Электронное строение атома углерода. Гибридизация атомных орбиталей углерода

Главная / Авто

Содержание статьи

УГЛЕРОД, С (carboneum), неметаллический химический элемент IVA группы (C, Si, Ge, Sn, Pb) периодической системы элементов. Встречается в природе в виде кристаллов алмаза (рис. 1), графита или фуллерена и других форм и входит в состав органических (уголь, нефть, организмы животных и растений и др.) и неорганических веществ (известняк, пищевая сода и др.).

Углерод широко распространен, но содержание его в земной коре всего 0,19%.


Углерод широко используется в виде простых веществ. Кроме драгоценных алмазов, являющихся предметом ювелирных украшений, большое значение имеют промышленные алмазы – для изготовления шлифовального и режущего инструмента.

Древесный уголь и другие аморфные формы углерода применяются для обесцвечивания, очистки, адсорбции газов, в областях техники, где требуются адсорбенты с развитой поверхностью. Карбиды, соединения углерода с металлами, а также с бором и кремнием (например, Al 4 C 3 , SiC, B 4 C) отличаются высокой твердостью и используются для изготовления абразивного и режущего инструмента. Углерод входит в состав сталей и сплавов в элементном состоянии и в виде карбидов. Насыщение поверхности стальных отливок углеродом при высокой температуре (цементация) значительно увеличивает поверхностную твердость и износостойкость. См. также СПЛАВЫ .

В природе существует множество различных форм графита; некоторые получены искусственно; имеются аморфные формы (например, кокс и древесный уголь). Сажа, костяной уголь, ламповая сажа, ацетиленовая сажа образуются при сжигании углеводородов при недостатке кислорода. Так называемый белый углерод получается сублимацией пиролитического графита при пониженном давлении – это мельчайшие прозрачные кристаллики графитовых листочков с заостренными кромками.

Историческая справка.

Графит, алмаз и аморфный углерод известны с древности. Издавна известно, что графитом можно маркировать другой материал, и само название «графит», происходящее от греческого слова, означающего «писать», предложено А.Вернером в 1789. Однако история графита запутана, часто за него принимали вещества, обладающие сходными внешними физическими свойствами, например молибденит (сульфид молибдена), одно время считавшийся графитом. Среди других названий графита известны «черный свинец», «карбидное железо», «серебристый свинец». В 1779 К.Шееле установил, что графит можно окислить воздухом с образованием углекислого газа.

Впервые алмазы нашли применение в Индии, а в Бразилии драгоценные камни приобрели коммерческое значение в 1725; месторождения в Южной Африке были открыты в 1867. В 20 в. основными производителями алмазов являются ЮАР, Заир, Ботсвана, Намибия, Ангола, Сьерра-Леоне, Танзания и Россия. Искусственные алмазы, технология которых была создана в 1970, производятся для промышленных целей.

Аллотропия.

Если структурные единицы вещества (атомы для одноатомных элементов или молекулы для полиатомных элементов и соединений) способны соединяться друг с другом в более чем одной кристаллической форме, это явление называется аллотропией. У углерода три аллотропические модификации – алмаз, графит и фуллерен. В алмазе каждый атом углерода имеет 4 тетраэдрически расположенных соседа, образуя кубическую структуру (рис. 1,а ). Такая структура отвечает максимальной ковалентности связи, и все 4 электрона каждого атома углерода образуют высокопрочные связи С–С, т.е. в структуре отсутствуют электроны проводимости. Поэтому алмаз отличается отсутствием проводимости, низкой теплопроводностью, высокой твердостью; он самый твердый из известных веществ (рис. 2). На разрыв связи С–С (длина связи 1,54 Å, отсюда ковалентный радиус 1,54/2 = 0,77 Å) в тетраэдрической структуре требуются большие затраты энергии, поэтому алмаз, наряду с исключительной твердостью, характеризуется высокой температурой плавления (3550° C).

Другой аллотропической формой углерода является графит, сильно отличающийся от алмаза по свойствам. Графит – мягкое черное вещество из легко слоящихся кристалликов, отличающееся хорошей электропроводностью (электрическое сопротивление 0,0014 Ом·см). Поэтому графит применяется в дуговых лампах и печах (рис. 3), в которых необходимо создавать высокие температуры. Графит высокой чистоты применяют в ядерных реакторах в качестве замедлителя нейтронов. Температура плавления его при повышенном давлении равна 3527° C. При обычном давлении графит сублимируется (переходит из твердого состояния в газ) при 3780° C.

Структура графита (рис. 1,б ) представляет собой систему конденсированных гексагональных колец с длиной связи 1,42 Å (значительно короче, чем в алмазе), но при этом каждый атом углерода имеет три (а не четыре, как в алмазе) ковалентные связи с тремя соседями, а четвертая связь (3,4 Å) слишком длинна для ковалентной связи и слабо связывает параллельно уложенные слои графита между собой. Именно четвертый электрон углерода определяет тепло- и электропроводность графита – эта более длинная и менее прочная связь формирует меньшую компактность графита, что отражается в меньшей твердости его в сравнении с алмазом (плотность графита 2,26 г/см 3 , алмаза – 3,51 г/см 3). По той же причине графит скользкий на ощупь и легко отделяет чешуйки вещества, что и используется для изготовления смазки и грифелей карандашей. Свинцовый блеск грифеля объясняется в основном наличием графита.

Волокна углерода имеют высокую прочность и могут использоваться для изготовления искусственного шелка или другой пряжи с высоким содержанием углерода.

При высоких давлении и температуре в присутствии катализатора, например железа, графит может превращаться в алмаз. Этот процесс реализован для промышленного получения искусственных алмазов. Кристаллы алмаза растут на поверхности катализатора. Равновесие графит алмаз существует при 15 000 атм и 300 K или при 4000 атм и 1500 K. Искусственные алмазы можно получать и из углеводородов.

К аморфным формам углерода, не образующим кристаллов, относят древесный уголь, получаемый нагревом дерева без доступа воздуха, ламповую и газовую сажу, образующуюся при низкотемпературном сжигании углеводородов при недостатке воздуха и конденсируемую на холодной поверхности, костяной уголь – примесь к фосфату кальция в процессе деструкции костной ткани, а также каменный уголь (природное вещество с примесями) и кокс, сухой остаток, получаемый при коксовании топлив методом сухой перегонки каменного угля или нефтяных остатков (битуминозных углей), т.е. нагреванием без доступа воздуха. Кокс применяется для выплавки чугуна, в черной и цветной металлургии. При коксовании образуются также газообразные продукты – коксовый газ (H 2 , CH 4 , CO и др.) и химические продукты, являющиеся сырьем для получения бензина, красок, удобрений, лекарственных препаратов, пластмасс и т.д. Схема основного аппарата для производства кокса – коксовой печи – приведена на рис. 3.

Различные виды угля и сажи отличаются развитой поверхностью и поэтому используются как адсорбенты для очистки газа, жидкостей, а также как катализаторы. Для получения различных форм углерода применяют специальные методы химической технологии. Искусственный графит получают прокаливанием антрацита или нефтяного кокса между углеродными электродами при 2260° С (процесс Ачесона) и используют в производстве смазочных материалов и электродов, в частности для электролитического получения металлов.

Строение атома углерода.

Ядро наиболее стабильного изотопа углерода массой 12 (распространенность 98,9%) имеет 6 протонов и 6 нейтронов (12 нуклонов), расположенных тремя квартетами, каждый содержит 2 протона и два нейтрона аналогично ядру гелия. Другой стабильный изотоп углерода – 13 C (ок. 1,1%), а в следовых количествах существует в природе нестабильный изотоп 14 C с периодом полураспада 5730 лет, обладающий b -излучением. В нормальном углеродном цикле живой материи участвуют все три изотопа в виде СO 2 . После смерти живого организма расход углерода прекращается и можно датировать С-содержащие объекты, измеряя уровень радиоактивности 14 С. Снижение b -излучения 14 CO 2 пропорционально времени, прошедшему с момента смерти. В 1960 У.Либби за исследования с радиоактивным углеродом был удостоен Нобелевской премии.

В основном состоянии 6 электронов углерода образуют электронную конфигурацию 1s 2 2s 2 2p x 1 2p y 1 2p z 0 . Четыре электрона второго уровня являются валентными, что соответствует положению углерода в IVA группе периодической системы (см . ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ) . Поскольку для отрыва электрона от атома в газовой фазе требуется большая энергия (ок. 1070 кДж/моль), углерод не образует ионные связи с другими элементами, так как для этого необходим был бы отрыв электрона с образованием положительного иона. Имея электроотрицательность, равную 2,5, углерод не проявляет и сильного сродства к электрону, соответственно не являясь активным акцептором электронов. Поэтому он не склонен к образованию частицы с отрицательным зарядом. Но с частично ионным характером связи некоторые соединения углерода существуют, например, карбиды. В соединениях углерод проявляет степень окисления 4. Чтобы четыре электрона смогли участвовать в образовании связей, необходимо распаривание 2s -электронов и перескок одного из этих электронов на 2p z -орбиталь; при этом образуются 4 тетраэдрические связи с углом между ними 109°. В соединениях валентные электроны углерода лишь частично оттянуты от него, поэтому углерод образует прочные ковалентные связи между соседними атомами типа С–С с помощью общей электронной пары. Энергия разрыва такой связи равна 335 кДж/моль, тогда как для связи Si–Si она составляет всего 210 кДж/моль, поэтому длинные цепочки –Si–Si– неустойчивы. Ковалентный характер связи сохраняется даже в соединениях высокореакционноспособных галогенов с углеродом, CF 4 и CCl 4 . Углеродные атомы способны предоставлять на образование связи более одного электрона от каждого атома углерода; так образуются двойная С=С и тройная СєС связи. Другие элементы также образуют связи между своими атомами, но только углерод способен образовывать длинные цепи. Поэтому для углерода известны тысячи соединений, называемых углеводородами, в которых углерод связан с водородом и другими углеродными атомами, образуя длинные цепи или кольцевые структуры. См . ХИМИЯ ОРГАНИЧЕСКАЯ.

В этих соединениях возможно замещение водорода на другие атомы, наиболее часто на кислород, азот и галогены с образованием множества органических соединений. Важное значение среди них занимают фторуглеводороды – углеводороды, в которых водород замещен на фтор. Такие соединения чрезвычайно инертны, и их используют как пластичные и смазочные материалы (фторуглероды, т.е. углеводороды, в которых все атомы водорода замещены на атомы фтора) и как низкотемпературные хладагенты (хладоны, или фреоны, – фторхлоруглеводороды).

В 1980-х годах физиками США был обнаружены очень интересные соединения углерода, в которых атомы углерода соединены в 5- или 6-угольники, образующие молекулу С 60 по форме полого шара, имеющего совершенную симметрию футбольного мяча. Поскольку такая конструкция лежит в основе «геодезического купола», изобретенного американским архитектором и инженером Бакминстером Фуллером, новый класс соединений был назван «бакминстерфуллеренами» или «фуллеренами» (а также более коротко – «фазиболами» или «бакиболами»). Фуллерены – третья модификация чистого углерода (кроме алмаза и графита), состоящая из 60 или 70 (и даже более) атомов, – была получена действием лазерного излучения на мельчайшие частички углерода. Фуллерены более сложной формы состоят из нескольких сотен атомов углерода. Диаметр молекулы С 60 ~ 1нм. В центре такой молекулы достаточно пространства для помещения большого атома урана.

Стандартная атомная масса.

В 1961 Международные союзы теоретической и прикладной химии (ИЮПАК) и по физике приняли за единицу атомной массы массу изотопа углерода 12 C, упразднив существовавшую до того кислородную шкалу атомных масс. Атомная масса углерода в этой системе равна 12,011, так как она является средней для трех природных изотопов углерода с учетом их распространенности в природе. См . АТОМНАЯ МАССА.

Химические свойства углерода и некоторых его соединений.

Некоторые физические и химические свойства углерода приведены в статье ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ. Реакционная способность углерода зависит от его модификации, температуры и дисперсности. При низких температурах все формы углерода достаточно инертны, но при нагревании окисляются кислородом воздуха, образуя оксиды:

Мелкодисперсный углерод в избытке кислорода способен взрываться при нагревании или от искры. Кроме прямого окисления существуют более современные методы получения оксидов.

Субоксид углерода

C 3 O 2 образуется при дегидратации малоновой кислоты над P 4 O 10:

C 3 O 2 имеет неприятный запах, легко гидролизуется, вновь образуя малоновую кислоту.

Монооксид углерода(II) СО образуется при окислении любой модификации углерода в условиях недостатка кислорода. Реакция экзотермична, выделяется 111,6 кДж/моль. Кокс при температуре белого каления реагирует с водой: C + H 2 O = CO + H 2 ; образующаяся газовая смесь называется «водяной газ» и является газообразным топливом. СO образуется также при неполном сгорании нефтепродуктов, в заметных количествах содержится в автомобильных выхлопах, получается при термической диссоциации муравьиной кислоты:

Степень окисления углерода в СО равна +2, а поскольку углерод более устойчив в степени окисления +4, то СО легко окисляется кислородом до CO 2: CO + O 2 → CO 2 , эта реакция сильно экзотермична (283 кДж/моль). СО применяют в промышленности в смеси с H 2 и другими горючими газами в качестве топлива или газообразного восстановителя. При нагревании до 500° C CO в заметной степени образует С и CO 2 , но при 1000° C равновесие устанавливается при малых концентрациях СO 2 . CO реагирует с хлором, образуя фосген – COCl 2 , аналогично протекают реакции с другими галогенами, в реакции с серой получается сульфид карбонила COS, с металлами (M) СO образует карбонилы различного состава M(CO) x , являющиеся комплексными соединениями. Карбонил железа образуется при взаимодействии гемоглобина крови с CO, препятствуя реакции гемоглобина с кислородом, так как карбонил железа – более прочное соединение. В результате блокируется функция гемоглобина как переносчика кислорода к клеткам, которые при этом погибают (и в первую очередь поражаются клетки мозга). (Отсюда еще одно название СО – «угарный газ»). Уже 1% (об.) СO в воздухе опасен для человека, если он находится в такой атмосфере более 10 мин. Некоторые физические свойства СО приведены в таблице.

Диоксид углерода, или оксид углерода(IV) CO 2 образуется при сгорании элементного углерода в избытке кислорода c выделением тепла (395 кДж/моль). CO 2 (тривиальное название – «углекислый газ») образуется также при полном окислении СО, нефтепродуктов, бензина, масел и др. органических соединений. При растворении карбонатов в воде в результате гидролиза также выделяется СО 2:

Такой реакцией часто пользуются в лабораторной практике для получения CO 2 . Этот газ можно получить и при прокаливании бикарбонатов металлов:

при газофазном взаимодействии перегретого пара с СО:

при сжигании углеводородов и их кислородпроизводных, например:

Аналогично окисляются пищевые продукты в живом организме с выделением тепловой и других видов энергии. При этом окисление протекает в мягких условиях через промежуточные стадии, но конечные продукты те же – СO 2 и H 2 O, как, например, при разложении сахаров под действием ферментов, в частности при ферментации глюкозы:

Многотоннажное производство углекислого газа и оксидов металлов осуществляется в промышленности термическим разложением карбонатов:

CaO в больших количествах используется в технологии производства цемента. Термическая стабильность карбонатов и затраты теплоты на их разложение по этой схеме возрастают в ряду CaCO 3 (см. также ПОЖАРНАЯ ПРОФИЛАКТИКА И ПРОТИВОПОЖАРНАЯ ЗАЩИТА).

Электронное строение оксидов углерода.

Электронное строение любого оксида углерода можно описать тремя равновероятными схемами с различным расположением электронных пар – тремя резонансными формами:

Все оксиды углерода имеют линейное строение.

Угольная кислота.

При взаимодействии СO 2 с водой образуется угольная кислота H 2 CO 3 . В насыщенном растворе CO 2 (0,034 моль/л) только часть молекул образует H 2 CO 3 , а бóльшая часть CO 2 находится в гидратированном состоянии CO 2 ЧH 2 O.

Карбонаты.

Карбонаты образуются при взаимодействии оксидов металлов с CO 2 , например, Na 2 O + CO 2 Na 2 CO 3 .

За исключением карбонатов щелочных металлов, остальные практически нерастворимы в воде, а карбонат кальция частично растворим в угольной кислоте или растворе CO 2 в воде под давлением:

Эти процессы происходят в подземных водах, протекающих через пласт известняка. В условиях низкого давления и испарения из грунтовых вод, содержащих Ca(HCO 3) 2 , осаждается CaCO 3 . Так происходит рост сталактитов и сталагмитов в пещерах. Окраска этих интересных геологических образований объясняется присутствием в водах примесей ионов железа, меди, марганца и хрома. Углекислый газ реагирует с гидроксидами металлов и их растворами с образованием гидрокарбонатов, например:

CS 2 + 2Cl 2 ® CCl 4 + 2S

Тетрахлорид CCl 4 – негорючее вещество, используется в качестве растворителя в процессах сухой чистки, но не рекомендуется применять его как пламегаситель, так как при высокой температуре происходит образование ядовитого фосгена (газообразное отравляющее вещество). Сам ССl 4 также ядовит и при вдыхании в заметных количествах может вызвать отравление печени. СCl 4 образуется и по фотохимической реакции между метаном СH 4 и Сl 2 ; при этом возможно образование продуктов неполного хлорирования метана – CHCl 3 , CH 2 Cl 2 и CH 3 Cl. Аналогично протекают реакции и с другими галогенами.

Реакции графита.

Графит как модификация углерода, отличающаяся большими расстояниями между слоями гексагональных колец, вступает в необычные реакции, например, щелочные металлы, галогены и некоторые соли (FeCl 3) проникают между слоями, образуя соединения типа KC 8 , KC 16 (называемые соединениями внедрения, включения или клатратами). Сильные окислители типа KClO 3 в кислой среде (серной или азотной кислоты) образуют вещества с большим объемом кристаллической решетки (до 6 Å между слоями), что объясняется внедрением кислородных атомов и образованием соединений, на поверхности которых в результате окисления образуются карбоксильные группы (–СООН) – соединения типа оксидированного графита или меллитовой (бензолгексакарбоновой) кислоты С 6 (COOH) 6 . В этих соединениях отношение С:O может изменяться от 6:1 до 6:2,5.

Карбиды.

Углерод образует с металлами, бором и кремнием разнообразные соединения, называемые карбидами. Наиболее активные металлы (IA–IIIA подгрупп) образуют солеподобные карбиды, например Na 2 C 2 , CaC 2 , Mg 4 C 3 , Al 4 C 3 . В промышленности карбид кальция получают из кокса и известняка по следующим реакциям:

Карбиды неэлектропроводны, почти бесцветны, гидролизуются с образованием углеводородов, например

CaC 2 + 2H 2 O = C 2 H 2 + Ca(OH) 2

Образующийся по реакции ацетилен C 2 H 2 служит исходным сырьем в производстве многих органических веществ. Этот процесс интересен, так как он представляет переход от сырья неорганической природы к синтезу органических соединений. Карбиды, образующие при гидролизе ацетилен, называются ацетиленидами. В карбидах кремния и бора (SiC и B 4 C) связь между атомами ковалентная. Переходные металлы (элементы B-подгрупп) при нагревании с углеродом тоже образуют карбиды переменного состава в трещинах на поверхности металла; связь в них близка к металлической. Некоторые карбиды такого типа, например WC, W 2 C, TiC и SiC, отличаются высокой твердостью и тугоплавкостью, обладают хорошей электропроводностью. Например, NbC, TaC и HfC – наиболее тугоплавкие вещества (т.пл. = 4000–4200° С), карбид диниобия Nb 2 C – сверхпроводник при 9,18 К, TiC и W 2 C по твердости близки алмазу, а твердость B 4 C (структурного аналога алмаза) составляет 9,5 по шкале Мооса (см . рис. 2). Инертные карбиды образуются, если радиус переходного металла

Азотпроизводные углерода.

К этой группе относится мочевина NH 2 CONH 2 – азотное удобрение, применяемое в виде раствора. Мочевину получают из NH 3 и CO 2 при нагревании под давлением:

Дициан (CN) 2 по многим свойствам подобен галогенам и его часто называют псевдогалоген. Дициан получают мягким окислением цианид-иона кислородом, пероксидом водорода или ионом Cu 2+ : 2CN – ® (CN) 2 + 2e.

Цианид-ион, являясь донором электронов, легко образует комплексные соединения с ионами переходных металлов. Подобно СО, цианид-ион является ядом, связывая жизненно важные соединения железа в живом организме. Цианидные комплексные ионы имеют общую формулу –0,5x , где х – координационное число металла (комплексообразователя), эмпирически равно удвоенному значению степени окисления иона металла. Примерами таких комплексных ионов являются (строение некоторых ионов приведено ниже) тетрацианоникелат(II)-ион 2– , гексацианоферрат(III) 3– , дицианоаргентат – :

Карбонилы.

Монооксид углерода способен непосредственно реагировать со многими металлами или ионами металлов, образуя комплексные соединения, называемые карбонилами, например Ni(CO) 4 , Fe(CO) 5 , Fe 2 (CO) 9 , 3 , Mo(CO) 6 , 2 . Связь в этих соединениях аналогична связи в описанных выше цианокомплексах. Ni(CO) 4 – летучее вещество, используется для отделения никеля от других металлов. Ухудшение структуры чугуна и стали в конструкциях часто связано с образованием карбонилов. Водород может входить в состав карбонилов, образуя карбонилгидриды, такие, как H 2 Fe(CO) 4 и HCo(CO) 4 , проявляющие кислотные свойства и реагирующие со щелочью:

H 2 Fe(CO) 4 + NaOH → NaHFe(CO) 4 + H 2 O

Известны также карбонилгалогениды, например Fe(CO)X 2 , Fe(CO) 2 X 2 , Co(CO)I 2 , Pt(CO)Cl 2 , где Х – любой галоген .

Углеводороды.

Известно огромное количество соединений углерода с водородом

Органическая химия – химия атома углерода. Число органических соединений в десятки раз больше, чем неорганических, что может быть объяснено только особенностями атома углерода :

а) он находится в середине шкалы электроотрицательности и второго периода, поэтому ему невыгодно отдавать свои и принимать чужие электроны и приобретать положительный или отрицательный заряд;

б) особенное строение электронной оболочки – нет электронных пар и свободных орбиталей (есть еще только один атом с подобным строением – водород, вероятно, поэтому углерод с водородом образует столь много соединений - углеводородов).

Электронное строение атома углерода

С – 1s 2 2s 2 2p 2 или 1s 2 2s 2 2p x 1 2p y 1 2p z 0

В графическом виде:

Атом углерода в возбужденном состоянии имеет следующую электронную формулу:

*С – 1s 2 2s 1 2p 3 или 1s 2 2s 1 2p x 1 2p y 1 2p z 1

В виде ячеек:

Форма s- и p – орбиталей


Атомная орбиталь - область пространства, где с наибольшей вероятностью можно обнаружить электрон, с соответствующими квантовыми числами.

Она представляет собой трехмерную электронную «контурную карту», в которой волновая функция определяет относительную вероятность нахождения электрона в данной конкретной точке орбитали.

Относительные размеры атомных орбиталей увеличиваются по мере возрастания их энергий (главное квантовое число - n), а их форма и ориентация в пространстве определяется – квантовыми числами l и m. Электроны на орбиталях характеризуются спиновым квантовым числом. На каждой орбитали могут находиться не более 2 электронов с противоположными спинами.

При образовании связей с другими атомами атом углерода преобразует свою электронную оболочку так, чтобы образовались наиболее прочные связи, а, следовательно, выделилось как можно больше энергии, и система приобрела наибольшую устойчивость.

Для изменения электронной оболочки атома требуется энергия, которая затем компенсируется за счет образования более прочных связей.

Преобразование электронной оболочки (гибридизация) может быть, в основном, 3 типов, в зависимости от числа атомов, с которыми атом углерода образует связи.

Виды гибридизации:

sp 3 – атом образует связи с 4 соседними атомами (тетраэдрическая гибридизация):

Электронная формула sp 3 – гибридного атома углерода:

*С –1s 2 2(sp 3) 4 в виде ячеек

Валентный угол между гибридными орбиталями ~109°.

Стереохимическая формула атома углерода:

sp 2 – Гибридизация (валентное состояние) – атом образует связи с 3 соседними атомами (тригональная гибридизация):

Электронная формула sp 2 – гибридного атома углерода:

*С –1s 2 2(sp 2) 3 2p 1 в виде ячеек

Валентный угол между гибридными орбиталями ~120°.

Стереохимическая формула sp 2 – гибридного атома углерода:

sp – Гибридизация (валентное состояние ) – атом образует связи с 2 соседними атомами (линейная гибридизация):

Электронная формула sp – гибридного атома углерода:

*С –1s 2 2(sp) 2 2p 2 в виде ячеек

Валентный угол между гибридными орбиталями ~180°.

Стереохимическая формула:

Во всех видах гибридизации участвует s-орбиталь, т.к. она имеет минимум энергии.

Перестройка электронного облака позволяет образовывать максимально прочные связи и минимальное взаимодействие атомов в образующейся молекуле. При этом гибридные орбитали могут быть не идентичные, а валентные углы – разные, например СН 2 Cl 2 и СCl 4

2. Ковалентные связи в соединениях углерода

Ковалентные связи, свойства, способы и причины образования – школьная программа.

Напомню, лишь что:

1. Образование связи между атомами можно рассматривать как результат перекрывания их атомных орбиталей, при этом, чем оно эффективнее (больше интеграл перекрывания), тем прочнее связь.

Согласно расчетным данным, относительные эффективности перекрывания атомных орбиталей S отн возрастают следующим образом:

Следовательно, использование гибридных орбиталей, например, sp 3 -орбиталей углерода в образовании связей с четырьмя атомами водорода, приводит к возникновению более прочных связей.

2. Ковалентные связи в соединениях углерода образуются двумя способами:

А) Если две атомные орбитали перекрываются вдоль их глав­ных осей, то образующуюся связь называют - σ-связью .

Геометрия. Так, при обра­зовании связей с атомами водорода в метане четыре гибридные sр 3 ~орбитали атома углерода перекрываются с s-орбиталями четырех атомов водорода, образуя четыре идентичные прочные σ-связи, располагающиеся под углом 109°28" друг к другу (стандартный тетраэдрический угол). Сходная строго симмет­ричная тетраэдрическая структура возникает также, например, при образовании ССl 4 ; если же атомы, образующие связи с уг­леродом, неодинаковы, например в случае СН 2 С1 2 , пространст­венная структура будет несколько отличаться от полностью симметричной, хотя по существу она остается тетраэдрической.

Длина σ-связи между атомами углерода зависит от гибридизации атомов и уменьшается при переходе от sр 3 – гибридизации к sр. Это объясняется тем, что s – орбиталь находится ближе к ядру, чем р-орбиталь, поэтому, чем больше её доля в гибридной орбитале, тем она короче, а следовательно, короче и образующаяся связь

Б) Если две атомные p -орбитали, расположенные параллельно друг другу, осуществляют боковое перекрывание над и под плоскостью, где расположены атомы, то образующуюся связь называют - π (пи) -связью

Боковое перекрывание атомных орбиталей менее эффективно, чем перекры­вание вдоль главной оси, поэтому π -связи менее прочны, чем σ -связи. Это проявляется, в частности, в том, что энергия двойной углерод-углеродной связи превышает энергию одинарной связи менее чем в два раза. Так, энергия связи С-С в этане равна 347 кДж/моль, тогда как энергия связи С = С в этене составляет только 598 кДж/моль, а не ~ 700 кДж/моль.

Степень бокового перекрывания двух атомных 2р-орбиталей , а следовательно, и прочность π -связи максимальна, если два атома углерода и четыре связанные с ними атомы расположены строго в одной плоскости , т. е. если они копланарны , поскольку только в этом случае атомные 2р-орбитали точно параллельны одна другой и поэтому способны к максимальному перекрыванию. Любое отклонение от копланарного состояния вследствие пово­рота вокруг σ -связи, соединяющей два атома углерода, приве­дет к уменьшению степени перекрывания и соответственно к снижению прочности π -связи, которая, таким образом, способ­ствует сохранению плоскостности молекулы.

Вращение вокруг двойной углерод-углеродной связи невозможно.

Распределение π -электронов над и под плоскостью молекулы означает су­ществование области отрицательного заряда , готовой к взаимо­действию с любыми электронодефицитными реагентами.

Атомы кислорода, азота и др. также имеют разные валентные состояния (гибридизации), при этом их электронные пары могут находиться как на гибридных, так и p-орбиталях.

Модель атома углерода

Валентные электроны атома углерода располагаются на одной 2s-орбитали и двух 2р-орбиталях. 2р-Орбитали расположены под углом 90° друг к другу, а 2s-орбиталь имеет сферическую симметрию. Таким образом, расположение атомных орбиталей углерода в пространстве не объясняет возникновения в органических соединениях валентных углов 109,5°, 120° и 180°.

Чтобы разрешить это противоречие, было введено понятие гибридизации атомных орбиталей. Для понимания природы трех вариантов расположения связей атома углерода понадобились представления о трех типах гибридизации.

Возникновением концепции гибридизации мы обязаны Лайнусу Полингу, много сделавшему для развития теории химической связи.

Концепция гибридизации объясняет, каким образом атом углерода видоизменяет свои орбитали при образовании соединений. Ниже мы будем рассматривать этот процесс трансформации орбиталей постадийно. При этом надо иметь в виду, что расчленение процесса гибридизации на стадии или этапы есть, на самом деле, не более чем мысленный прием, позволяющий более логично и доступно изложить концепцию. Тем не менее заключения о пространственной ориентации связей углеродного атома, к которым мы в итоге придем, полностью соответствуют реальному положению дел.

Электронная конфигурация атома углерода в основном и возбужденном состоянии

На рисунке слева показана электронная конфигурация атома углерода. Нас интересует только судьба валентных электронов. В результате первого шага, который называют возбуждением или промотированием , один из двух 2s-электронов перемещается на свободную 2р-орбиталь. На втором этапе происходит собственно процесс гибридизации, который несколько условно можно представить себе как смешение одной s- и трех р-орбиталей и образование из них четырех новых одинаковых орбиталей, каждая из которых на одну четверть сохраняет свойства s-орбитали и на три четверти - свойства р-орбиталей. Эти новые орбитали получили название sp 3 -гибридных . Здесь надстрочный индекс 3 обозначает не число электронов, занимающих орбитали, а число р-орбиталей, принявших участие в гибридизации. Гибридные орбитали направлены к вершинам тетраэдра, в центре которого находится атом углерода. На каждой sp 3 -гибридной орбитали находится по одному электрону. Эти электроны и участвуют на третьем этапе в образовании связей с четырьмя атомами водорода, образуя валентные углы 109,5°.

sp3 — гибридизация. Молекула метана.

Образование плоских молекул с валентными углами 120° показано на рисунке ниже. Здесь, как и в случае sp 3 -гибридизации, первый шаг - возбуждение. На втором этапе в гибридизации участвуют одна 2s- и две 2р — орбитали, образуя три s р 2 -гибридных орбитали, расположенных в одной плоскости под углом 120° друг к другу.

Образование трех sр2-гибридных орбиталей

Одна p-рорбиталь остается негибридизованной и располагается перпендикулярно плоскости sр 2 –гибридных орбиталей. Затем (третий шаг) две sр 2 -гибридные орбитали двух углеродных атомов объединяют электроны, образуя ковалентную связь. Такая связь, образующаяся в результате перекрывания двух атомных орбиталей вдоль линии, соединяющей ядра атома, называется σ -связью .

Образование сигма — и пи-связей в молекуле этилена

Четвертый этап - образование второй связи между двумя углеродными атомами. Связь образуется в результате перекрывания обращенных друг к другу краев негибридизованных 2р-орбиталей и называется π-связью . Новая молекулярная орбиталь представляет собой совокупность двух занятых электронами π-связи областей - над и под σ-связью. Обе связи (σ и π) вместе составляют двойную связь между атомами углерода. И наконец, последний, пятый шаг - образование связей между атомами углерода и водорода с помощью электронов четырех оставшихся sр 2 -гибридных орбиталей.

Двойная связь в молекуле этилена

Третий, последний тип гибридизации, показан на примере простейшей молекулы, содержащей тройную связь,- молекулы ацетилена. Первый шаг - возбуждение атома, такой же, как раньше. На втором этапе происходит гибридизация одной 2s- и одной 2р-орбиталей с образованием двух s р-гибридных орбиталей, которые располагаются под углом 180°. И остаются не измененными две 2р-орбитали, необходимые для образования двух π-связей.

Образование двух sр-гибридных орбиталей

Следующий шаг - образование σ-связи между двумя sр-гибридизованными углеродными атомами, затем образуются две π-связи. Одна σ-связь и две π-связи между двумя атомами углерода вместе составляют тройную связь . И наконец, образуются связи с двумя атомами водорода. Молекула ацетилена имеет линейное строение, все четыре атома лежат на одной прямой.

Мы показали, каким образом три основных в органической химии типа геометрии молекул возникают в результате различных трансформаций атомных орбиталей углерода.

Можно предложить два способа определения типа гибридизации различных атомов в молекуле.

Способ 1 . Наиболее общий способ, пригодный для любых молекул. Основан на зависимости валентного угла от гибридизации:

а) валентные углы 109,5°, 107° и 105° свидетельствуют об sр 3 -гибридизации;

б) валентный угол около 120° -sр 2 -гибридизация;

в) валентный угол 180°-sp-гибридизация.

Способ 2 . Пригоден для большинства органических молекул. Поскольку тип связи (простая, двойная, тройная) связан с геометрией, можно по характеру связей данного атома определить тип его гибридизации:

а) все связи простые – sр 3 -гибридизация;

б) одна двойная связь – sр 2 -гибридизация;

в) одна тройная связь — sp-гибридизация.

Гибридизация — это мысленная операция превращения обычных (энергетически наиболее выгодных) атомных орбиталей в новые орбитали, геометрия которых соответствует экспериментально определенной геометрии молекул.


Для валентного электронного слоя атома С, находящегося вглавной подгруппе четвёртой группы второго периода Периодической таблицы Д. И. Менделеева главное квантовое число n = 2, побочное (орбитальное) квантовое число l = 0 (s-орбиталь) и 1 (р-орбиталь); магнитное квантовое число m = 0 (при l = 0) и –1, 0, 1 (при l = 1).

Для того, чтобы привести в соответствие электронную формулу атома С и его валентность, допускают возбуждение внешнего электронного слоя атома углерода. Тогда в атоме С 1s-орбиталь и 3р-орбитали. При перекрывании атомных орбиталей (АО) атомов С и Н три связи С–Н будут одинаковыми, а 4-я должна отличаться по прочности (связь по s- орбитали должна быть менее прочной из-за меньшего перекрывания орбиталей). В действительности это не так. Несоответствие исключается предположением о гибридизации различающихся по форме и энергии АО с появлением гибридных АО. В результате валентные электроны оказываются не на чистых s- и р- орбиталях, а на одинаковых гибридных. Для алканов характерна sр 3 - гибридизация (участвуют все 4 АО внешнего электронного уровня). В непредельных соединениях одна или две негибридизованные р-орбитали участвуют в образовании p-связей, при этом тип гибридизации атома углерода – sр 2 для алкенов и sр для алкинов.

Гибридные орбитали алканов располагаются в пространстве симметрично и направлены к вершинам тетраэдра. Связь С–Н образуется перекрыванием s-орбитали атома Н и гибридизованной орбитали атома С, связь С–С образуется за счет перекрывания 2-х гибридизованных орбиталей (направление связи – по оси между атомами). Это s- связь.

Свойства s-связи:

Относительная химическая инертность вследствие высокой прочности;

Максимум электронной плотности расположен симметрично относительно оси, соединяющей атомы, поэтому возможно свободное вращение вдоль этой оси без изменения перекрывания орбиталей (конформеры);

Длина связи 0,154 нм; угол между направлениями орбиталей 109,5°;

Электроотрицательность атома С в sр 3 -гибридном состоянии = 2,51;

Атом углерода, связанный двойной связью с другим атомом углерода, находится в состоянии sр 2 -гибридизации. (участвуют 3 АО внешнего электронного уровня). Гибридные орбитали располагаются в пространстве симметрично в одной плоскости, содержащей ядра С. Оставшаяся негибридизированная р-АО ориентирована перпендикулярно этой плоскости. Связь С–Н образуется перекрыванием s-орбитали атома Н и гибридизованной орбитали атома С. Связь С–С образуется за счет перекрывания 2-х гибридизованных орбиталей (направление – по оси между атомами, в плоскости молекулы). Это s-связь. Две негибридизованные р-АО перекрываются выше и ниже плоскости молекулы – образуется p-связь.


Отличие двойной связи от одинарной:

Расстояние между атомами углерода при двойной связи меньше, чем при одинарной (0,134 нм); угол между гибридными АО 120°;

Электроотрицательность гибридизованного атома С = 2,69;

Затрудненное вращение вокруг линии, соединяющей атомы С;

Двойная связь более прочна, т.к. увеличивается электронная плотность на связывающих МО между атомами углерода (термическая стойкость этилена выше, чем этана);

Высокая реакционная способность p-связи, что объясняется большей подвижностью электронов вне плоскости молекулы;

Повышенная электронная плотность по сравнению с одинарной связью, причем на периферии молекулы. Это приводит к тому, что к двойной связи притягиваются положительно заряженные ионы или полярные молекулы своим положительным полюсом.

Связи С–Н в ацетилене относятся к числу s-связей, образованных путем перекрывания s-орбитали водорода с гибридизованной sp-орбиталью углерода; в молекуле имеется одна углерод-углеродная s-связь (образованная перекрыванием двух гибридизованных sp- орбиталей углерода) и две углерод-углеродные p-связи (результат перекрывания двух взаимно перпендикулярных пар негибридизованных р- орбиталей (р у и р z) атомов углерода).

Свойства тройной связи:

Атомы углерода, связанные тройной связью, имеют электроотрицательность = 2,75;

Длина СºС-связи = 0,120 нм;

Валентные углы в ацетилене на основании этой модели равны 180° и моле­кула имеет линейную конфигурацию, что делает невозможной цис- транс-изомерию при тройной связи;

Связь сильно поляризована, т.к. в sр- гибридной форме углеродный атом сильнее удерживает электроны, чем в sр 2 и sр 3 – гибридных формах; следовательно; электронная пара СН-связи в молекуле ацетилена ближе к ядру С, чем в случае этилена, атом Н более подвижен, обладает слабыми кислотными свойствами (в отличие от алканов и алкенов).



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация