Скорость звука. Скорость распространения звука в воздухе. Сколько скорость звука в км в час. А вот чему равна скорость звука

Главная / Авто

    Наблюдатель по часам отмечал время, прошедшее между появлением вспышки и моментом, когда был услышан звук. Временем, за которое свет проходил это расстояние, пренебрегали. Для того чтобы в наибольшей степени устранить влияние ветра, с каждой стороны было по пушке и наблюдателю и каждая пушка стреляла примерно в одно и то же время.

    Бралось среднее значение двух замеров времени, и на его основании . Она оказалась примерно равной 340 мс -1 . Большим недостатком этого способа измерения было то, что не всегда пушка оказывалась под рукой!

    Многие экзаменуемые описывают похожий способ. Один ученик стоит на одной стороне футбольного поля состартовым пистолетом, а другой - на другой его стороне с секундомером. Расстояние между ними тщательно измеряется рулеткой. Ученик пускает секундомер, когда видит, как из ствола появляется дымок, и останавливает его, услышав звук. То же самое проделывается, когда они поменяются местами, чтобы компенсировать воздействие ветра. Затем определяется среднее время.

    Поскольку звук распространяется со скоростью 340 мс -1 , то секундомер, скорее всего, не будет достаточно точен. Предпочтительнее оперировать сантисекундами или миллисекундами.

    Измерение скорости звука с помощью эха

    Когда произведен короткий резкий звук, например хлопок, то волновой импульс может быть отражен крупным препятствием, например стеной, и услышан наблюдателем. Этот отраженный импульс называется эхом. Представим, что на расстоянии 50 м от стены стоит человек и производит один хлопок. Когда эхо услышано, звук прошел 100 м. Измерение этого интервала секундомером не будет достаточно точным. Вместе с тем если второй человек держит секундомер, а первый хлопает, то время для большого числа звуков эха может быть получено с достаточной точностью.

    Предположим, что расстояние, на котором хлопающий человек находится перед стеной, составляет 50 м, а временной интервал между первым и сто первым хлопком составляет 30 с, тогда:

    скорость звука = пройденное расстояние / время одного хлопка = 100м: 30 / 100 с = 333 мс -1

    Измерение скорости звука с помощью осциллографа

    Более сложным способом прямого измерения скорости звука является применение осциллографа. Громкоговоритель испускает импульсы через равные интервалы, и они фиксируются катодно-лучевым осциллографом (см. рис.). Когда импульс получен микрофоном, он также будет зарегистрирован осциллографом. Если известны временные характеристики осциллографа, то может быть найден временной интервал между двумя импульсами.

    Замеряется расстояние между громкоговорителем и микрофоном. Скорость звука может быть найдена по формуле скорость = расстояние / время.

    Скорость звука в различных средах

    Скорость звука выше в твердых телах, чем в жидкостях, и выше в жидкостях, чем в газах. Проведенные в прошлом эксперименты на Женевском озере показали, что скорость звука в воде значительно выше, чем в воздухе. В пресной воде скорость звука составляет 1410 мс -1 , в морской воде - 1540 мс -1 . В железе скорость звука составляет примерно 5000 мс -1 .

    Посылая звуковые сигналы и отмечая временной интервал до прихода отраженного сигнала (эха), можно определить глубину моря и местонахождение косяков рыбы. Во время войны эхолоты высокочастотного звука применялись для обнаружения мин. Летучие мыши в полете используют особую форму эхосигнала для обнаружения препятствий. Летучая мышь испускает высокочастотный звук, который отражается от объекта на ее пути. Мышь слышит эхо, определяет местонахождение объекта и уклоняется от него.

    Скорость звука в воздухе зависит от атмосферных условий. Скорость звука пропорциональна квадратному корню из частного от деления давления на плотность. Изменения давлении не влияют на скорость звука в воздухе. Это связано с тем, что увеличение давления влечет за собой соответствующее увеличение плотности и отношение давления к плотности остается постоянным.

    На скорость звука в воздухе (как и в любом газе) влияют изменения температуры. Законы для газов указывают, что отношение давления к плотности пропорционально . Таким образом, скорость звука пропорциональна √T. Звуковой барьер легче преодолевать на больших высотах, потому что там ниже температура.

    На скорость звука влияют изменения влажности. Плотность водяного пара меньше плотности сухого воздуха при одинаковом давлении. Ночью, когда влажность повышается, звук распространяется быстрее. Звуки слышны более ясно тихой туманной ночью.

    Это происходит частично вследствие повышенной влажности, а частично из-за того, что в этих условиях обычно имеет место температурная инверсия, при которой звуки преломляются таким образом, что они не рассеиваются.

Для распространения звука необходима упругая среда. В вакууме звуковые волны распро­страняться не могут, так как там нечему колебаться. В этом можно убедиться на простом опыте. Если поместить под стеклянный колокол электрический звонок, то по мере выкачивания из-под колокола воздуха звук от звонка будет становиться все слабее и слабее, пока не прекратится совсем.

Известно, что во время грозы мы видим вспышку молнии и лишь через некоторое время слы­шим раскаты грома. Это запаздывание возникает из-за того, что скорость звука в воздухе значи­тельно меньше скорости света, идущего от молнии.

Скорость звука в воздухе впервые была измерена в 1636 г. французским ученым М. Мерсен-ном. При температуре 20 °С она равна 343 м/с, т. е. 1235 км/ч. Заметим, что именно до такого значения уменьшается на расстоянии 800 м скорость пули, вылетевшей из автомата Калашни­кова. Начальная скорость пули 825 м/с, что значительно превышает скорость звука в воздухе. Поэтому человек, услышавший звук выстрела или свист пули, может не беспокоиться: эта пуля его уже миновала. Пуля обгоняет звук выстрела и достигает своей жертвы до того, как приходит этот звук.

Скорость звука в газах зависит от температуры среды: с увеличением температуры воздуха она возрастает, а с уменьшением - убывает. При 0 °С скорость звука в воздухе составляет 332 м/с.

В разных газах звук распространяется с разной скоростью. Чем больше масса молекул газа, тем меньше скорость звука в нем. Так, при температуре 0 °С скорость звука в водороде составляет 1284 м/с, в гелии - 965 м/с, а в кислороде - 316 м/с.

Скорость звука в жидкостях, как правило, больше скорости звука в газах. Скорость звука в во­де впервые была измерена в 1826 г. Ж. Колладоном и Я. Штурмом. Свои опыты они проводили на Женевском озере в Швейцарии. На одной лодке поджигали порох и одновременно ударяли в ко­локол, опущенный в воду. Звук этого колокола, опущенного в воду, улавливался на другой лодке, которая находилась на расстоянии 14 км от первой. По интервалу времени между вспышкой све­тового сигнала и приходом звукового сигнала определили скорость звука в воде. При температуре 8°С она оказалась равной 1440 м/с.

Скорость звука в твердых телах больше, чем в жидкостях и газах. Если приложить ухо к рель­су, то после удара по другому концу рельса слышно два звука. Один из них достигает уха по рельсу, другой - по воздуху.

Хорошей проводимостью звука обладает земля. Поэтому в старые времена при осаде в крепос­тных стенах помещали «слухачей», которые по звуку, передаваемому землей, могли определить, ведет ли враг подкоп к стенам или нет. Прикладывая ухо к земле, также следили за приближе­нием вражеской конницы.

Твердые тела хорошо проводят звук. Благодаря этому люди, потерявшие слух, иной раз спо­собны танцевать под музыку, которая доходит до слуховых нервов не через воздух и наружное ухо, а через пол и кости.

Скорость звука можно определить, зная длину волны и частоту (или период) колебаний.

Чем теплее вода, тем больше в ней скорость звука. При погружении на большую глубину скорость звука в воде также увеличивается. Километры в час (км/ч) - внесистемная единица измерения скорости.

А в 1996г была запущена первая версия сайта с мгновенными вычислениями. Уже у античных авторов встречается указание на то, что звук обусловлен колебательным движением тела (Птолемей, Евклид). Аристотель отмечает, что скорость звука имеет конечную величину, и правильно представляет себе природу звука.

Скорость звука в газах и парах

В многофазных средах из-за явлений неупругого поглощения энергии скорость звука, вообще говоря, зависит от частоты колебаний (то есть наблюдается дисперсия скорости). Например, оценка скорости упругих волн в двухфазной пористой среде может быть выполнена с применением уравнений теории Био-Николаевского. При достаточно высоких частотах (выше частоты Био) в такой среде возникают не только продольные и поперечные волны, но также и продольная волна II-рода.

В чистой воде скорость звука составляет около 1500 м/с (см. опыт Колладона-Штурма) и увеличивается с ростом температуры. Объект, движущийся со скоростью 1 км/ч, преодолевает за один час один километр. Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите, пожалуйста.

Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. На земле прохождение ударной волны воспринимается как хлопок, похожий на звук выстрела. Превысив скорость звука, самолёт проходит сквозь эту область повышенной плотности воздуха, как бы прокалывает её – преодолевает звуковой барьер. Долгое время преодоление звукового барьера представлялось серьёзной проблемой в развитии авиации.

Маха числах полёта M(∞), несколько превышающих критическое число M*. Причина состоит в том, что при числах M(∞) > M* наступает волновой кризис, сопровождающийся появлением волнового сопротивления. 1) ворота в крепостях.

Почему в космосе темно? Правда ли, что звезды падают? Скорость, число Маха которой превышает 5, называется гиперзвуковой. Сверхзвуковая скорость - скорость перемещения тела (газового потока), превышающая скорость распространения звука в идентичных условиях.

Смотреть что такое «СВЕРХЗВУКОВАЯ СКОРОСТЬ» в других словарях:

В твёрдых телах звук распространяется гораздо быстрее, чем в воде или воздухе. Волна в каком-то смысле движение нечто, распространяющееся в пространстве. Волна – это процесс перемещения в пространстве изменения состояния. Давайте представим себе, каким образом происходит распространение звуковых волн в пространстве. Эти слои сжимаются, что в свою очередь снова создает избыточное давление, влияющее на соседние слои воздуха.

Это явление использовано в ултразвуковой дефектоскопии металлов. Из таблицы видно, что с уменьшением длины волны уменьшаются размеры пороков в металле (раковин, иногородных вкраплений), которые могут быть обнаруженыпучком ультразвука.

Дело в том, что при движении на скоростях полета свыше 450 км/ч к обычному сопротивлению воздуха, которое пропорционально квадрату скорости, начинает добавляться и волновое сопротивление. Волновое сопротивление резко увеличивается при приближении скорости самолета к скорости звука, в несколько раз превышая сопротивление, связанное с трением и образованием вихрей.

Чему равна скорость звука?

Помимо скорости, волновое сопротивление напрямую зависит от формы тела. Так вот, стреловидное крыло заметно уменьшает именно волновое сопротивление. Дальнейшее увеличение угла атаки при маневрировании ведет к распространению срыва потока по всему крылу, потери управляемости и сваливании самолета в штопор. Крыло с обратной стреловидностью частично лишено этого недостатка.

При создании крыла обратной стреловидности возникли сложные проблемы, связанные в первую очередь с упругой положительной дивергенцией (а попросту - со скручиванием и последующим разрушением крыла). Продуваемые в сверхзвуковых трубах крылья из алюминиевых и даже стальных сплавов разрушались. Лишь в 1980-х годах появились композитные материалы, позволяющие бороться со скручиванием с помощью специально ориентированной намотки углепластиковых волокон.

Для распространения звука необходима упругая среда. В вакууме звуковые волны распро­страняться не могут, так как там нечему колебаться. При температуре 20 °С она равна 343 м/с, т. е. 1235 км/ч. Заметим, что именно до такого значения уменьшается на расстоянии 800 м скорость пули, вылетевшей из автомата Калашни­кова.

В разных газах звук распространяется с разной скоростью. Введите значение единицы (скорость звука в воздухе), которое вы хотите пересчитать. В областях современных технологий и бизнеса выигрывает тот, кто успевает делать все быстро.

Наверное, многие из Вас слышали о таком понятии как скорость звука. Надеюсь большинство из Вас понимает, что это такое. А если даже и нет, то сейчас разберемся.

Что такое скорость?

Во-первых, нужно понимать, что скорость – это физическая величина, показывающая какое расстояние может преодолеть тело за единицу времени. Из этого определения следует, что автомобиль, движущийся со скоростью 70 км/ч, в 99% случаев может проехать 70 километров за один оборот часовой стрелки (то есть за час). 1% случаев скинем на то, что он может поломаться по дороге или дорога закончится. С машиной понятно. Вместо машины можно взять и другие объекты: человек бежит, камень летит, тушканчик прыгает и т д. Все эти тела являются реальными объектами, которые можно увидеть и даже потрогать. Но звук это ведь не камень или самолет, откуда у него скорость?

Понятие состоит из двух слов. С первым мы уже разобрались. Теперь перейдем ко второму. Что такое звук?

Звук – это то, что мы можем слышать, то есть это физическое явление. Это явление возникает в результате распространения звуковой волны в твердой, жидкой или газообразной среде. Звуковая волна очень похожа на обычную морскую волну, которую все видели вживую или по телевизору (не зря же их назвали одинаково – волна ). Но более точно можно представить звуковую волну как круги на воде, которые появляются после бросания камешка. Ведь звук распространяется во все стороны одинаково! Если Вы покричите на стакан с водой, то Вас заберут в дурку Вы сможете увидеть звук!!! В виде кругов на поверхности воды.

То есть звуковая волна – это по сути колебание атомов той среды, в которой распространяется звук. Именно поэтому от громкой музыки трясутся окна.

Теперь мы знаем, что такое скорость и что такое звук, так давайте же соединим эти понятия вместе!

Скорость звука – величина, показывающая на какое расстояние может распространиться звуковая волна за единицу времени.

Как мы уже разобрались, для движения звуковой волны необходимо (воздух, вода, твердое тело), которые будут колебаться. Именно поэтому в космосе нет звука! Так как там нет атомов (практически нет, немножко есть, но очень мало)! И самое интересное, что звук распространяется в воздухе со скоростью 340 м/с, в воде – со скоростью 1500 м/с, а в твердых телах – со скоростями 3000-6000 м/с. В этом нет ничего удивительного, так как чем меньше расстояние между атомами, тем быстрее пробежит звук.

Скорость звука - скорость распространения упругих волн в среде: как продольных (в газах, жидкостях или твёрдых телах), так и поперечных, сдвиговых (в твёрдых телах). Определяется упругостью и плотностью среды: как правило, в газах скорость звука меньше, чем в жидкостях , а в жидкостях - меньше, чем в твёрдых телах. Также, в газах скорость звука зависит от температуры данного вещества , в монокристаллах - от направления распространения волны. Обычно не зависит от частоты волны и её амплитуды ; в тех случаях, когда скорость звука зависит от частоты, говорят о дисперсии звука.

Энциклопедичный YouTube

  • 1 / 5

    Уже у античных авторов встречается указание на то, что звук обусловлен колебательным движением тела (Птолемей , Евклид). Аристотель отмечает, что скорость звука имеет конечную величину, и правильно представляет себе природу звука . Попытки экспериментального определения скорости звука относятся к первой половине XVII в. Ф.Бэкон в «Новом органоне » указал на возможность определения скорости звука путём сравнения промежутков времени между вспышкой света и звуком выстрела. Применив этот метод, различные исследователи (М.Мерсенн , П.Гассенди , У.Дерхам , группа учёных Парижской академии наук - Д.Кассини , Ж.Пикар , Гюйгенс , Рёмер) определили значение скорости звука (в зависимости от условий экспериментов, 350-390 м/с). Теоретически вопрос о скорости звука впервые рассмотрел И.Ньютон в своих «Началах ». Ньютон фактически предполагал изотермичность распространения звука, поэтому получил заниженную оценку. Правильное теоретическое значение скорости звука было получено Лапласом .

    Расчёт скорости в жидкости и газе

    Скорость звука в однородной жидкости (или газе) вычисляется по формуле:

    c = 1 β ρ {\displaystyle c={\sqrt {\frac {1}{\beta \rho }}}}

    В частных производных:

    c = − v 2 (∂ p ∂ v) s = − v 2 C p C v (∂ p ∂ v) T {\displaystyle c={\sqrt {-v^{2}\left({\frac {\partial p}{\partial v}}\right)_{s}}}={\sqrt {-v^{2}{\frac {C_{p}}{C_{v}}}\left({\frac {\partial p}{\partial v}}\right)_{T}}}}

    где β {\displaystyle \beta } - адиабатическая сжимаемость среды; ρ {\displaystyle \rho } - плотность; C p {\displaystyle C_{p}} - изобарная теплоемкость; C v {\displaystyle C_{v}} - изохорная теплоемкость; p {\displaystyle p} , v {\displaystyle v} , T {\displaystyle T} - давление, удельный объём и температура среды; s {\displaystyle s} - энтропия среды.

    Для растворов и других сложных физико-химических систем (например, природный газ, нефть) данные выражения могут давать очень большую погрешность.

    Твёрдые тела

    При наличии границ раздела, упругая энергия может передаваться посредством поверхностных волн различных типов, скорость которых отличается от скорости продольных и поперечных волн. Энергия этих колебаний может во много раз превосходить энергию объемных волн.



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация