложили пути создания современной физики. В частности, геометрия Лобачевского нашла применение в специальной теории относительности, стала одной из математических основ этой теории, а риманова геометрия служит фундаментом общей эйнштейновской теории относительности. Можно даже сказать, что общая теория относительности – это больше геометрия, чем физика, и здесь обнаруживается влияние идей немецкого математика Д. Гильберта, который сотрудничал с А. Эйнштейном при создании этой теории. Важные приложения имеет риманова геометрия в теории упругости и в других разделах физики и техники.

Нечто похожее произошло и с другим разделом современной геометрии – с так называемым выпуклым анализом. Начала теории выпуклых фигур были заложены в XIX в. немецким математиком Г. Минковским. Несколько красивых теорем, полученных им, привлекли внимание математиков к новой теории. Однако поскольку они не находили применения в других разделах математики, а тем более в естествознании, то в то время создалось впечатление, что Минковский создал очень изящную, но совершенно бесполезную математическую игрушку. Но прошли десятилетия, и совершенно неожиданно теоремы о выпуклых множествах нашли различные применения: сначала в самой математике (при решении геометрических экстремальных задач), а затем в математической экономике, теории управления и других прикладных областях.

В современной геометрии есть и много других направлений. Одни сближают се с теорией чисел, другие с квантовой физикой, третьи – с математическим анализом. А некоторые разделы современной математики таковы, что трудно сказать, чего в них больше: геометрии, алгебры или анализа.

Геометрия не только обогатилась новыми направлениями, находящимися далеко за пределами той колыбели, из которой она выросла, евклидовой геометрии. Много нового появилось со времен Евклида и в самой евклидовой геометрии. Еще в XVII в. благодаря работам французского математика и философа Р. Декарта возник метод координат, ознаменовавший собой революционную перестройку всей математики, и в частности геометрии. Появилась возможность истолковывать алгебраические уравнения (или неравенства) в виде геометрических образов (графиков) и, наоборот, искать решение геометрических задач с помощью аналитических формул, систем уравнений. Так в рамках евклидовой геометрии появилась ее новая ветвь аналитическая геометрия, явившаяся мощным средством исследования геометрических образов. Например, метод координат позволяет быстро и с помощью несложных вычислений вывести основные свойства линий второго порядка (эллипса, гиперболы, параболы). Теоремы об этих линиях, найденные древнегреческим ученым Аполлонием и некогда считавшиеся вершиной геометрии, сейчас с помощью методов аналитической геометрии изучаются в вузах и техникумах.

В работах математиков XIX в. У. Гамильтона, Г. Грассмана и других были введены векторы, которые ранее в трудах Архимеда, Г. Галилея и других корифеев науки имели лишь механический смысл, а теперь приобрели права гражданства в математике. С 60-х гг. нашего столетия векторы заняли прочное место и в школьном курсе геометрии. Применяемые в рамках евклидовой геометрии векторные методы значительно упрощают доказательства многих теорем и решение задач. Например, теорема косинусов, теорема о трех перпендикулярах и другие (которые раньше было доказать довольно трудно) стали легкими упражнениями на применение скалярного произведения векторов. Но роль векторов не только в упрощении трудных мест школьного курса. Гораздо важнее то, что векторные методы находят сейчас широкие применения в физике, химии, экономике, биологии, не говоря уже о многих разделах современной математики. Так, скалярное произведение вектоpa силы и вектора перемещения есть работа, векторное произведение вектора тока и вектора напряженности магнитного поля есть сила воздействия этого поля на проводник и т.д. Как видите, и здесь геометрия диктовала физике введение новых понятий, а не наоборот. А впоследствии, при рассмотрении многомерных пространств (о которых речь еще впереди), скалярное произведение приобрело еще больший вес и значение и стало важным рабочим аппаратом, применяемым буквально во всех областях математики и ее приложений.

Другим важным обогащением, которым геометрия также обязана XIX в., стало создание теории геометрических преобразований, и в частности движений (перемещений). У Евклида движения неявно присутствовали; например, когда он говорил: «Наложим один треугольник на другой таким-то образом», то речь шла в действительности о применении движения, перемещения треугольника. Но для Евклида движение не было математическим понятием. Создание математической теории движений и осознание их важной роли в геометрии связано с именем немецкого математика XIX-XX вв. Ф. Клейна, который при вступлении на должность профессора по кафедре геометрии в университете г. Эрлангена прочитал лекцию о роли движений в геометрии. Выдвинутая им идея переосмысления всей геометрии на основе теории движений получила название Эрлангенской программы. Идею Клейна можно пояснить следующим образом.

Геометрия изучает те свойства фигур, которые сохраняются при движениях. Иначе говоря, если одна фигура получается из другой движением (такие фигуры называются равными, или конгруэнтными), то у этих фигур одинаковые геометрические свойства. В этом смысле движения составляют основу геометрии. Они обладают тем свойством, что композиция любых двух движений и (т. е. результат их последовательного выполнения) также является движением; кроме того, если - произвольное движение, то обратное отображение также является движением. Эти свойства коротко выражают следующим образом: движения образуют группу. Таким образом, группа движений задает, определяет евклидову геометрию. Но группа движений не единственная известная нам группа преобразований. Например, все параллельные переносы образуют группу, все подобные преобразования также образуют группу и т.д. По мысли Клейна, каждая группа преобразований определяет «свою геометрию». Например, можно рассматривать аффинные преобразования, которые каждую прямую взаимно-однозначно отображают на некоторую другую прямую, но при этом могут не сохранять (в отличие от движений) ни расстояний, ни углов, ни площадей. Множество всех аффинных преобразований плоскости (или пространства) представляет собой группу. Эта группа задает некоторую геометрию, которая носит название аффинной геометрии. Групповая точка зрения на геометрию позволяет с единых позиций рассмотреть многие различные геометрии: евклидову, геометрию Лобачевского, аффинную, проективную геометрию и др.

Значение идей Эрлангенской программы Клейна не исчерпывается рамками геометрии. Групповая точка зрения на геометрические свойства фигур широко используется в физике. Так, русский математик и кристаллограф Е. С. Федоров, используя клейновские идеи, открыл кристаллографические группы, носящие теперь его имя. Они стали в наши дни подлинной научной основой всей кристаллографии. Групповой подход находит важные применения в ядерной физике; принципы симметрии и четности – яркое проявление групповой точки зрения. Основой специальной теории относительности является группа Лоренца; по существу, эта теория представляет собой своеобразную геометрию «четырехмерного пространства – времени», определяемую группой Лоренца. Важные приложения находит групповая точка зрения и в других областях физики, химии.

Влияние группового подхода можно проследить и в школьной геометрии. Каждая фигура определяет некоторую группу движений; в эту группу входят все те движения, которые переводят фигуру в себя. Она называется группой самосовмещений фигуры . Знание группы самосовмещений фигуры во многом определяет геометрические свойства этой фигуры. Возьмем, например, параллелограмм общего вида, т.е. не являющийся ни прямоугольником, ни ромбом (рис. 1). Существуют два движения, переводящие этот параллелограмм в себя: тождественное отображение (оставляющее все точки плоскости на месте) и симметрия относительно точки , в которой пересекаются диагонали параллелограмма. Других движений плоскости, переводящих параллелограмм в себя, нет. Таким образом, группа самосовмещений параллелограмма состоит из двух элементов . Из того, что группа самосовмещений параллелограмма содержит центральную симметрию , вытекают все основные свойства параллелограмма. Например, так как противоположные углы параллелограмма симметричны относительно точки , то эти углы равны. Из симметричности противоположных сторон параллелограмма вытекает, что эти стороны равны и параллельны, и т.д.

«Геометрия является самым могущественным средством для изощрения наших умственных способностей и дает нам возможность правильно мыслить и рассуждать». Г. Галилей

Группа самосовмещений ромба содержит кроме и еще две осевые симметрии и относительно прямых, на которых расположены диагонали ромба (рис. 2). Из того, что в этой группе имеются дополнительные (по сравнению с параллелограммом общего вида) движения и , вытекает наличие у ромба дополнительных, специфических свойств (помимо свойств, присущих всякому параллелограмму): перпендикулярность диагоналей, совпадение диагоналей с биссектрисами углов и т.д. В качестве еще одного примера отметим, что группа самосовмещений равнобедренного треугольника, не являющегося равносторонним (рис. 3), состоит из двух элементов , где - осевая симметрия. Из наличия в группе самосовмещений равнобедренного треугольника движения вытекают основные свойства этого треугольника: равенство углов при основании, совпадение биссектрисы, медианы и высоты, проведенных к основанию, равенство медиан, проведенных к боковым сторонам, и т.д. Свойства правильных многогранников (или других многогранников, обладающих той или иной симметричностью) удобнее всего доказывать, используя группы их самосовмещений. Свойства сферы, цилиндра, конуса также лучше всего выводить с помощью рассмотрения групп самосовмещений этих фигур. И для каждой конкретной геометрической фигуры богатство ее свойств определяется прежде всего ее группой самосовмещений.

Применение движений сближает математику с идеями физики, химии, биологии, техники, соответствует прогрессивным чертам математического осмысления мира.

Итак, XIX в. привнес в евклидову геометрию много нового, и прежде всего векторные методы и групповой подход. Есть и еще одно направление развития геометрии, появившееся в рамках евклидовой геометрии в XIX в., - многомерные пространства. Возникли они путем обобщения, аналогии с геометрией на плоскости и в трехмерном пространстве. На плоскости каждая точка задается в системе координат двумя числами – координатами этой точки, а в пространстве – тремя координатами. В -мерном же пространстве точка задается координатами, т.е. записывается в виде , где - произвольные действительные числа (координаты точки ). На плоскости система координат имеет две оси, в пространстве - три, а в -мерном пространстве система координат содержит осей, причем каждые две из этих осей перпендикулярны друг другу! Конечно, такие пространства существуют лишь в воображении математиков и тех специалистов из других областей знания, которые применяют эти математические абстракции. Ведь реальное пространство, в котором мы живем, математически хорошо описывается трехмерным пространством (евклидовым или римановым, но именно трехмерным). Увидеть – в буквальном, физическом смысле этого слова – фигуры в четырехмерном пространстве (а тем более в пространствах большего числа измерений) не в состоянии никто, даже самый гениальный математик; их можно видеть только мысленным взором.

Человек, который впервые слышит о четырехмерном пространстве, готов возразить: «Но ведь такого же не бывает, не может быть четырех прямых, которые друг другу перпендикулярны!». Есть и другие парадоксы четвертого измерения. Если, например, на плоскости имеется кольцо (оболочка), а внутри - кружок, то, как бы мы ни двигали этот кружок по плоскости, вынуть его из этой оболочки, не разрывая ее, невозможно. Но стоит только выйти в третье измерение, и кружок легко вынуть из кольца, подняв его вверх, над плоскостью. Аналогично дело обстоит и в пространстве. Если имеется сфера (оболочка), внутри которой заключен шарик, то, не прорывая оболочку, невозможно вынуть из нее этот шарик. Но если бы существовало четвертое измерение, то можно было бы «поднять» шарик над трехмерным пространством в направлении четвертого измерения, а затем положить его снова в трехмерное пространство, но уже вне оболочки. И то, что это сделать никому не удается, приводят как довод против существования четвертого измерения. Довод ошибочен, так как в нем спутаны два вопроса.

Первый вопрос: имеется ли в реальном пространстве четвертое измерение? Ответ на этот вопрос отрицателен.

Второй вопрос: можно ли рассматривать четырехмерное пространство абстрактно, математически? Ответ утвердителен.

Нет ничего нелогичного или противоречивого в том, чтобы рассматривать четверки чисел , исследовать свойства этих «четырехмерных точек», составлять из них фигуры, доказывать теоремы, постепенно строя таким образом геометрию четырехмерного (или, вообще, -мерного) пространства. Но математическая непротиворечивость -мерной геометрии еще недостаточна для суждения о ценности этой теории. В чем же состоит польза многомерных пространств? Где они применяются? Зачем понадобилось расширять представления о пространстве от реального трехмерного мира до столь далеких абстракций, которые нелегко и не сразу укладываются в сознании?

Для ответа на эти вопросы рассмотрим два примера, которые подведут нас к -мерной геометрии.

Пример 1. Сумма чисел равна единице. Каковы должны быть эти числа, чтобы сумма их квадратов была наименьшей?

Решение. Получим ответ на поставленный вопрос геометрическим путем, рассматривая сначала случай , затем , а потом обсудим ситуацию при .

Итак, пусть сначала . Иначе говоря, рассматриваются числа , удовлетворяющие условию , и требуется найти, в каком случае сумма квадратов будет наименьшей.

Уравнение определяет на координатной плоскости прямую (рис. 4). Рассмотрим окружность с центром в начале координат, которая касается этой прямой (точка ). Если точка прямой отлична от , то она лежит вне окружности и потому больше радиуса этой окружности, т. е. . Если же , то сумма равна , т.е. именно для точки эта сумма принимает наименьшее значение. Точка имеет координаты ; это и есть решение поставленной алгебраической задачи (при ).

Пусть теперь . Уравнение определяет в пространстве плоскость . Рассмотрим сферу с центром в начале , касающуюся этой плоскости в некоторой точке (рис. 5). Для любой точки , отличной от , ее расстояние от точки больше радиуса сферы , , и потому , а при имеем . Таким образом, именно для точки сумма принимает наименьшее значение. Точка имеет равные координаты: (поскольку при повороте пространства, переставляющем оси координат: ; , , и плоскость , и сфера переходят в себя, а потому их общая точка остается неподвижной). А так как , то точка имеет координаты ; это и есть решение поставленной задачи (для ).

Рассмотрим, наконец, произвольное ; рассуждения будем вести в -мерном пространстве, точками которого являются последовательности , состоящие из действительных чисел. Уравнение определяет в этом пространстве «плоскость» , имеющую размерность (например, при , т.е. в трехмерном пространстве, такое уравнение определяет плоскость размерности 2, т.е. на единицу меньшей размерности, чем все пространство). Математики называют плоскости, имеющие размерность , гиперплоскостями в -мерном пространстве. Рассмотрим сферу с центром в начале координат , касающуюся гиперплоскости в некоторой точке . Все точки гиперплоскости , кроме , лежат вне сферы , т.е. находятся от начала координат на расстоянии, большем, чем радиус сферы , а точка находится от на расстоянии, равном . Следовательно, сумма принимает в точке наименьшее значение по сравнению со всеми другими точками гиперплоскости . Заметим теперь, что все координаты точки равны между собой: (поскольку поворот пространства, переставляющий оси , переводит гиперплоскость в себя и сферу тоже в себя, а потому оставляет точку неподвижной), откуда . Итак, при сумма квадратов принимает наименьшее значение для .

Разумеется, это геометрическое решение читатель может признать корректным лишь в случае, если он уже владеет понятиями -мерной геометрии, но характер этого решения и польза -мерной геометрической интерпретации для рассмотренной алгебраической задачи очевидны.

Пример 2. На три завода (рис. 6) нужно завезти сырье одинакового вида, которое хранится на двух складах в соответствии с данными, указанными в таблице.

Наличие сырья

Потребность в сырье

20т и, многоугольника. Иначе говоря, наиболее выгодный вариант перевозок соответствует точке, обозначающие количество сырья, вывозимого со склада на первые три завода. Если задать расстояния от складов до заводов, то можно будет составить выражение для общего числа тонно-километров. Можно написать и неравенства, выражающие неотрицательность количества сырья, вывозимого со складов на заводы. Теперь эти неравенства будут зависеть от трех переменных . Каждое из этих неравенств задает полупространство, а система всех неравенств определяет пересечение полупространств, т.е. выпуклый многогранник в трехмерном пространстве. Таким образом, для четырех заводов задача о перевозке сырья будет математически формулироваться как задача о наименьшем значении линейной функции на трехмерном выпуклом многограннике.

Для двух складов и пяти заводов (при сохранении того условия, что все сырье должно быть вывезено полностью) потребуются уже четыре переменные, обозначающие количество сырья, вывозимого со склада , на первые четыре завода. Теперь мы будем иметь неравенства с четырьмя переменными, и для получения геометрической интерпретации потребуется четырехмерное пространство, а при большем числе складов и заводов – пространства еще большей размерности.

К нахождению наибольших значений линейных функций на выпуклых многогранниках приводят и другие практические задачи, на первый взгляд никакого отношения к многогранникам не имеющие. Сюда относятся не только задачи о нахождении наиболее выгодных вариантов перевозок, но также задачи о наиболее выгодных способах раскроя материала, наиболее эффективных режимах работы предприятий, задачи о составлении производственных планов и т.п. Такие задачи объединяются новым научным направлением, получившим название линейное программирование. Тот факт, что эти задачи решаются геометрически с помощью нахождения наименьших или наибольших значений линейных функций на многогранниках (причем, как правило, в пространствах, имеющих размерность, большую трех), был впервые подмечен академиком Л. В. Канторовичем. Необходимость рассмотрения -мерных пространств при диктуется также математическими задачами физики, химии, биологии и других областей знания. Таким образом, хотя пространственные свойства окружающего мира хорошо описываются геометрическим трехмерным пространством, потребности практической деятельности человека приводят к необходимости рассмотрения пространств любой размерности .

Теперь мы можем вернуться к вопросу о том, что такое геометрия. Многомерные пространства, несомненно, относятся к области геометрии, поскольку в них математики рассматривают плоскости, прямые, векторы, углы, расстояния, скалярное произведение, перпендикулярность и т. д., т. е. подлинно геометрические понятия. Многомерные пространства и имеющиеся в них гиперплоскости, многогранники и т. п. нельзя назвать отражением пространственных форм реального мира. При всей практической значимости задач о раскрое материала, транспортных задач и т. д. порождаемые ими понятия многомерной геометрии являются лишь «пространственноподобными»; они похожи на то, что мы видим в реальном пространстве, но представляют собой следующую, более высокую ступень абстракции от пространственных форм реального трехмерного мира.

Понятия и факты геометрии постоянно применяются при решении практических задач. И дело не только в том, что, решая задачи по алгебре, математическому анализу или другим областям математики, мы часто делаем геометрические чертежи или используем формулы и теоремы геометрии. Гораздо важнее то, что, сопоставив алгебраические или иные формулы с геометрическими фактами, мы часто можем «увидеть» геометрически решение задачи и найти такие пути рассуждений, предугадать которые, глядя «чисто алгебраически» на нагромождение формул, просто не представляется возможным. Два приведенных выше примера иллюстрируют это. Вообще, характерной чертой современного развития математики является то, что геометрия все больше приобретает роль метода мышления, метода осмысления и организации математической информации буквально во всех областях математики и ее приложений.

Тела отличаются друг от друга весом, цветом, плотностью, твердостью, занимаемым ими местом и т. д.

Эти признаки называются свойствами тел.

Тела, обладающие этими свойствами, называются физическими телами .

Между этими свойствами особенного внимания заслуживает свойство тела, называемое протяженностью .

Протяженность есть свойство тела занимать в пространстве определенное место .

Его называют геометрическим свойством тела. Этим свойством определяется форма и величина тела.

Тело, обладающее только одним свойством протяженности, называется геометрическим телом. Рассматривая геометрическое тело, обращают внимание только на его форму и величину.

Остальные свойства тела называются физическими.

Геометрическое тело есть место, занимаемое физическим телом .

Геометрическое тело ограничено со всех сторон. Оно отделяется от остального пространства поверхностью тела. Чтобы выразить это, говорят, что

Поверхность есть предел тела .

Одна поверхность отделяется от другой линией. Линия ограничивает поверхность, поэтому линию называют границей поверхности.

Линия есть предел поверхности .

Конец линии называется точкой. Точка ограничивает и отделяет одну линию от другой, поэтому точку называют границей линии.

Точка есть предел линии .

На чертеже 1 изображено тело, имеющее форму закрытого со всех сторон ящика. Оно ограничено шестью сторонами, образующими поверхность ящика. На каждую из сторон ящика можно смотреть как на отдельную поверхность. Эти стороны отделяются друг от друга 12 линиями, образующими ребра ящика. Линии же отделяются друг от друга 8 точками, составляющими углы ящика.

Тела, поверхности и линии бывают неодинаковой величины. Это значит, что они занимают неодинаковое пространство, или неодинаковое протяжение.

Объем тела . Величина геометрического тела называется объемом или вместимостью тела.

Площадь поверхности. Величина поверхности называется площадью.

Длина линии. Величина линии называется длиною.

Длина, площадь и объем являются разнородными величинами. Они измеряются различными единицами и употребляются для различных целей. Чтобы найти расстояние двух предметов, ширину руки, глубину колодца, высоту башни, определяют длину линии. Для этого делают только одно измерение, то есть производят измерение в одном направлении. При измерении прибегают к единицам длины. Эти единицы длины называются верстами, саженями, аршинами, футами, метрами и т. д. Единица длины имеет одно измерение, поэтому и говорят, что

Линии имеют одно измерение. Линии не имеют ни ширины, ни толщины. Они имеют одну длину.

Чтобы иметь понятие о размерах картины, нужно знать ее длину и ширину. Длина и ширина дают понятие о площади картины. Для определения площади нужно стало быть сделать два измерения, или измерить картину в двух направлениях. Для определения величины площади прибегают к единицам площадей. За единицу площадей принимают квадрат, стороны которого имеют определенную единицу длины. Единицы площадей называются квадратными милями, квадратными верстами, квадратными футами и т. д. Квадратная верста есть площадь квадрата, у которого каждая сторона равна версте, и т. д. Единица площадей имеет два измерения: длину и ширину. Так как поверхности измеряются единицами площадей, то в этом смысле и говорят, что

Поверхности имеют два измерения. Поверхности не имеют толщины. Они могут иметь только длину и ширину.

Чтобы иметь понятие о вместимости комнаты или ящика, нужно знать их объемы. Для этого нужно знать длину, ширину и высоту комнаты, то есть сделать три измерения или измерить ее в трех направлениях. Объемы измеряются единицами объема. За единицу объема принимают куб, каждая сторона которого равна единице. Единицы объема имеют три измерения: длину, ширину и высоту. Так как объемы измеряются единицами объемов, то и говорят, что

Тела имеют три измерения.

Единицы объемов называются кубическими верстами, кубическими футами и т. д. Смотря по длине стороны куба.

Точка не имеет ни длины, ни ширины, ни вышины, или точка не имеет измерения.

Геометрические протяжения. Линии, поверхности и тела называются геометрических протяжениями.

Геометрия есть наука о свойствах и измерении геометрических протяжений .

Геометрия есть наука о пространстве. В ней излагается совокупность необходимых отношений, связанных с природой пространства.

Образование геометрических протяжений движением

На линию можно смотреть так же, как на след, оставляемый движением точки, на поверхность как на след, оставляемый движением лини и на тело как на след, оставляемый движением поверхности. На этих соображениях основаны другие определения линии, поверхности и тела.

Линия есть геометрическое место движущейся точки .

Поверхность есть геометрическое место движущейся линии .

Тело есть геометрическое место движущейся поверхности .

Все предметы, рассматриваемые в природе, имеют три измерения. В ней нет ни точек, ни линий, ни поверхностей, а существуют только тела. Однако в геометрии рассматривают точки, линии и поверхности отдельно от тел. При этом некоторое приближенное наглядное представление о поверхности дает нам очень тонкая оболочка тела, наглядное представление о линии дает очень тонкая нить или волосок и о точке конец нити.

Линии

Линии разделяются на прямые, ломаные и кривые.

есть кратчайшее расстояние между двумя точками.

Сильно натянутая тонкая нить дает некоторое наглядное представление о прямой линии.

Всякую линию обозначают буквами, поставленными при ее точках. Чертеж 2 изображает прямую линию AB. Во всякой прямой линии обращают внимание на ее направление и величину .

Направление прямой линии определяется ее положением.

есть последовательное и непрерывное соединение нескольких прямых, имеющих неодинаковое направление.

Ломаная линия ABCD (черт. 3) составлена из прямых AB, BC, CD, имеющих неодинаковое направление.

есть такая, которая не может быть составлена из прямых .

Линия, изображенная на черт. 4, будет кривой линией.

Линия, составленная из прямых и кривых, называется иногда составной линией.

Чертеж (4, а) представляет такую составную линию.

Поверхности

Поверхности разделяются на прямые или плоские и кривые . Плоская поверхность называется плоскостью.

Плоскость . Поверхность называется плоскостью в том случае, когда всякая прямая линия, проведенная через каждые две точки поверхности, лежит на ней всеми своими точками.

Кривая поверхность есть такая, которая не может быть составлен из плоскостей .

Прямая линия, проведенная между всякими двумя точками кривой поверхности, не помещается на ней всеми своими промежуточными точками.

Некоторое наглядное представление о плоскости дает поверхность хорошо полированного зеркала или поверхность стоячей воды. Примером кривых поверхностей может послужить поверхность бильярдного шара.

Разделы геометрии

Геометрия делится на планиметрию и стереометрию .

Планиметрия изучает свойство геометрических протяжений, рассматриваемых на плоскости.

Стереометрия изучает свойства таких геометрических протяжений, которые не могут быть представлены в одной плоскости.

Планиметрия называется геометрией на плоскости, стереометрия - геометрией в пространстве.

Геометрия разделяется еще на начальную и высшую. В настоящем сочинении предлагается изложение только начальной геометрии.

Различные формы выражения геометрических истин

Геометрические истины выражаются в форме аксиом, теорем, лемм и проблем или задач.

Аксиома есть истина, но своей очевидности не требующая доказательства .

Примерами истин, не требующих доказательства, могут послужить следующие аксиомы:

    Целое равно сумме своих частей.

    Целое больше своей части. Части меньше целого.

    Две величины, равные одной и той же третьей, равны между собой.

    Прибавив или вычтя из равных величин поровну, получим величины равные.

    Прибавив или вычтя из равных величин не поровну, получим величины неравные.

    Прибавив или вычтя из неравных величин поровну, получим величины неравные.

    Сумма больших больше суммы меньших величин.

    Однородная величина, которая не больше и не меньше другой, равна ей и т. д.

Теорема . Теоремой или предположением называется истина, требующая доказательства .

Доказательство есть совокупность рассуждений, делающих теорему очевидной .

Теорема доказывается при помощи аксиом.

Состав теоремы . Всякая теорема состоит из условия и заключения .

Условие называется иногда предположением, допущением , а заключение называют иногда следствием . Условие дано и потому получает иногда название данного .

Теорема называется обратной, если заключение делается условием, а условие или предположение заключением. В таком случае данная теорема называется прямою. Не всякая теорема имеет свою обратную.

Проблема или задача есть вопрос, разрешаемый при помощи теорем .

Лемма есть вспомогательная истина, облегчающая доказательство теоремы .



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация