Закон движения гармонического осциллятора

Главная / Суд

ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ

Лекция 1

КОЛЕБАНИЯ

КОЛЕБАНИЯ. ВОЛНЫ. ОПТИКА

Колебание – один из самых распространённых процессов в природе и технике. Колебания – это процессы, повторяющиеся во времени. Колеблются высотные здания и высоковольтные провода под действием ветра, маятник заведённых часов и автомобиль на рессорах во время движения, уровень реки в течение года и температура человеческого тела при болезни. Звук – это колебания давления воздуха, радиоволны – периодические изменения напряжённости электрического и магнитного поля, свет – это тоже электромагнитные колебания. Землетрясения – колебания почвы, приливы и отливы – изменение уровней морей и океанов, вызываемые притяжением луны и т.д.

Колебания бывают механические, электромагнитные, химические, термодинамические и др. Несмотря на такое многообразие, все колебания описываются одними и теми же дифференциальными уравнениями.

Первыми учёными, изучавшими колебания, были Галилео Галилей и Христиан Гюйгенс. Галилей установил независимость периода колебаний от амплитуды. Гюйгенс изобрёл часы с маятником.

Любая система, которая, будучи слегка выведена из положения равновесия, совершает устойчивые колебания, называется гармоническим осциллятором. В классической физике такими системами являются математический маятник в пределах малых углов отклонения, груз в пределах малых амплитуд колебаний, электрический контур, состоящий из линейных элементов ёмкости и индуктивности.

Гармонический осциллятор можно считать линейным, если смещение от положения равновесия прямо пропорционально возмущающей силе. Частота колебаний гармонического осциллятора не зависит от амплитуды. Для осциллятора выполняется принцип суперпозиции - если действуют несколько возмущающих сил, то эффект их суммарного действия может быть получен как результат сложения эффектов от действующих сил в отдельности.

Гармонические колебания описываются уравнением (рис.1.1.1)

(1.1.1)

где х -смещение колеблющейся величины от положения равновесия, А – амплитуда колебаний, равная величине максимального смещения, - фаза колебаний, определяющая смещение в момент времени , - начальная фаза, определяющая величину смещения в начальный момент времени, - циклическая частота колебаний.

Время одного полного колебания называется периодом, , где - число колебаний, совершенных за время .

Частота колебаний определяет число колебаний, совершаемых в единицу времени, она связана с циклической частотой соотношением , тогда период .

Скорость колеблющейся материальной точки

ускорение

Таким образом, скорость и ускорение гармонического осциллятора также изменяются по гармоническому закону с амплитудами и соответственно. При этом скорость опережает по фазе смещение на , а ускорение – на (рис.1.1.2).



Из сопоставления уравнений движения гармонического осциллятора (1.1.1) и (1.1.2) следует, что , или

Это дифференциальное уравнение второго порядка называется уравнением гармонического осциллятора. Его решение содержит два постоянные а и , которые определяются заданием начальных условий

.

Если периодически повторяющийся процесс описывается уравнениями, не совпадающими с (1.1.1), он н6азывается ангармоническим. Система, совершающая ангармонические колебания, называется ангармоническим осциллятором.

1.1.2 . Свободные колебания систем с одной степенью свободы. Комплексная форма представления гармонических колебаний

В природе очень распространены малые колебания, которые система совершает вблизи своего положения равновесия. Если система, выведенная из положения равновесия, предоставлена себе, то есть на неё не действуют внешние силы, то такая система будет совершать свободные незатухающие колебания. Рассмотрим систему с одной степенью свободы.

Устойчивому равновесию соответствует такое положение системы, в котором её потенциальная энергия имеет минимум (q – обобщённая координата системы). Отклонение системы от положения равновесия приводит к возникновению силы , которая стремится вернуть систему обратно. Значение обобщённой координаты, соответствующей положению равновесия, обозначим , тогда отклонение от положения равновесия

Будем отсчитывать потенциальную энергию от минимального значения . Примем Полученную функцию разложим в ряд Маклорена и оставим первый член разложения, имеем: о

КОЛЕБАНИЯ. ВОЛНЫ. ОПТИКА

КОЛЕБАНИЯ

Лекция 1

ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ

Идеальный гармонический осциллятор. Уравнение идеального осциллятора и его решение. Амплитуда, частота и фаза колебаний

Колебание – один из самых распространённых процессов в природе и технике. Колебания – это процессы, повторяющиеся во времени. Колеблются высотные здания и высоковольтные провода под действием ветра, маятник заведённых часов и автомобиль на рессорах во время движения, уровень реки в течение года и температура человеческого тела при болезни. Звук – это колебания давления воздуха, радиоволны – периодические изменения напряжённости электрического и магнитного поля, свет – это тоже электромагнитные колебания. Землетрясения – колебания почвы, приливы и отливы – изменение уровней морей и океанов, вызываемые притяжением луны и т.д.

Колебания бывают механические, электромагнитные, химические, термодинамические и др. Несмотря на такое многообразие, все колебания описываются одними и теми же дифференциальными уравнениями.

Первыми учёными, изучавшими колебания, были Галилео Галилей и Христиан Гюйгенс. Галилей установил независимость периода колебаний от амплитуды. Гюйгенс изобрёл часы с маятником.

Любая система, которая, будучи слегка выведена из положения равновесия, совершает устойчивые колебания, называется гармоническим осциллятором. В классической физике такими системами являются математический маятник в пределах малых углов отклонения, груз в пределах малых амплитуд колебаний, электрический контур, состоящий из линейных элементов ёмкости и индуктивности.

Гармонический осциллятор можно считать линейным, если смещение от положения равновесия прямо пропорционально возмущающей силе. Частота колебаний гармонического осциллятора не зависит от амплитуды. Для осциллятора выполняется принцип суперпозиции - если действуют несколько возмущающих сил, то эффект их суммарного действия может быть получен как результат сложения эффектов от действующих сил в отдельности.

Гармонические колебания описываются уравнением (рис.1.1.1)

(1.1.1)

где х -смещение колеблющейся величины от положения равновесия, А – амплитуда колебаний, равная величине максимального смещения, - фаза колебаний, определяющая смещение в момент времени , - начальная фаза, определяющая величину смещения в начальный момент времени, - циклическая частота колебаний.

Время одного полного колебания называется периодом, , где - число колебаний, совершенных за время .

Частота колебаний определяет число колебаний, совершаемых в единицу времени, она связана с циклической частотой соотношением , тогда период .

Скорость колеблющейся материальной точки

ускорение

Таким образом, скорость и ускорение гармонического осциллятора также изменяются по гармоническому закону с амплитудами и соответственно. При этом скорость опережает по фазе смещение на , а ускорение – на (рис.1.1.2).

Из сопоставления уравнений движения гармонического осциллятора (1.1.1) и (1.1.2) следует, что , или

Это дифференциальное уравнение второго порядка называется уравнением гармонического осциллятора. Его решение содержит два постоянные а и , которые определяются заданием начальных условий

.

Если периодически повторяющийся процесс описывается уравнениями, не совпадающими с (1.1.1), он н6азывается ангармоническим. Система, совершающая ангармонические колебания, называется ангармоническим осциллятором.

1.1.2 . Свободные колебания систем с одной степенью свободы. Комплексная форма представления гармонических колебаний

В природе очень распространены малые колебания, которые система совершает вблизи своего положения равновесия. Если система, выведенная из положения равновесия, предоставлена себе, то есть на неё не действуют внешние силы, то такая система будет совершать свободные незатухающие колебания. Рассмотрим систему с одной степенью свободы.

Устойчивому равновесию соответствует такое положение системы, в котором её потенциальная энергия имеет минимум (q – обобщённая координата системы). Отклонение системы от положения равновесия приводит к возникновению силы , которая стремится вернуть систему обратно. Значение обобщённой координаты, соответствующей положению равновесия, обозначим , тогда отклонение от положения равновесия

Будем отсчитывать потенциальную энергию от минимального значения . Примем Полученную функцию разложим в ряд Маклорена и оставим первый член разложения, имеем: о

,

где . Тогда с учётом введённых обозначений:

, (1.1.4)

С учётом выражения (1.1.4) для силы, действующей на систему, получаем:

Согласно второму закону Ньютона, уравнение движения системы имеет вид: ,

Выражений (1.1.5) совпадает с уравнением (1.1.3) свободных гармонических колебаний при условии, что

и имеет два независимых решения: и , так что общее решение:

,

Из формулы (1.1.6) следует, что частота определяется только собственными свойствами механической системы и не зависит от амплитуды и от начальных условий движения.

Зависимость координаты колеблющейся системы от времени можно определить в виде вещественной части комплексного выражения , где A=Xe-iα – комплексная амплитуда, её модуль совпадает с обычной амплитудой, а аргумент – с начальной фазой.

1.1.3 . Примеры колебательных движений различной физической природы

Колебания груза на пружине

Рассмотрим колебания груза на пружине, при условии, что пружина не деформирована за пределы упругости. Покажем, что такой груз будет совершать гармонические колебания относительно положения равновесия (рис.1.1.3). Действительно, согласно закону Гука, сжатая или растянутая пружина создаёт гармоническую силу:

где – коэффициент жёсткости пружины, – координата положения равновесия, х – координата груза (материальной точки) в момент времени , - смещение от положения равновесия.

Поместим начало отсчета координаты в положение равновесия системы. В этом случае .

Если пружину растянуть на величину х , после чего отпустить в момент времени t =0, то уравнение движения груза согласно второму закону Ньютона примет вид -kx =ma , или , и

(1.1.6)

Это уравнение совпадает по виду с уравнением движения (1.1.3) системы, совершающей гармонические колебания, его решение будем искать в виде:

. (1.1.7)

Подставим (1.17) в (1.1.6), имеем: то есть выражение (1.1.7) является решением уравнения (1.1.6) при условии, что

Если в начальный момент времени положение груза было произвольным, то уравнение движения примет вид:

.

Рассмотрим, как меняется энергия груза, совершающего гармонические колебания в отсутствие внешних сил (рис.1.14). Если в момент времени t =0 грузу сообщить смещение х=А , то его полная энергия станет равной потенциальной энергии деформированной пружины , кинетическая энергия равна нулю (точка 1).

На груз действует сила F= -kx , стремящаяся вернуть его в положение равновесия, поэтому груз движется с ускорением и увеличивает свою скорость, а, следовательно, и кинетическую энергию. Эта сила сокращает смещение груза х, потенциальная энергия груза убывает, переходя в кинетическую. Система «груз - пружина» замкнутая, поэтому её полная энергия сохраняется, то есть:

. (1.1.8)

В момент времени груз находится в положении равновесия (точка 2), его потенциальная энергия равна нулю, а кинетическая максимальна . Максимальную скорость груза найдём из закона сохранения энергии (1.1.8):

За счёт запаса кинетической энергии груз совершает работу против упругой силы и пролетает положение равновесия. Кинетическая энергия постепенно переходит в потенциальную. При груз имеет максимальное отрицательное смещение –А, кинетическая энергия Wk =0, груз останавливается и начинает движение к положению равновесия под действием упругой силы F= -kx . Далее движение происходит аналогично.

Маятники

Под маятником понимают твёрдое тело, которое совершает под действием силы тяжести колебания вокруг неподвижной точки или оси. Различают физический и математический маятники.

Математический маятник – это идеализированная система, состоящая из невесомой нерастяжимой нити, на которой подвешена масса, сосредоточенная в одной материальной точке.

Математическим маятником, например, является шарик на длинной тонкой нити.

Отклонение маятника от положения равновесия характеризуется углом φ , который образует нить с вертикалью (рис.1.15). При отклонении маятника от положения равновесия возникает момент внешних сил (силы тяжести) : , где m – масса, – длина маятника

Этот момент стремится вернуть маятник в положение равновесия (аналогично квазиупругой силе) и направлен противоположно смещению φ , поэтому в формуле стоит знак «минус».

Уравнение динамики вращательного движения для маятника имеет вид: Iε= ,

.

Будем рассматривать случай малых колебаний, поэтому sin φ ≈φ , обозначим ,

имеем: , или , и окончательно

Это уравнение гармонических колебаний, его решение:

.

Частота колебаний математического маятника определяется только его длиной и ускорением силы тяжести, и не зависит от массы маятника. Период равен:

Если колеблющееся тело нельзя представить, как материальную точку, то маятник называют физическим (рис.1.1.6). Уравнение его движения запишем в виде:

.

В случае малых колебаний , или =0 , где . Это уравнение движения тела, совершающего гармонические колебания. Частота колебаний физического маятника зависит от его массы, длины и момента инерции относительно оси, проходящей через точку подвеса.

Обозначим . Величина называется приведённой длинной физического маятника. Это длина математического маятника, период колебаний которого совпадает с периодом данного физического маятника. Точка на прямой, соединяющей точку подвеса с центром масс, лежащая на расстоянии приведённой длины от оси вращения, называется центром качания физического маятника (О’ ). Если маятник подвесить в центре качания, то приведённая длина и период колебаний будут теми же, что и в точке О . Таким образом, точка подвеса и центр качания обладают свойствами взаимности: при переносе точки подвеса в центр качения прежняя точка подвеса становится новым центром качения.

Математический маятник, который качается с таким же периодом, как и рассматриваемый физический, называется изохронным данному физическому маятнику.

1.1.4. Сложение колебаний (биения, фигуры Лиссажу). Векторное описание сложения колебаний

Сложение одинаково направленных колебаний можно производить методом векторных диаграмм. Любое гармоническое колебание можно представить в виде вектора следующим образом. Выберем ось х с началом отсчета в точке О (рис.1.1.7)

Из точки О построим вектор , который составляет угол с осью х . Пусть этот вектор поворачивается с угловой скоростью . Проекция вектора на ось Х равна:

то есть она совершает гармонические колебания с амплитудой а.

Рассмотрим два гармонических колебания одинакового направления и одинаковой циклической малой , заданные векторами и . Смещения по оси Х равны:

результирующий вектор имеет проекцию и представляет собой результирующее колебание (рис.1.1.8), по теореме косинусов Таким образом, сложение гармонических колебаний производится сложением векторов.

Проведем сложение взаимно перпендикулярных колебаний. Пусть материальная точка совершает два взаимно перпендикулярных колебания частотой :

.

Сама материальная точка при этом будет двигаться по некоторой криволинейной траектории.

Из уравнения движения следует: ,

. (1.1.9)

Из уравнения (1.1.9) можно получить уравнение эллипса (рис.1.1.9):

Рассмотрим частные случаи этого уравнения:

1. Разность фаз колебаний α= 0. При этом т.е. или Это уравнение прямой, и результирующее колебание происходит вдоль этой прямой с амплитудой (рис.1.1.10).а.

ее ускорение равно второй производной от смещения по времени тогда сила, действующая на колеблющуюся точку, по второму закону Ньютона равна

То есть сила пропорциональна смещению х и направлена против смещения к положению равновесия. Эта сила называется возвращающей силой. В случае груза на пружине возвращающей силой является сила упругости, в случае математического маятника – составляющая силы тяжести.

Возвращающая сила по характеру подчиняется закону Гука F= -kx, где

– коэффициент возвращающей силы. Тогда потенциальная энергия колеблющейся точки равна:

(постоянную интегрирования выбирают равной нулю, чтобы при х).

АНГАРМОНИЧЕСКИЙ ОСЦИЛЛЯТОР

Лекция 1

КОЛЕБАНИЯ. ВОЛНЫ. ОПТИКА

Первыми учёными, изучавшими колебания, были Галилео Галилей и Христиан Гюйгенс. Галилей установил независимость периода колебаний от амплитуды. Гюйгенс изобрёл часы с маятником.

Любая система, которая, будучи слегка выведена из положения равновесия, совершает устойчивые колебания, называется гармоническим осциллятором. В классической физике такими системами являются математический маятник в пределах малых углов отклонения, груз в пределах малых амплитуд колебаний, электрический контур, состоящий из линейных элементов ёмкости и индуктивности.

(1.1.1)

где х А

Скорость колеблющейся материальной точки

а

.

Если периодически повторяющийся процесс описывается уравнениями, не совпадающими с (1.1.1), он н6азывается ангармоническим. Система, совершающая ангармонические колебания, называется ангармоническим осциллятором.

1.1.2 . Свободные колебания систем с одной степенью свободы. Комплексная форма представления гармонических колебаний

В природе очень распространены малые колебания, которые система совершает вблизи своего положения равновесия. Если система, выведенная из положения равновесия, предоставлена себе, то есть на неё не действуют внешние силы, то такая система будет совершать свободные незатухающие колебания. Рассмотрим систему с одной степенью свободы.

q

,

где

, (1.1.4)

Выражений (1.1.5) совпадает с уравнением (1.1.3) свободных гармонических колебаний при условии, что

,

, где A=Xe-iα

1.1.3 . Примеры колебательных движений различной физической природы

Гармонический осциллятор. Пружинный, физический и математический маятники

Гармоническим осциллятором называется система, совершающая колебания, описываемые уравнением вида (140.6);

Колебания гармонического осциллятора являются важным примером периодического движения и служат точной или приближенной моделью во многих задачах классической и квантовой физики. Примерами гармонического осциллятора являются пружинный, физический и математический маятники, колебательный контур (для токов и напряжений столь малых, что элементы контура можно было бы считать линейными).

1. Пружинный маятник - это груз массой т , подвешенный на абсолютно упругой пружине и совершающий гармонические колебания под действием упругой силы F = – kx , где k - жесткость пружины. Уравнение движения маятника

Из выражений (142.1) и (140.1) следует, что пружинный маятник совершает гармонические колебания по закону х=А со s (w 0 t + j ) с циклической частотой

Формула (142.3) справедлива для упругих колебаний в пределах, в которых выполняется закон Гука (см. (21.3)), т. е. когда масса пружины мала по сравнению с массой тела. Потенциальная энергия пружинного маятника, согласно (141.5) и (142.2), равна

2. Физический маятник - это твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси, проходящей через точку О , не совпадающую с центром масс С тела (рис. 201).

Если маятник отклонен из положения равновесия на некоторый угол a , то в соответствии с уравнением динамики вращательного движения твердого тела (18.3) момент M возвращающей силы можно записать в виде

где J - момент инерции маятника относительно оси, проходящей через точку подве­са О, l – расстояние между ней и центром масс маятника, F t = – mg sin a » – mg a . - возвращающая сила (знак минус обусловлен тем, что направления F t и a всегда противоположны; sin a » a соответствует малым колебаниям маятника, т.е. малым отклонениям маятника из положения равновесия). Уравнение (142.4) можно записать в виде

идентичное с (142.1), решение которого (140.1) известно:

Из выражения (142.6) следует, что при малых колебаниях физический маятник совершает гармонические колебания с циклической частотой w 0 (см. (142.5)) и периодом

где L = J / (ml ) - приведенная длина физического маятника.

Точка О’ на продолжении прямой ОС, отстоящая от точки О подвеса маятника на расстоянии приведенной длины L , называется центром качаний физического маятника (рис. 201). Применяя теорему Штейнера (16.1), получим

т. е. ОО’ всегда больше ОС. Точка подвеса О маятника и центр качаний О’ обладают свойством взаимозаменяемости: если точку подвеса перенести в центр качаний, то прежняя точка О подвеса

станет новым центром качаний, и период колебаний физического маятника не изменится.

3. Математический маятник - это идеализированная система, состоящая из материальной точки массой т, подвешенной на нерастяжимой невесомой нити, и колеблющаяся под действием силы тяжести. Хорошим приближением математического маятника является небольшой тяжелый шарик, подвешенный на тонкой длинной нити. Момент инерции математического маятника

где l - длина маятника.

Так как математический маятник можно представить как частный случай физичес­кого маятника, предположив, что вся его масса сосредоточена в одной точке - центре масс, то, подставив выражение (142.8) в формулу (1417), получим выражение для периода малых колебаний математического маятника

Сравнивая формулы (142.7) и (142.9), видим, что если приведенная длина L физического маятника равна длине l математического маятника, то периоды колебаний этих маятников одинаковы. Следовательно, приведенная длина физического маятника - это длина такого математического маятника, период колебаний которого совпадает с периодом колебаний данного физического маятника.

Идеальный гармонический осциллятор. Уравнение идеального осциллятора и его решение. Амплитуда, частота и фаза колебаний

КОЛЕБАНИЯ

ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ

Идеальный гармонический осциллятор. Уравнение идеального осциллятора и его решение. Амплитуда, частота и фаза колебаний

Колебание – один из самых распространённых процессов в природе и технике. Колебания – это процессы, повторяющиеся во времени. Колеблются высотные здания и высоковольтные провода под действием ветра, маятник заведённых часов и автомобиль на рессорах во время движения, уровень реки в течение года и температура человеческого тела при болезни. Звук – это колебания давления воздуха, радиоволны – периодические изменения напряжённости электрического и магнитного поля, свет – это тоже электромагнитные колебания. Землетрясения – колебания почвы, приливы и отливы – изменение уровней морей и океанов, вызываемые притяжением луны и т.д.

Колебания бывают механические, электромагнитные, химические, термодинамические и др. Несмотря на такое многообразие, все колебания описываются одними и теми же дифференциальными уравнениями.

Гармонический осциллятор можно считать линейным, если смещение от положения равновесия прямо пропорционально возмущающей силе. Частота колебаний гармонического осциллятора не зависит от амплитуды. Для осциллятора выполняется принцип суперпозиции — если действуют несколько возмущающих сил, то эффект их суммарного действия может быть получен как результат сложения эффектов от действующих сил в отдельности.

Гармонические колебания описываются уравнением (рис.1.1.1)

(1.1.1)

где х -смещение колеблющейся величины от положения равновесия, А – амплитуда колебаний, равная величине максимального смещения, — фаза колебаний, определяющая смещение в момент времени , — начальная фаза, определяющая величину смещения в начальный момент времени, — циклическая частота колебаний.

Время одного полного колебания называется периодом, , где — число колебаний, совершенных за время .

Частота колебаний определяет число колебаний, совершаемых в единицу времени, она связана с циклической частотой соотношением , тогда период .

Таким образом, скорость и ускорение гармонического осциллятора также изменяются по гармоническому закону с амплитудами и соответственно. При этом скорость опережает по фазе смещение на , а ускорение – на (рис.1.1.2).

Из сопоставления уравнений движения гармонического осциллятора (1.1.1) и (1.1.2) следует, что , или

Это дифференциальное уравнение второго порядка называется уравнением гармонического осциллятора. Его решение содержит два постоянные а и , которые определяются заданием начальных условий

.

Устойчивому равновесию соответствует такое положение системы, в котором её потенциальная энергия имеет минимум (q – обобщённая координата системы). Отклонение системы от положения равновесия приводит к возникновению силы , которая стремится вернуть систему обратно. Значение обобщённой координаты, соответствующей положению равновесия, обозначим , тогда отклонение от положения равновесия

Будем отсчитывать потенциальную энергию от минимального значения . Примем Полученную функцию разложим в ряд Маклорена и оставим первый член разложения, имеем: о

,

где . Тогда с учётом введённых обозначений:

, (1.1.4)

С учётом выражения (1.1.4) для силы, действующей на систему, получаем:

Согласно второму закону Ньютона, уравнение движения системы имеет вид: ,

и имеет два независимых решения: и , так что общее решение:

,

Из формулы (1.1.6) следует, что частота определяется только собственными свойствами механической системы и не зависит от амплитуды и от начальных условий движения.

Зависимость координаты колеблющейся системы от времени можно определить в виде вещественной части комплексного выражения , где A=Xe-iα – комплексная амплитуда, её модуль совпадает с обычной амплитудой, а аргумент – с начальной фазой.

Справочник химика 21

Химия и химическая технология

Закон движения гармонический

Механические, в которых вращательное движение преобразуется в колебательное (преимущественно эксцентриковые и кулачковые механизмы). Закон движения ведомого звена может быть близким к гармоническому. Эти возбудители применяют в некоторых типах грохотов, вибрационных центрифугах, червячных смесителях.

В классической механике для нахождения закона движения системы точек (координат qi как функций времени) нужно решить систему уравнений Ньютона. При произвольно выбранной системе координат общее рещение этих уравнений с потенциалом (VII, 7) не приводит к гармоническому виду q (t). Однако легко показать, что с помощью линейных комбинаций из координат q,- можно построить новые координаты, каждая из которых изменяется по гармоническому закону с определенной частотой (в. Такие координаты

Действительно, колебания двух атомов, соединенных связью, аналогичны колебанию пары сфер, скрепленных пружиной. При малых сдвигах возвращающая сила пропорциональна смещению, и если такую систему привести в движение, колебания будут описываться законом простого гармонического движения.

Наилучшие условия работы регенератора создались бы в том случае, если бы поршень совершал не гармоническое движение, а останавливался в конце каждого хода. Однако достаточно высокий к. п. д. можно получить и при использовании, ввиду его простоты, гармонического закона движения поршня.

При колебаниях рабочей среды в трубопроводе или в каком-либо другом напорном канале распределение скоростей течения по сечению потока отличается от закона, описывающего это распределение в случае установившегося движения среды. Так, при колебаниях ламинарного потока жидкости в круглой цилиндрической трубе нарушается параболическое распределение скоростей, которое, как известно из гидравлики, является характерным для ламинарного установившегося движения жидкости в трубе. При гармоническом изменении градиента давления вдоль трубы распределение скоростей можно найти с помощью формулы (9.42). Для этого в формулу следует вместо (s) подставить изображение по Лапласу гармонического закона изменения градиента давления и затем выполнить обратное преобразование. Полученная таким образом функция (t, г) приведена в работе .

Понятно, что нет необходимости реализовать цикл с прерывистым движением поршней в конструкциях промышленных машин. При любом законе движения поршней, в частности при гармоническом (для кривошипно-шатунного привода), термодинамический к. п. д. идеальной машины Стирлинга равен единице.

В этих установках был принят упрощенный, близкий к гармоническому, закон движения штанг - шарнирный четырехзвенник станка-качалки заменен кривошипным механизмам. Такое допущение общепринято и, как показали эксперименты, вполне оправдан для условий проведенных экспериментов.

Внутреннее состояние двухатомной молекулы определено, если задано состояние ее электронной оболочки, а также характеристики вращательного движения молекулы как целого и колебательного движения ядер. Вращение и колебания в первом приближении считают не зависящими от электронного состояния молекулы. Простейшей моделью при описании вращательного и колебательного движений двухатомной молекулы является модель жесткий ротатор - гармонический осциллятор, согласно которой независимо рассматриваются вращение молекулы как жесткого ротатора и колебания ядер по гармоническому закону. Классическое описание этой модели см. гл. IV., 5. Запишем в том же приближении выражение для энергии двухатомной молекулы, используя квантовомеханические формулы (VII. 19), (VII.20) и (УП.22)

Изменение амплитуды колебаний, а также переход от гармонического к ударному режиму вибрации достигается путем установки сменных эксцентриков, профиль которых определяет закон движения толкателя с рабочим столиком и закрепленным на нем блоком коаксиальных цилиндров.

В разделе е отмечалось, что если энергия молекул выра-жается суммой некоторого числа членов, являющихся квадра тичными либо относительно пространственных координат (), либо относительно импульсов (/з), то форма закона распределения не зависит от того, сколько именно членов входит в выражение для кинетической и сколько - в выражение для потенциальной энергии. Однако вывод закона упрощается, если рассматривается одинаковое число членов, выражающих потенциальную кинетическую энергию. Физически это соответствует допущению, что полное движение молекул представлено числом 5 независимых гармонических осцилляторов. Энергию молекулы в этом случае можно записать так

В спектрометрах с постоянным ускорением относительная скорость движения источника и поглотителя периодически меняется по линейному или гармоническому закону, что позволяет регистрировать исследуемый спектр в заданном интервале скоростей. Обычно в таких спектрометрах информация записывается в памяти многоканального анализатора, работающего во временном режиме, когда каналы памяти открываются синхронно с циклом скорости.

Одним из выражений квантовых законов является дискретность уровней энергии тела, совершающего периодические движения. Рассмотрим в качестве примера гармоническое колебание осциллятора. Энергия классического гармонического осциллятора может непрерывно изменяться. Эта энергия равна уА 2 (наибольшее значение потенциальной энергии при х = А). Упругая постоянная

Вынужденные колебания. Рассмотрим продольные колебания линейной упругой системы с одной степенью свободы под действием вынуждающей силы Р if), изменяющейся по гармоническому закону. Первоначально примем допущение, что неупругие силы сопротивления отсутствуют. Уравнение движения в этом случае (рис. 3.7, а) имеет вид тх = -Ру + Р (/), что после подстановок Р =сх, dm = соц и Р (/) = Ро sin (oi) дает

Если бы имели дело с классической системой, то тогда при определенных начальных условиях, в принципе, можно было бы возбудить такое движение, при котором менялась бы только одна из нормальных координат Тогда при изменении этой нормальной координаты наблюдали бы изменения всех длин связей, валентных углов итд, пропорциональные этой координате с коэффициентами Если нормальные координаты менялись бы по гармоническому закону, то тогда все геометрические параметры молекулы также менялись бы по гармоническому закону, причем все геометрические параметры проходили бы через свои равновесные значения в одной и той же фазе Пример нормальных колебаний для молекулы ХУ2 типа воды показан на рис 8 2

Если электроны вещества несколько смещаются от положений равновесия, то они подвергаются действию возвращающей сплы, величина которой по предположению пропорциональна смещению. В этом случае движение электронов оказывается простым гармоническим колебанием. Прохождение света через систему, содержащую ряд таких электрических осцилляторов, эквивалентно возникновению дополнительной электрической силы, которая, по теории Максвелла, оказывается одной пз компонент электромагнитных колебаний света. При прохождении света электрическое поле изменяется с соответствующей частотой и влияет на движение колеблющегося электрона согласно закону сохранения энергии. Скорость (а следовательно, и кинетическая энергия) распространения света в веществе меньше, чем в вакууме следовательно, при этом возрастает кинетическая энергия электронов, взаимодействующих со светом. Таким образом, свет стремится изменить движение электронов в молекуле и действует в направлении, противоположном силе, стремящейся сохранить электрон в исходном положении.

Этот вариант измерений может быть реализован и при крутильных колебаниях трубчатого образца, если наружный цилиндр установить неподвижно, внутренний закрепить на торсионе и задать действующий на него по гармоническому закону крутящий момент. Если теперь измерять разность фаз между моментом и углом поворота цилиндра, а также амплитуду угла закручивания, то расчетная схема определения О сведется к выше рассмотренным формулам (VI. 15) и (VI. 16). Однако если измерять отношение крутящего момента к угловой скорости движения цилиндра, то это отвечает задаче о,б определении импеданса системы.

В заключение отметим, что с точки зрения полного и физически разумного количественного описания динамики жидкостей все рассмотренные модели являются только первым приближением для описания диффузии и колебаний в воде, поскольку при их построении использован целый ряд упрощений. Только в пределе больших времен оседлой жизни (это может иметь место при низких температурах) или при сильной электрострикции молекул воды в гидратной оболочке ионов гармоническое приближение и простая модель прыжковой диффузии [уравнение (4-5) табл. 4] являются законными. При высоких температурах и в растворах, в которых связи между молекулами воды ослаблены ионами, колебания становятся резко ангармоническими, замедленными релаксационным и диффузионным движениями. В этом случае поведение жидкости больше соответствует поведению системы свободных частиц [ уравнение(37)]. Предположение об отсутствии корреляции между диффузионным и колебательным движениями также является спорным вопросом. Недавно Раман и др.

В следующем, разд. 11,3 будет разобран ряд простых примеров, позволяющих оценить вклады в теплоемкость отдельных разлагаемых степеней свободы. При этом большее внимание будет уделено системе, состоящей из частиц с двумя возможными энергетическими состояниями, и гармоническому осциллятору, так как на их примере можно относительно просто и в то же время достаточно полно проанализировать связь между молекулярным движением и теплоемкостью системы. Для более сложных систем часто можно легко оценить теплоемкость при средних температурах, исходя из классического закона равномерного распределения по степеням свободы.

Законы движения микрочастиц в квантовой механике существенно отличаются от классических. С одной стороны, они ведут себя (например, при столкновениях) как частицы, обладающие неделимыми зарядами и массой, с другой - как волны, обладающие определенной частотой (длиной волны) и характеризующиеся волновой функцией а1з - свойством, отрал Смотреть страницы где упоминается термин Закон движения гармонический Нотариусы в Новоалексеевке Бесплатные объявления в разделе Нотариусы в Новоалексеевке. Пока нет объявлений, успейте быть первым! Предшественников современных нотариусов можно было встретить в древнем Египте, […]

Пожалуй, простейшей механической системой, движение которой описывается линейным дифференциальным уравнением с постоянными коэффициентами, является масса на пружинке. После того как к пружинке подвесят грузик, она немного растянется, чтобы уравновесить силу тяжести. Проследим теперь за вертикальными отклонениями массы от положения равновесия (фиг. 21.1). Отклонения вверх от положения равновесия мы обозначим через и предположим, что имеем дело с абсолютно упругой пружиной. В этом случае противодействующие растяжению силы прямо пропорциональны растяжению. Это означает, что сила равна (знак минус напоминает нам, что сила противодействует смещениям). Таким образом, умноженное на массу ускорение должно быть равно

Для простоты предположим, что вышло так (или мы нужным образом изменили систему единиц), что . Нам предстоит решить уравнение

Фиг. 21.1. Грузик, подвешенный на пружинке. Простой пример гармонического осциллятора.

После этого мы вернемся к уравнению (21.2), в котором и содержатся явно.

Мы уже сталкивались с уравнением (21.3), когда только начинали изучать механику. Мы решили его численно, чтобы найти движение. Численным интегрированием мы нашли кривую, которая показывает, что если частица в начальный момент выведена из равновесия, но покоится, то она возвращается к положению равновесия. Мы не следили за частицей после того, как она достигла положения равновесия, но ясно, что она на этом не остановится, а будет колебаться (осциллировать). При численном интегрировании мы нашли время возврата в точку равновесия: . Продолжительность полного цикла в четыре раза больше: «сек». Все это мы нашли численным интегрированием, потому что лучше решать не умели. Но математики дали в наше распоряжение некую функцию, которая, если ее продифференцировать дважды, переходит в себя, умножившись на . (Можно, конечно, заняться прямым вычислением таких функций, но это много труднее, чем просто узнать ответ.)

Эта функция есть: . Продифференцируем ее: , a . В начальный момент , , а начальная скорость равна нулю; это как раз те предположения, которые мы делали при численном интегрировании. Теперь, зная, что , найдем точное значение времени, при котором . Ответ: , или 1,57108. Мы ошиблись раньше в последнем знаке, потому что численное интегрирование было приближенным, но ошибка очень мала!

Чтобы продвинуться дальше, вернемся к системе единиц, где время измеряется в настоящих секундах. Что будет решением в этом случае? Может быть, мы учтем постоянные и , умножив на соответствующий множитель ? Попробуем. Пусть , тогда и . К нашему огорчению, мы не преуспели в решении уравнения (21.2), а снова вернулись к (21.3). Зато мы открыли важнейшее свойство линейных дифференциальных уравнений: если умножить решение уравнения на постоянную, то мы снова получим решение. Математически ясно - почему. Если есть решение уравнения, то после умножения обеих частей уравнения на производные тоже умножатся на и поэтому так же хорошо удовлетворит уравнению, как и . Послушаем, что скажет по этому поводу физик. Если грузик растянет пружинку вдвое больше прежнего, то вдвое возрастет сила, вдвое возрастет ускорение, в два раза больше прежней будет приобретенная скорость и за то же самое время грузик пройдет вдвое большее расстояние. Но это вдвое большее расстояние - как раз то самое расстояние, которое надо пройти грузику до положения равновесия. Таким образом, чтобы достичь равновесия, требуется столько же времени и оно не зависит от начального смещения. Иначе говоря, если движение описывается линейным уравнением, то независимо от «силы» оно будет развиваться во времени одинаковым образом.

Ошибка пошла нам на пользу - мы узнали, что, умножив решение на постоянную, мы получим решение прежнего уравнения. После нескольких проб и ошибок можно прийти к мысли, что вместо манипуляций с надо изменить шкалу времени. Иначе говоря, уравнение (21.2) должно иметь решение вида

(Здесь - вовсе не угловая скорость вращающегося тела, но нам не хватит всех алфавитов, если каждую величину обозначать особой буквой.) Мы снабдили здесь индексом 0, потому что нам предстоит встретить еще много всяких омег: запомним, что соответствует естественному движению осциллятора. Попытка использовать (21.4) в качестве решения более успешна, потому что и . Наконец-то мы решили то уравнение, которое и хотели решить. Это уравнение совпадает с (21.2), если .

Теперь нужно понять физический смысл . Мы знаем, что косинус «повторяется» после того, как угол изменится на . Поэтому будет периодическим движением; полный цикл этого движения соответствует изменению «угла» на . Величину часто называют фазой движения. Чтобы изменить на , нужно изменить на (период полного колебания); конечно, находится из уравнения . Это значит, что нужно вычислять для одного цикла, и все будет повторяться, если увеличить на ; в этом случае мы увеличим фазу на . Таким образом,

. (21.5)

Значит, чем тяжелее грузик, тем медленнее пружинка будет колебаться взад и вперед. Инерция в этом случае будет больше, и если сила не изменится, то ей понадобится большее время для разгона и торможения груза. Если же взять пружинку пожестче, то движение должно происходить быстрее; и в самом деле, период уменьшается с увеличением жесткости пружины.

Заметим теперь, что период колебаний массы на пружинке не зависит от того, как колебания начинаются. Для пружинки как будто безразлично, насколько мы ее растянем. Уравнение движения (21.2) определяет период колебаний, но ничего не говорит об амплитуде колебания. Амплитуду колебания, конечно, определить можно, и мы сейчас займемся этим, но для этого надо задать начальные условия.

Дело в том, что мы еще не нашли самого общего решения уравнения (21.2). Имеется несколько видов решений. Решение соответствует случаю, когда в начальный момент пружинка растянута, а скорость ее равна нулю. Можно иначе заставить пружинку двигаться, например, улучить момент, когда уравновешенная пружинка покоится , и резко ударить по грузику; это будет означать, что в момент пружинке сообщена какая-то скорость. Такому движению будет соответствовать другое решение (21.2) - косинус нужно заменить на синус. Бросим в косинус еще один камень: если - решение, то, войдя в комнату, где качается пружинка, в тот момент (назовем его «»), когда грузик проходит через положение равновесия , мы будем вынуждены заменить это решение другим. Следовательно, не может быть общим решением; общее решение должно допускать, так сказать, перемещение начала отсчета времени. Таким свойством обладает, например, решение , где - какая-то постоянная. Далее, можно разложить называют угловой частотой; это число радианов, на которое фаза изменяется за 1 сек. Она определяется дифференциальным уравнением. Другие величины уравнением не определяются, а зависят от начальных условий. Постоянная служит мерой максимального отклонения груза и называется амплитудой колебания. Постоянную иногда называют фазой колебания, но здесь возможны недоразумения, потому что другие называют фазой и говорят, что фаза зависит от времени. Можно сказать, что - это сдвиг фазы по сравнению с некоторой, принимаемой за нуль. Не будем спорить о словах. Разным соответствуют движения с разными фазами. Вот это верно, а называть ли фазой или нет - уже другой вопрос.

Систему, описываемую уравнением , где , будем называть гармоническим осциллятором. Решение этого уравнения, как известно, имеет вид:

.

Следовательно, гармонический осциллятор представляет собой систему, которая совершает гармонические колебания около положения равновесия.

Для гармонического осциллятора справедливы все результаты, полученные ранее для гармонического колебания.

Рассмотрим и обсудим ещё дополнительно к ним два вопроса.

Найдем импульс гармонического осциллятора. Продифференцируем выражение по t и, умножив полученный результат на массу осциллятора, получим:

В каждом положении, характеризуемом отклонением “x”, осциллятор имеет некоторое значение ”p”. Чтобы найти ”p” как функцию ”x”, нужно исключить ”t” из написанных для ”p” и ”x” уравнений, Представим эти уравнения в виде:

(8.9)

Возведя эти выражения в квадрат и складывая, получим:

. (8.10)

Нарисуем график, показывающий зависимость ”p” импульса гармонического осциллятора от отклонения ”x” (рис. 8.6). Координатную плоскость (”p”, ”x”) принято называть фазовой плоскостью , а соответствующий график – фазовой траекторией . Фазовая траектория гармонического осциллятора представляет собой эллипс с полуосями “A” и ”A·m·w 0 ”. Каждая точка фазовой траектории изображает состояние осциллятора для некоторого момента времени (т.е. его отклонение и импульс). С течением времени точка, изображающая состояние, перемещается по фазовой траектории, совершая за период колебания полный обход. Причем это перемещение совершается по часовой стрелке [а именно, если в некоторый момент времени t¢ x=A, p=0, то в следующий момент времени ”x” будет уменьшаться, а ”p” принимать все возрастающие по модулю отрицательные значения, т.е. движение изобразительной точки (т.е. точки изображающей состояние) будет происходить по часовой стрелке].

Найдем теперь площадь эллипса . Или

.

Здесь , где n 0 – собственная частота осциллятора, являющаяся для данного осциллятора величиной постоянной.

Следовательно, . Откуда

Таким образом, полная энергия гармонического осциллятора пропорциональна площади эллипса, причем коэффициентом пропорциональности служит собственная частота осциллятора.

8.6. Малые колебания системы вблизи положения равновесия.

Рассмотрим произвольную механическую систему, положение которой может быть задано с помощью одной величины “x”. Величиной ”x”, определяющей положение системы может быть угол, отсчитываемый от некоторой плоскости или расстояние, отсчитываемое вдоль заданной кривой.

Потенциальная энергия такой системы будет функцией одной переменной ”x”: E p =E p (x).


Выберем начало отсчета таким образом, чтобы в положении равновесия x=0. Тогда функция E p (x) будет иметь минимум при x=0.

(ввиду малости “x” остальными членами пренебрегаем)

Так как E p (x) при x=0 имеет минимум, то , а . Обозначим E p (x) = b и , тогда .

Это выражение идентично с выражением для потенциальной энергии системы, в которой действует квазиупругая сила (константу “b” можно положить равной 0).

Сила, действующая на систему, может быть определена по формуле: . Получено с учетом, что работа совершается за счет убыли потенциальной энергии .

Итак, потенциальная энергия системы при малых отклонениях от положения равновесия оказывается квадратичной функцией смещения, а сила, действующая на систему, имеет вид квазиупругой силы. Следовательно, при малых отклонениях от положения равновесия любая механическая система будет совершать колебания, близкие к гармоническим.

8.7. Математический маятник.

ОПРЕДЕЛЕНИЕ: математическим маятником будем называть идеализированную систему, состоящую из невесомой и нерастяжимой нити, на которой подвешена масса, сосредоточенная в одной точке.

Отклонение маятника от положения равновесия будет характеризоваться углом j (рис. 8.7). При отклонении маятника от положения равновесия возникает вращательный момент , он имеет такое направление, что стремится вернуть маятник в положение равновесия, поэтому моменту M и угловому смещению j нужно приписать разные знаки.



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация