Решение задач на построение в курсе геометрии основной школы как средство развития логического мышления школьников

Главная / Суд

1. Общие замечания к решению задач алгебраическим методом.

2. Задачи на движение.

3. Задачи на работу.

4. Задачи на смеси и проценты.

    Использование алгебраического метода для нахождения арифметического пути решения текстовых задач.

1. При решении задач алгебраическим методом искомые величины или другие величины, зная которые можно определить искомые, обозначают буквами (обычно х, у, z ). Все независимые между собой соотношения между данными и неизвестными величинами, которые либо непосредственно сформулированы в условии (в словесной форме), либо вытекают из смысла задачи (например, физические законы, которым подчиняются рассматриваемые величины), либо следуют из условия и некоторых рассуждений, записываются в виде равенства неравенств. В общем случае эти соотношения образуют некоторую смешанную систему. В частных случаях эта система может не содержать неравенств либо уравнений или она может состоять лишь из одного уравнения или неравенства.

Решение задач алгебраическим методом не подчиняется какой-либо единой, достаточно универсальной схеме. Поэтому всякое указание, относящееся ко всем задачам, носит самый общий характер. Задачи, которые возникают при решении практических и теоретических вопросов, имеют свои индивидуальные особенности. Поэтому их исследование и решение носят самый разнообразный характер.

Остановимся на решении задач, математическая модель которых задается уравнением с одним неизвестным.

Напомним, что деятельность по решению задачи состоит из четырех этапов. Работа на первом этапе (анализ содержания задачи) не зависит от выбранного метода решения и не имеет принципиальных отличий. На втором этапе (при поиске пути решения задачи и составлении плана ее решения) в случае применения алгебраического метода решения осуществляются: выбор основного соотношения для составления уравнения; выбор неизвестного и введение обозначения для него; выражение величин, входящих в основное соотношение, через неизвестное и данные. Третий этап (осуществление плана решения задачи) предполагает составление уравнения и его решение. Четвертый этап (проверка решения задачи) осуществляется стандартно.

Обычно при составлении уравнений с одним неизвестным х придерживаются следующих двух правил.

Правило I . Одна из данных величин выражается через неизвестное х и другие данные (то есть составляется уравнение, в котором одна часть содержит данную величину, а другая – ту же величину, выраженную посредством х и других данных величин).

Правило II . Для одной и той же величины составляются два алгебраических выражения, которые затем приравниваются друг к другу.

Внешне кажется, что первое правило проще второго.

В первом случае всегда требуется составить одно алгебраическое выражение, а во втором – два. Однако часто встречаются задачи, в которых удобнее составить два алгебраических выражения для одной и той же величины, чем выбрать уже известную и составить для нее одно выражение.

Процесс решения текстовых задач алгебраическим способом выполняется по следующему алгоритму:

1. Сначала выбирают соотношение, на основании которого будет составлено уравнение. Если задача содержит более двух соотношений, то за основу для составления уравнения надо взять то соотношение, которое устанавливает некоторую связь между всеми неизвестными.

    Затем выбирают неизвестное, которое обозначают соответствующей буквой.

    Все неизвестные величины, входящие в выбранное для составления уравнения соотношение, необходимо выразить через выбранное неизвестное, опираясь на остальные соотношения, входящие в задачу кроме основного.

4. Из указанных трех операций непосредственно вытекает составление уравнения как оформление словесной записи при помощи математических символов.

Центральное место среди перечисленных операций занимает выбор основного соотношения для составления уравнений. Рассмотренные примеры показывают, что выбор основного соотношения является определяющим при составлении уравнений, вносит логичную стройность в порою расплывчатый словесный текст задачи, дает уверенность в ориентации и предохраняет от беспорядочных действий для выражения всех входящих в задачу величин через данные и искомые.

Алгебраический метод решения задач имеет огромное практическое значение. С его помощью решают самые разнообразные задачи из области техники, сельского хозяйства, быта. Уже в средней школе уравнения применяются учащимися при изучении физики, химии, астрономии. Там, где арифметика оказывается бессильной или, в лучшем случае, требует крайне громоздких рассуждений, там алгебраический метод легко и быстро приводит к ответу. И даже в так называемых «типовых» арифметических задачах, сравнительно легко решаемых арифметическим путем, алгебраическое решение, как правило, является и более коротким, и более естественным.

Алгебраический метод решения задач позволяет легко показать, что некоторые задачи, отличающиеся друг от друга лишь фабулой, имеют не только одни и те же соотношения между данными и искомыми величинами, но и приводят к типичным рассуждениям, посредством которых устанавливаются эти соотношения. Такие задачи дают лишь различные конкретные интерпретации одного и того же математического рассуждения, одних и тех же соотношений, то есть имеют одну и ту же математическую модель.

2. К группе задач на движение относятся задачи, в которых говорится о трех величинах: пути (s ), скорости (v ) и времени (t ). Как правило, в них речь идет о равномерном прямолинейном движении, когда скорость постоянна по модулю и направлению. В этом случае все три величины связаны следующим соотношением: S = vt . Например, если скорость велосипедиста 12 км/ч, то за 1,5 ч. он проедет 12 км/ч  1,5 ч = 18 км. Встречаются задачи, в которых рассматривается равноускоренное прямолинейное движение, то есть движение с постоянным ускорением (а). Пройденный путь s в этом случае вычисляется по формуле: S = v 0 t + at 2 /2, где v 0 начальная скорость движения. Так, за 10 с падения с начальной скоростью 5 м/с и ускорением свободного падения 9,8 м 2 /с тело пролетит расстояние, равное 5 м/с  10с + 9,8 м 2 /с  10 2 с 2 /2 = 50 м + 490 м = 540 м.

Как уже отмечалось, в ходе решения текстовых задач и в первую очередь в задачах, связанных с движением, весьма полезно сделать иллюстративный чертеж (построить вспомогательную графическую модель задачи). Чертеж следует выполнить так, чтобы на нем была видна динамика движения со всеми встречами, остановками и поворотами. Грамотно составленный чертеж позволяет не только глубже понять содержание задачи, но и облегчает со­ставление уравнений и неравенств. Примеры таких чертежей бу­дут приведены ниже.

Обычно в задачах на движение принимаются следующие соглашения.

    Если специально не оговорено в задаче, то движение на отдельных участках считается равномерным (будь то движение по прямой или по окружности).

    Повороты движущихся тел считаются мгновенными, то есть происходят без затрат времени; скорость при этом также меняется мгновенно.

Данную группу задач, в свою очередь, можно разбить на задачи, в которых рассматриваются движения тел: 1) навстречу друг другу; 2) в одном направлении («вдогонку»); 3) в противоположных направлениях; 4) по замкнутой траектории; 5) по течению реки.

    Если расстояние между телами равно S , а скорости тел равны v 1 и v 2 (рис. 16 а ), то при движении тел навстречу друг другу время, через которое они встретятся, равно S /(v 1 + v 2).

2. Если расстояние между телами равно S , а скорости тел равны v 1 и v 2 (рис. 16 б ), то при движении тел в одну сторону (v 1 > v 2) время, через которое первое тело догонит второе, равно S /(v 1 v 2).

3. Если расстояние между телами равно S , а скорости тел равны v 1 и v 2 (рис. 16 в ), то, отправившись одновременно в противоположных направлениях, тела будут через время t находиться на расстоянии S 1 = S + (v 1 + v 2 ) t .

Рис. 16

4. Если тела движутся в одном направлении по замкнутой траектории длиной s со скоростями v 1 и v 2 , то время, через которое тела опять встретятся (одно тело догонит другое), отправившись одновременно из одной точки, находится по формуле t = S /(v 1 v 2) при условии, что v 1 > v 2 .

Это следует из того, что при одновременном старте по замкнутой траектории в одном направлении тело, скорость которого больше, начинает догонять тело, скорость которого меньше. В первый раз оно догоняет его, пройдя расстояние на S большее, чем другое тело. Если же оно обгоняет его во второй, в третий раз и так далее, это означает, что оно проходит расстояние на 2S , на 3S и так далее большее, чем другое тело.

Если тела движутся в разных направлениях по замкнутой траектории длиной S со скоростями v 1 и v 2 , то время, через которое они встретятся, отправившись одновременно из одной точки, находится по формуле t = v (v 1 + v 2). В этом случае сразу после начала движения возникает ситуация, когда тела начинают двигаться навстречу друг другу.

5. Если тело движется по течению реки, то его скорость относительно берега и слагается из скорости тела в стоячей воде v и скорости течения реки w : и = v + w . Если тело движется против течения реки, то его скорость и = v w . Например, если скорость катера v = 12 км/ч, а скорость течения реки w = 3 км/ч, то за 3 ч. по течению реки катер проплывет (12 км/ч + 3 км/ч)  3 ч. = 45 км, а против течения – (12 км/ч – 3 км/ч)  3 ч. = 27 км. Считают, что скорость предметов, имеющих нулевую скорость движения в стоячей воде (плот, бревно и т. п.), равна скорости течения реки.

Рассмотрим несколько примеров.

Пример .Из одного пункта в одном направлении через каждые 20 мин. выезжают автомобили. Второй автомобиль едет со скоростью 60 км/ч, а скорость первого на 50% больше скорости второго. Найдите скорость движения третьего автомобиля, если известно, что он обогнал первый автомобиль на 5,5 ч позже, чем второй.

Решение . Пусть х км/ч – скорость третьего автомобиля. Скорость первого автомобиля на 50% больше скорости второго, значит, она равна

При движении в одном направлении время встречи находится как отношение расстояния между объектами к разности их скоростей. Первый автомобиль за 40 мин. (2/3 ч) проедет 90  (2/3) = 60 км. Следовательно, третий его догонит (они встретятся) через 60/(х – 90) часов. Второй за 20 мин. (1/3 ч) проедет 60  (1/3) = 20 км. Значит, третий его догонит (они встретятся) через 20/(х – 60) ч. (рис. 17).

П
о условию задачи

Рис. 17

После несложных преобразований получим квадратное уравнение 11х 2 – 1730х + 63000 = 0, решив которое найдем

Проверка показывает, что второй корень не удовлетворяет условию задачи, так как в этом случае третий автомобиль не догонит другие автомобили. Ответ: скорость движения третьего автомобиля 100 км/ч.

Пример .Теплоход прошел по течению реки 96 км, вернулся обратно и некоторое время простоял под погрузкой, затратив на все 32 ч. Скорость течения реки равна 2 км/ч. Определите скорость теплохода в стоячей воде, если время погрузки составляет 37,5% от времени, затраченно­го на весь путь туда и обратно.

Решение . Пусть х км/ч – скорость теплохода в стоячей воде. Тогда (х + 2) км/ч – его скорость по течению; (х – 2) км/ч – против течения; 96/(х + 2) ч. – время движения по течению; 96/(х – 2) ч. – время движения против течения. Так как 37,5% от общего количества времени теплоход стоял под погрузкой, то чистое время движения равно 62,5%  32/100% = 20 (ч.). Следовательно, по условию задачи имеем уравнение:

Преобразовав его, получим: 24(х – 2 + х + 2) = 5(х + 2)(х – 2) => 5х 2 – 4х – 20 = 0. Решив квадратное уравнение, находим: х 1 = 10; х 2 = -0,4. Второй корень не удовлетворяет условию задачи.

Ответ: 10 км/ч – скорость движения теплохода в стоячей воде.

Пример . Автомобиль проехал путь из города А в город С через город В без остановок. Расстояние АВ, равное 120 км, он проехал с постоянной скоростью на 1 ч. быстрее, чем расстояние ВС, равное 90 км. Определите среднюю скорость движения автомобиля от города А до города С, если известно, что скорость на участке АВ на 30 км/ч больше скорости на участке ВС.

Решение . Пусть х км/ч – скорость автомобиля на участке ВС.

Тогда (х + 30) км/ч – скорость на участке АВ, 120/(х + 30) ч, 90/х ч – время, закоторое автомобиль проезжает путиАВ и ВС соответственно.

Следовательно, по условию задачи имеем уравнение:

.

Преобразуем его:

120х + 1(х + 30)х = 90(х + 30) => х 2 + 60х – 2700 = 0.

Решив квадратное уравнение, находим: х 1 = 30, х 2 = -90. Второй корень не удовлетворяет условию задачи. Значит, скорость на участке ВС равна 30 км/ч, на участке АВ – 60 км/ч. Отсюда следует, что расстояние АВ автомобиль проехал за 2 ч. (120 км: 60 км/ч = 2 ч.), а расстояние ВС – за 3 ч. (90 км: 30 км/ч = 3 ч.), поэтому все расстояние АС он проехал за 5 ч. (3 ч. + 2 ч. = 5 ч.). Тогда средняя скорость движения на участке АС, протяженность которого 210 км, равна 210 км: 5 ч. = 42 км/ч.

Ответ: 42 км/ч – средняя скорость движения автомобиля на участке АС.

    К группе задач на работу относятся задачи, в которых говорится о трех величинах: работе А , времени t , в течение которого производится работа, производительности Р – работе, произведенной в единицу времени. Эти три величины связаны уравнением А = Р t . К задачам на работу относят и задачи, связанные с наполнением и опорожнением резервуаров (сосудов, баков, бассейнов и т. п.) с помощью труб, насосов и других приспособлений. В качестве произведенной работы в этом случае рассматривают объем перекачанной воды.

Задачи на работу, вообще говоря, можно отнести к группе задач на движение, так как в задачах такого типа можно считать, что вся работа или полный объем резервуара играют роль расстояния, а производительности объектов, совершающих работу, аналогичны скоростям движения. Однако по фабуле эти задачи естественным образом различаются, причем часть задач на работу имеют свои специфические приемы решения. Так, в тех задачах, в которых объем выполняемой работы не задан, вся работа принимается за единицу.

Пример. Две бригады должны были выполнить заказ за 12 дней. После 8 дней совместной работы первая бригада получила другое задание, поэтому вторая бригада заканчивала выполнение заказа еще 7 дней. За сколько дней могла бы выполнить заказ каждая из бригад, работая отдельно?

Решение . Пусть первая бригада выполняет задание за х дней, вторая бригада – за y дней. Примем всю работу за единицу. Тогда 1/х – производительность первой бригады, a 1/y второй. Так как две бригады должны выполнить заказ за 12 дней, то получим первое уравнение 12(1/х + 1/у ) = 1.

Из второго условия следует, что вторая бригада работала 15 дней, а первая – только 8 дней. Значит, второе уравнение имеет вид:

8/х + 15/у = 1.

Таким образом, имеем систему:

Вычтем из второго уравнения первое, получим:

21/y = 1 => у = 21.

Тогда 12/х + 12/21 = 1 => 12/ х – = 3/7 => х = 28.

Ответ: за 28 дней выполнит заказ первая бригада, за 21 день – вторая.

Пример . Рабочий А и рабочий В могут выполнить работу за 12 дней, рабочий А и рабочий С – за 9 дней, рабочий В и рабочий С – за 12 дней. За сколько дней они выполнят работу, работая втроем?

Решение . Пусть рабочий А может выполнить работу за х дней, рабочий В – за у дней, рабочий С – за z дней. Примем всю работу за единицу. Тогда 1/х, 1/ y и 1/z производительности рабочих А, В и С соответственно. Используя условие задачи, приходим к следующей системе уравнений, представленной в таблице.

Таблица 1

Преобразовав уравнения, имеем систему из трех уравнений с тремя неизвестными:

Сложив почленно уравнения системы, получим:

или

Сумма это совместная производительность рабочих, поэтому время, за которое они выполнят всю работу, будет равно

Ответ: 7,2 дня.

Пример . В бассейн проведены две трубы – подающая и отводя­щая, причем через первую трубу бассейн наполняется на 2 ч дольше, чем через вторую вода из бассейна выливается. При заполненном на одну треть бассейне были открыты обе трубы, и бассейн оказался пустым спустя 8 ч. За сколько часов через одну первую трубу может наполниться бассейн и за сколько часов через одну вторую трубу может осушиться полный бассейн?

Решение . Пусть V м 3 – объем бассейна, х м 3 /ч – производительность подающей трубы, у м 3 /ч – отводящей. Тогда V / x ч. – время, необходимое подающей трубе для заполнения бассейна, V / y ч. – время, необходимое отводящей трубе на осушение бассейна. По условию задачи V / x V / y = 2.

Так как производительность отводящей трубы больше производительности наполняющей, то при включенных обеих трубах будет происходить осушение бассейна и одна треть бассейна осушится за время (V /3)/(y x ), которое по условию задачи равно 8 ч. Итак, условие задачи может быть записано в виде системы двух уравнений с тремя неизвестными:

В задаче необходимо найти V / x и V / y . Выделим в уравнениях комбинацию неизвестных V / x и V / y , записав систему в виде:

Вводя новые неизвестные V / x = а и V / y = b , получаем следующую систему:

Подставляя во второе уравнение выражение а = b + 2, имеем уравнение относительно b :

решив которое найдем b 1 = 6, b 2 = -8. Условию задачи удовлетворяет первый корень 6, = 6 (ч.). Из первого уравнения последней системы находим а = 8 (ч), то есть первая труба наполняет бассейн за 8 ч.

Ответ: через первую трубу бассейн наполнится через 8 ч., через вторую трубу бассейн осушится через 6 ч.

Пример . Одна тракторная бригада должна вспахать 240 га, а другая на 35% больше, чем первая. Первая бригада, вспахивая ежедневно на 3 га меньше второй, закончила работу на 2 дня раньше, чем вторая бригада. Сколько гектаров вспахивала каждая бригада ежедневно?

Решение . Найдем 35 % от 240 га: 240 га  35 % /100 % = 84 га.

Следовательно, вторая бригада должна была вспахать 240 га + 84 га = 324 га. Пусть первая бригада вспахивала ежедневно х га. Тогда вторая бригада вспахивала ежедневно (х + 3) га; 240/х – время работы первой бригады; 324/(х + 3) – время работы второй бригады. По условию задачи первая бригада закончила работу на 2 дня раньше, чем вторая, поэтому имеем уравнение

которое после преобразований можно записать так:

324х – 240х – 720 = 2х 2 + => 2х 2 – 78х + 720 = 0 => х 2 – 39х + 360 = 0.

Решив квадратное уравнение, находим х 1 = 24, х 2 = 15. Это норма первой бригады.

Следовательно, вторая бригада вспахивала в день 27 га и 18 га соответственно. Оба решения удовлетворяют условию задачи.

Ответ: 24 га в день вспахивала первая бригада, 27 га – вторая; 15 га в день вспахивала первая бригада, 18 га – вторая.

Пример . В мае два цеха изготовили 1080 деталей. В июне первый цех увеличил выпуск деталей на 15%, а второй увеличил выпуск деталей на 12%, поэтому оба цеха изготовили 1224 детали. Сколько деталей изготовил в июне каждый цех?

Решение . Пусть х деталей изготовил в мае первый цех, у деталей – второй. Так как в мае изготовлено 1080 деталей, то по условию задачи имеем уравнение x + y = 1080.

Найдем 15% от х :

Итак, на 0,15х деталей увеличил выпуск продукции первый цех, следовательно, в июне он выпустил х + 0,15 х = 1,15 x деталей. Аналогично найдем, что второй цех в июне изготовил 1,12 y деталей. Значит, второе уравнение будет иметь вид: 1,15 x + 1,12 у = 1224. Таким образом, имеем систему:

из которой находим х = 480, у = 600. Следовательно, в июне цеха изготовили 552 детали и 672 детали соответственно.

Ответ: первый цех изготовил 552 детали, второй – 672 детали.

4. К группе задач на смеси и процентыотносятся задачи, в которых речь идет о смешении различных веществ в определенных пропорциях, а также задачи на проценты.

Задачи на концентрацию и процентное содержание

Уточним некоторые понятия. Пусть имеется смесь из п различных веществ (компонентов) А 1 А 2 , ..., А n соответственно, объемы которых равны V 1 , V 2 , ..., V n . Объем смеси V 0 складывается из объемов чистых компонентов: V 0 = V 1 + V 2 + ... + V n .

Объемной концентрацией вещества А i (i = 1, 2, ..., п) в смеси называется величина с i , вычисляемая по формуле:

Объемным процентным содержанием вещества А i (i = 1, 2, ..., п) в смеси называется величина p i , вычисляемая по формуле р i = с i , 100%. Концентрации с 1, с 2 , ..., с n , являющиеся безразмерными величинами, связаны равенством с 1 + с 2 + ... + с n = 1, а соотноше­ния

показывают, какую часть полного объема смеси составляют объе­мы отдельных компонентов.

Если известно процентное содержание i -го компонента, то его концентрация находится по формуле:

то есть Pi это концентрация i -го вещества в смеси, выраженная в процентах. Например, если процентное содержание вещества составляет 70%, то его соответствующая концентрация равна 0,7. И наоборот, если концентрация равна 0,33, то процентное содержание равно 33%. Таким образом, сумма р 1 + р 2 + …+ р n = 100%. Если известны концентрации с 1 , с 2 , ..., с n компонентов, составляющих данную смесь объема V 0 , то соответствующие объемы компонентов находятся по формулам:

Аналогичным образом вводятся понятия весовые (массовые) кон центрации компонентов смеси и соответствующие процентные со­держания. Они определяются как отношение веса (массы) чистого вещества А i , в сплаве к весу (массе) всего сплава. О какой концентрации, объемной или весовой, идет речь в конкретной задаче, всегда ясно из ее условия.

Встречаются задачи, в которых приходится пересчитывать объемную концентрацию на весовую или наоборот. Для того чтобы это сделать, необходимо знать плотности (удельные веса) компонентов, составляющих раствор или сплав. Рассмотрим для примера двухкомпонентную смесь с объемными концентрациями компонентов с 1 и с 2 1 + с 2 = 1) и удельными весами компонентов d 1 и d 2 . Масса смеси может быть найдена по формуле:

в которой V 1 и V 2 объемы составляющих смесь компонентов. Весовые концентрации компонентов находятся из равенств:

которые определяют связь этих величин с объемными концентрациями.

Как правило, в текстах таких задач встречается одно и то же повторяющееся условие: из двух или нескольких смесей, содержащих компоненты A 1 , A 2 , А 3 , ..., А n , составляется новая смесь путем перемешивания исходных смесей, взятых в определенной пропорции. При этом требуется найти, в каком отношении компоненты А 1, А 2 , А 3 , ..., А n войдут в получившуюся смесь. Для решения этой задачи удобно ввести в рассмотрение объемное или весовое количество каждой смеси, а также концентрации составляющих ее компонентов А 1, А 2 , А 3 , ..., А n . С помощью концентраций нужно «расщепить» каждую смесь на отдельные компоненты, а затем указанным в условии задачи способом составить новую смесь. При этом легко подсчитать, какое количество каждого компонента входит в получившуюся смесь, а также полное количество этой смеси. После этого определяются концентрации компонентов А 1, А 2 , А 3 , ..., А n в новой смеси.

Пример .Имеются два куска сплава меди и цинка с процентным содержанием меди 80% и 30% соответственно. В каком отношении нужно взять эти сплавы, чтобы, переплавив взятые куски вместе, получить сплав, содержащий 60% меди?

Решение . Пусть первого сплава взято х кг, а второго – у кг. По условию концентрация меди в первом сплаве равна 80/100 = 0,8, во втором – 30/100 = 0,3 (ясно, что речь идет о весовых концентрациях), значит, в первом сплаве 0,8х кг меди и (1 – 0,8)х = 0,2х кг цинка, во втором – 0,3 у кг меди и (1 – 0,3)y = 0,7у кг цинка. Количество меди в получившемся сплаве равно (0,8  х + 0,3  у) кг, а масса этого сплава составит (х + у) кг. Поэтому новая концентрация меди в сплаве, согласно определению, равна

По условию задачи эта концентрация должна равняться 0,6. Следова­тельно, получаем уравнение:

Данное уравнение содержит два неизвестных х и у. Однако по условию задачи требуется определить не сами величины х и у, а только их отношение. После несложных преобразований получаем

Ответ: сплавы надо взять в отношении 3: 2.

Пример .Имеются два раствора серной кислоты в воде: первый – 40%-ный, второй – 60%-ный. Эти два раствора смешали, после чего добавили 5 кг чистой воды и получили 20%-ный раствор. Если бы вместо 5 кг чистой воды добавили 5 кг 80%-ного раствора, то получили бы 70%-ный раствор. Сколько было 40%-ного и 60%-ного растворов?

Решение . Пусть х кг – масса первого раствора, у кг – второго. Тогда масса 20%-ного раствора (х + у + 5) кг. Так как в х кг 40%-ного раствора содержится 0,4х кг кислоты, в у кг 60%-ного раствора содержится 0,6y кг кислоты, а в (х + у + 5) кг 20%-ного раствора содержится 0,2(х + у + 5) кг кислоты, то по условию имеем первое уравнение 0,4х + 0,6y = 0,2(х +у + 5).

Если вместо 5 кг воды добавить 5 кг 80%-ного раствора, то получится раствор массой (х + у + 5) кг, в котором будет (0,4х + 0,6у + 0,8  5) кг кислоты, что составит 70% от (х + у + 5) кг.

Основные методы решения геометрических задач: геометрический – требуемое утверждение выводится с помощью логических рассуждений из ряда известных теорем; алгебраический – искомая геометрическая величина вычисляется на основании различных зависимостей между элементами геометрических фигур непосредственно или с помощью уравнений; комбинированный – на одних этапах решение ведется геометрическим методом, а на других алгебраическим.

Треугольники Признаки равенства треугольников, прямоугольных треугольников. Свойства и признаки равнобедренного треугольника. Задача 1. Медиана АМ треугольника АВС равна отрезку ВМ. Доказать, что один из углов треугольника АВС равен сумме двух других углов. Задача 2. Отрезки АВ и СD пересекаются в их общей середине О. На АC и ВD отмечены точки К 1 такие, что АК=ВК 1. Доказать, что а) ОК=ОК 1, б) точка О лежит на прямой КК 1. Задача 3 (признак равнобедренного треугольника). Если в треугольнике биссектриса является медианой, то треугольник равнобедренный.

Задача 4 (признак прямоугольного треугольника по медиане). Доказать, что если медиана треугольника равна половине стороны, к которой она проведена, то треугольник прямоугольный. Задача 5 (свойство медианы прямоугольного треугольника). Доказать, что в прямоугольном треугольнике медиана, проведенная к гипотенузе, равна её половине. Задача 6. Доказать, что в прямоугольном треугольнике с неравными катетами биссектриса прямого угла делит угол между высотой и медианой, проведенными из той же вершины, пополам. Задача 7. Медиана и высота треугольника, проведенные из одной вершины, делят этот угол на три равные части. Доказать, что треугольник прямоугольный.

Свойства площадей. Площади многоугольников Следствие из теоремы о площади треугольника. Если высоты двух треугольников равны, то их площади относятся как основания. Теорема об отношении площадей треугольников, имеющих равные углы. Если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведения сторон, заключающих равные углы.

Теоремы о точках пересечения чевиан Теорема. В любом треугольнике медианы пересекаются в одной точке (центроид, центр тяжести) и делятся этой точкой в отношении 2: 1, считая от вершины. Свойства медианы: 1. Медиана разбивает треугольник на два равновеликих, то есть имеющих одинаковую площадь. 2. Три медианы разбивают треугольник на шесть равновеликих. 3. Отрезки, соединяющие центроид с вершинами треугольника, разбивают треугольник на три равновеликие части.

Одним из основных методов решения задач, в которых участвуют медианы треугольника, является метод «удвоения медианы» . Достроить треугольник до параллелограмма и воспользоваться теоремой о сумме квадратов его диагоналей. Задача 8. Найти отношение суммы квадратов медиан треугольника к сумме квадратов всех его сторон.

Свойство биссектрисы внутреннего угла треугольника. Биссектриса внутреннего угла треугольника делит противоположную сторону на части, пропорциональные заключающим ее сторонам. Теорема. В любом треугольнике биссектрисы пересекаются в одной точке (ицентр), которая является центром вписанной в него окружности. Замечание: Очевидно, что центроид и ицентр треугольника всегда лежат внутри него.

. Решение. B A 1 1) В треугольнике ABC AA 1 – биссектриса угла A, поэтому AB: AC = BA 1: CA 1 = BA 1: (BC – BA 1) I или C А B 1 2) В треугольнике ABA 1 BI – биссектриса угла B, поэтому AI: IA 1 = BA: BA 1 или

Теорема о серединном перпендикуляре к отрезку. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Обратно: каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему. Теорема. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке, которая является центром описанной около него окружности. Теорема. В любом треугольнике высоты пересекаются в одной точке (ортоцентр треугольника). Вопрос. Где находится ортоцентр остроугольного, прямоугольного, тупоугольного треугольников?

Решение. B 1) Tреугольник BC 1 Н – прямоугольный, и C 1 H 2) Треугольник BC 1 C – прямоугольный, и A B 1 C

Используя формулы приведения. Откуда Замечание. Если один из углов тупой, то в (*) соответствующий косинус нужно взять по модулю.

Интересными являются задачи на нахождение расстояния от произвольной вершины треугольника до одной из его замечательных точек. Сначала решим задачу на нахождения расстояния от вершины до ортоцентра. Задача 11. В треугольнике АВС опущены высоты ВВ 1 и СС 1. Найти длину отрезка НВ, где Н – точка пересечения высот. B 1) треугольник BC 1 Н – прямоугольный, и Решение. C 1 H 2) треугольник BC 1 C – прямоугольный, и A B 1 C

Задача 12. Найти расстояние от вершины B треугольника ABC до ортоцентра, если Решение. По теореме косинусов Тогда

Задача 13. По углам A и B треугольника ABC (A

Задача 14. К какой из вершин треугольника ближе расположен ицентр? Решение. C D I A Пусть I – ицентр, точка пересечения биссектрис треугольника ABC Воспользуемся тем, что против большей стороны треугольника лежит больший угол. Если AB > BC, то A

Задача 15. Какая из высот треугольника наименьшая? Решение. C B 1 А 1 H A C 1 Пусть Н – точка пересечения высот треугольника ABC. Если AC B. Окружность с диаметром BC пройдет через точки С 1 и В 1. B Учитывая, что из двух хорд меньше та, на которую опирается меньший вписанный угол, получаем, что СС 1

Задача 16. Отрезок АН – высота треугольника АВС. Из вершин В и С проведены перпендикуляры ВВ 1 и СС 1 к прямой, проходящей через точку А. Доказать, что треугольники АВС и НВ 1 С 1 подобны. Найти площадь треугольника НВ 1 С 1, если площадь треугольника АВС равна S, а АС: НС 1 =5: 3. Доказательство. Так как треугольники АНС и АСС 1 прямоугольные, то точки Н и С 1 А лежат на окружности с диаметром АС. С 1 В В 1 Н Аналогично, точки В 1 и Н лежат на окружности с диаметром АВ. С треугольнике АСС 1

Значит, Так как имеют место (1) и (2), А то треугольники АВС и НВ 1 С 1 подобны. С 1 Коэффициент подобия В В 1 Н С значит,

Задача 17. Пусть в остроугольном треугольнике ABC точки A 1, B 1, C 1 есть основания высот. Доказать, что точка H - пересечения высот треугольника ABC является точкой пересечения биссектрис треугольника A 1 B 1 C 1. Решение. На сторонах AC и BC B треугольника ABC, как на C 1 А диаметрах, построим окружности. H Точки A 1, B 1, C 1 принадлежат этим окружностям. 1 A B 1 C Поэтому B 1 C 1 C = B 1 BC, как углы, опирающиеся на одну и ту же дугу окружности. B 1 BC = CAA 1, как углы с взаимно перпендикулярными сторонами.

CAA 1 = CC 1 A 1, как углы, опирающиеся на одну и ту же дугу окружности. Следовательно, B 1 C 1 C = CC 1 A 1, т. е. C 1 C является биссектрисой угла B 1 C 1 A 1. Аналогичным образом показывается, что AA 1 и BB 1 являются биссектрисами углов B 1 A 1 C 1 и A 1 B 1 C 1. B C 1 А 1 H A B 1 C Самостоятельно исследовать случаи прямоугольного и тупоугольного треугольника.

При решении задач на построение алгебраическим методом:

1) составляют уравнение или систему уравнений по условию задачи;

2) решают полученное уравнение или систему и находят нужное неизвестное;

3) осуществляют геометрическое построение по полученной формуле.

Прежде чем переходить к примерам, разберем основные задачи, применяемые при алгебраическом методе (нумерация является продолжением нумерации основных задач). Укажем только решение этих задач, а обоснование предоставляется читателю.

Задача 13. Даны отрезки а и b. Построить отрезок

Решение . Строим прямой угол с вершиной О (рис.25). На его сторонах откладываем отрезки ОА=a и ОВ=b . Тогда отрезок АВ является искомым.

Задача 14. Даны отрезки а и b. Построить отрезок

Решение . Строим прямой угол с вершиной в точке О (рис.26). На одной из его сторон откладываем отрезок ОВ=b . Проводим окружность с центром в точке В и радиуса a . Она пересечет вторую сторону угла в точке А. Отрезок ОА является искомым.

Задача 15. Даны отрезки а и b. Построить отрезок

Решение . На отрезке АВ=a+b , как на диаметре строим окружность. Пусть C такая точка на АВ, что АС=a . В точке С восстанавливаем перпендикуляр к АВ. Он пересечет окружность в точке Д. Отрезок СД искомый (рис.27). Он называется средним геометрическим отрезков a и b .

Задача 16. Даны отрезки а , b и с. Построить отрезок

Решение . Строим произвольный угол с вершиной в точке О (рис.28). На одной из его сторон откладываем последовательно отрезки ОА=a и АС=c , а на второй ОВ=b . Через точку С проводим прямую, параллельную АВ. Она пересечет вторую сторону угла в точке Д. Отрезок ВД искомый. Его называют четвертым пропорциональным отрезком.

ПРИМЕР 20. Даны отрезки a,b и с. Построить отрезок

Построение .

1) строим отрезок ;

a,a,1;

3) строим отрезок

ПРИМЕР 14. Даны отрезки a и b. Построить отрезок

Построение .

1) строим отрезок , как катет прямоугольного треугольника с гипотенузой 2b и вторым катетом b ;

2) строим отрезок , как четвертый пропорциональный отрезков a,a,1;

3) строим отрезок

ПРИМЕР 24. Даны окружность и точка А вне ее. Из этой точки провести секущую так, чтобы она делилась окружностью пополам.

Анализ . Зная положение точки относительно круга, можно построить касательную, длина которой известна и пусть она равна a . Пусть АС – секущая и В – ее середина, АВ=ВС=x . По формуле зависимости секущей и касательной, проведенной из одной точки, имеем . Отсюда Полученный отрезок представляет собой половину гипотенузы равнобедренного прямоугольного треугольника с катетом a (рис.29).


Построение . Найдем длину касательной, проведенной из точки А к данной окружности. Затем построим равнобедренный прямоугольный треугольник с катетом a и его гипотенузу разделим пополам. Получим отрезок x . Построим окружность с центром в точке А и радиусом, равным x . Она пересечет данную окружность в точке В. Построим луч АВ, он и даст нам искомую секущую.

Доказательство следует из построения.

Анализ . Количество решений задачи зависит от длины отрезка АО, где О – центр данной окружности. Пусть АО пересечет данную окружность в точке С и R – радиус данной окружности.

1) Если x+Rто задача имеет два решения;

2) Если x+R=AO, то задача имеет одно решение;

3) Если x+R>AO, то задача не имеет решения.

Одна из основных целей при обучении математике – научить школьников правильно и хорошо решать задачи.

Учитель математики должен в совершенстве владеть рассмотренными нами основными общими методами решения математических задач и постепенно вооружать ими своих учеников. Без этого невозможен успех в обучении математике.

Известный американский математик Дж. Пойа, посвятил проблеме поиска решения задачи специальное исследование (Дж. Пойа Как решать задачу. Учпедгиз, 1961). Особое внимание в этом труде он уделяет анализу и синтезу при поиске решения.

В конце книги он приводит таблицу, которой следует придерживаться при отыскании решения задачи. Приведем ее краткий вариант.

1. Понять предложенную задачу.

Что гласит задача? Что дано? Что нужно найти? Определено ли неизвестное данными задачи? Или они недостаточны, или же чрезмерны?

2. Найти путь от неизвестного к данным, если нужно, рассмотреть промежуточные задачи («анализ»). Составить план решения.

Сформулировать отношения между неизвестным и данными. Преобразовать (или ввести новое) неизвестное, сближая его с данными. Преобразовать данные, получив новые элементы, более близкие к искомому. Вспомнить решение аналогичной задачи. Все ли данные использованы? Нельзя ли сформулировать задачу иначе? Обобщить. Рассмотреть частные случаи.

3. Реализовать найденную идею решения («синтез»).

Обосновать правильность каждого шага.

4. Решение проверить и оценить критически.

Правдоподобен ли результат? Почему? При возможности сделать проверку. Нельзя ли решить иначе, более прямым путем?

При изучении и восприятии задачи, каждый ученик должен знать и постоянно соблюдать разумное и обязательное правило : не приступать к решению задачи или поиску пути ее решения до тех пор, пока не убедился, что текст задачи полностью изучен и ясно понят, что осмыслены все данные и требования задачи, осознан характер функциональных зависимостей между входящими в задачу величинами, искомой и известными. Подобные методические правила постигаются учащимися в процессе практического их применения. Задачу со сложным текстом рекомендуется внимательно читать несколько раз. При фронтальной работе с классом учитель с помощью вопросов проверяет детальность и точность, полноту и сознательность восприятия задачи каждым учеником.

Главным этапом процесса решения задачи является поиск пути решения. Здесь наиболее эффективны различные аналитические методы и приемы, которыми школьники должны постепенно овладевать. Для этой цели потребуется постоянное внимание и усилия со стороны учителя, поскольку учащиеся обычно склонны сразу применять синтетический метод, мало пригодный для отыскания неизвестного пути решения задачи. Если же трудности встретятся и при аналитическом поиске, то ученик может попытаться вести свой поиск и по встречному, синтетическому направлению с целью сближения тех и других результатов.

Облегчению поиска пути служит наглядное , предметно реальное представление условия задачи, описанных в ней процессов, различное использование графических средств, схем с умело расставленными данными, применение вспомогательных и частных эвристических приемов.

Одной из важнейших целей, стоящих перед решением задач в курсе математики, является обучение школьников решать задачи самостоятельно. Для достижения этой цели необходимо учить поискам пути решения задачи. Опытный учитель не спешит сообщить ученикам решение задачи, а попытается вместе с учениками отыскать путь ее решения. При этом школьники приобретут определенный опыт как в решении, так и в его поиске.

Чертеж геометрической фигуры к решаемой задаче должен быть правильным, полностью соответствовать как условию задачи, так и следствиям из него. Можно рекомендовать следующее правило: чертеж делать после того, как имеется уже четкое представление о заданной фигуре, о связях между ее элементами, вытекающими из условия задачи. Конечно, сразу нарисовать правильный и точный чертеж не всегда удается, поэтому нужно учить учеников делать хорошие чертежи, постепенно используя условия задачи, отражая их на чертеже и переделывать чертеж, если данные задачи не точно на нем отражены. Также следует приучать школьников переделывать чертеж, если в процессе решения открылись новые данные, которые отсутствуют на чертеже

Учащиеся должны знать, что во избежание ошибок чертеж должен быть правильным, однако все, что используется в решении, кроме того, что известно по условию задачи, должно быть доказано логически с использованием теории предмета.

Еще одним из требований к учителю, является то, что нужно обучать учащихся поиску нескольких различных способов решения задачи (если они существуют). Это позволит развить в большем объеме логику мышления, позволят школьнику увидеть связь различных разделов математики, ее единство, научит поиску рациональных способов решения.

Учителю также необходимо постоянно совершенствоваться в плане решения задач. Не стоит останавливаться на задачах из учебника. Необходимо постоянно читать методическую литературу, статьи в методических журналах, посвященные методам решения задач. Учителю также нужно стремиться к созданию своего «банка задач», где будут собраны интересные с его точки зрения задачи, которые позволят разнообразить процесс обучения, развить интерес к предмету, а также помогут занять тех учащихся на уроке, которые уже научились решать типовые задачи.

Алгебраические методы синтеза для одномерной САУ строятся на определении вида и параметров передаточной функции изменяемой части САУ в выражении

где х(р), у{р) - соответствующие преобразования Лапласа x(t) и y(t) (начальные условия считаем нулевыми); W yx (р), W uy (p) -передаточные функции неизменяемой части САУ (объекта управления) и изменяемой ее части соответственно; и - управляющее воздействие; y(р)- желаемый (заданный) вид решения системы на заданное входное воздействие х(р).

Поскольку Wyx(p) связывает входное воздействие х(р) и реакцию системы у(р), при заданных х{р) и у(р) получаем алгебраическое уравнение

в котором Р{р), Q(p) суть известные заданные полиномы от р,, - полиномы от р, которые необходимо построить.

В общем случае уравнение (1.11) представляет собой одно уравнение с двумя неизвестными Θ(р) и П(р) и относится к диофантовым (Диофант - древнегреческий математик) уравнениям. Для нахождения решения этого уравнения добавляются условия устойчивости системы (1.10) физической реализуемости изменяемой части CAP W uy (p). В последнем случае, в частности, требуется, чтобы степень полинома Θ(р) была выше степени полинома П(р). Эту систему уравнений следует дополнить условиями устойчивости, составляемыми по критерию Рауса R k (a i)>0, где а i - коэффициенты характеристического полинома в (1.10); R k (a i) -коэффициенты первого столбца таблицы Рауса.

Вместо неравенств можно получить уравнения для условий устойчивости. При этом необходимо задать степень устойчивости системы (1.10) .

Тогда уравнение соответствующее Δ(р), преобразуется к смещенному характеристическому уравнению

После пересчета коэффициентов это уравнение примет вид

, (1.12)

где ; k - номер коэффициента; -число сочетаний по k-i из n-i.

Желаемый процесс у(t) можно сформировать из операторного изображения переходных характеристик, задаваемого в обобщенном виде

Придавая параметрам a 1 ,b 1 ,b 2 ,b 3 ,c 1 числовые значения от нуля до предельных значений, можно получать колебательные, апериодические и другие формы переходных процессов. В частности, при c 1 =0 изображение желаемого процесса по Лапласу имеет вид

(1.13)

соответственно при вещественных и комплексных полюсах. В этих выражениях С1, С2 определяют величину динамической ошибки σ;, где - колебательность процесса; запасы устойчивости определяются величинами n1 (n1

Рассматривая наиболее тяжелый режим работы САУ - отработку ступенчатых воздействий х(р) = 1/р, задачу синтеза можно свести к решению алгебраических уравнений (1.11), (1.12) относительно неизвестных коэффициентов полиномов Θ(р), П(р). В общем случае подобные уравнения решаются с помощью алгоритма Евклида. Распространение этого метода на многомерные системы сводится к решению матричного алгебраического уравнения для многомерной САУ



где Y(р), X(р), W YX (p), W UY (p) -векторы и матрицы, соответствующие выходным и входным воздействиям. Если заданы виды возмущающих воздействий Х(р), желаемый вид выходных процессов CAY Y(p) и неизменяемая часть САУ W YX (p), то из матричного уравнения (1.14) можно найти матрицу W UY (p) как результат решения системы алгебраических уравнений (1.14). В этом случае, так же как и в скалярном, к уравнениям (1.14) следует добавить условия устойчивости системы (1.14) и физической реализуемости изменяемой части САУ W UY (P).

Рассмотренный подход развит в виде метода полиномиальных уравнений , который может быть применен как к непрерывным, так и к цифровым регуляторам САУ. В последнем случае этот метод наиболее эффективен. По существу он является численным методом решения определенного круга вариационных задач и позволяет единообразным путем, учтя условия физической реализуемости и устойчивости САУ, получить в явной форме выражение оптимальной передаточной функции регулятора Wuy. Важным достоинством метода является то, что оптимальность здесь понимается не только в смысле быстродействия, но и в смысле компенсации нежелательных отклонений САУ от заданного движения, что приближает задачу синтеза к инженерной постановке в смысле критериев (1.8)-(1.9).

Применение метода полиномиальных уравнений требует перехода к «дискретной модели» непрерывной части системы.

Для удобства последующего изложения рассмотрим алгоритм метода применительно к одномерной системе (1.10). Осуществляя преобразование функции (1.10), представим ее в виде

(1.15)

Wyx(z)=P(z)/Q(z) - заданная передаточная z-функция неизменяемой части системы; х*Wyx(z)=L(z)/R(z)- передаточная z-функция участка контура регулирования между точкой приложения возмущающего воздействия x(z) и координатой у(z); Wuy(z) -искомая функция регулятора.

Для компенсации «нежелательных» полюсов и нулей в передаточной функции Wyx(z) применяется операция факторизации. Эта операция состоит в следующем. Представим функцию Wyx(y) в виде

, (1.16)

где -дробно-рациональная функция, имеющая нули и полюсы в области устойчивости, в данном случае - внутри круга единичного радиуса |z| = 1, а имеет нули и полюсы вне области устойчивости.

Представим искомую функцию Wuy(z) произведением трех сомножителей:

(1.17)

где Θ,П- неизвестные полиномы.

Подставляя (1.16), (1.17) в (1.15), найдем

(1.18)

Определим неизвестные полиномы Θ и П как минимальное решение (т. е. решение, при котором степени полиномов Θ и П наименьшие) полиномиального уравнения

(1.19)

Тогда y(t) будет процессом конечной минимальной длительности при возможности одновременного обеспечения устойчивости и минимума динамической ошибки. Подставляя найденные П и Θ в (1.17), находим искомую функцию Wuy(z).

При использовании наряду с принятыми дополнительными критериями синтеза, например минимальной суммарной квадратичной ошибки, как выражение (1.17), так и полиномиальное уравнение (1.19) могут значительно усложняться, что, однако, не носит принципиального характера. Метод позволяет весьма точно учитывать ограничения со стороны неизменяемой части системы, путем привлечения аппарата линейного программирования. Задачи статистического синтеза также сводятся к решению систем полиномиальных уравнений. Применительно к задачам синтеза регуляторов САУ метод полиномиальных уравнений имеет ряд преимуществ: простоту машинной ориентации метода, практическое отсутствие вычислительных трудностей и возможность синтеза систем, обладающих свойством удовлетворять совокупности различных требований (достигается абсолютный экстремум по одному из критериев при относительных экстремумах по остальным). Результатом синтеза является передаточная z-функция или эквивалентное разностное уравнение, реализуемые в дальнейшем на микропроцессоре САУ.

Алгебраический метод

Алгебраический метод решения задач на построении - один из важнейших методов теории конструктивных задач. Именно с помощью этого метода решаются вопросы, связанные с разрешимостью задач тем или иным набором инструментов.

Кроме того, это один из самых мощных методов, позволяющий решать многие задачи, решение которых обычными способами затруднительно. Метод прекрасно демонстрирует тесную взаимосвязь алгебры и геометрии.

Но, к сожалению, в школьном курсе геометрии алгебраическому методу практически не уделяется внимания, хотя с методической точки зрения изучение этого метода не представляет особых сложностей.

Суть метода состоит в следующем:

а) задача сводится к построению некоторого отрезка;

б) используя известные геометрические соотношения между искомыми и данными, составляют уравнение (систему уравнений), связывающее искомые и данные;

в) решая уравнение или систему уравнений, выражают формулой длину искомого отрезка через длины данных;

г) по формуле строится искомый отрезок (если это возможно);

д) с помощью найденного отрезка строится искомая фигура.

Подготовительную работу составляет изучение основных формул и способов построения, где также отрабатываются некоторые элементы схемы решения задач алгебраическим методом, и усваивается сама идея такого подхода к решению задач на построение.

В школьном курсе геометрии обычно рассматривают построения циркулем и линейкой отрезков, заданных следующими некоторыми простейшими формулами :

1) х = а + b (рис. 8).

2) х = а -- b(а > b) (рис. 9).

Рис. 8

3) х = nа , где n -- натуральное число. Сводится к построению 1). На рис. 10 построен отрезок х , такой, что х = 6а .


Рис. 10

4) х = .

Строим луч, выходящий из какого-либо конца О данного отрезка а под произвольным углом к нему. Откладываем на этом луче n раз произвольный отрезок b , так что OB = nb (см. рис. 11). Соединяем точку В со вторым концом А отрезка а . Через точку В 1 , определяемую условием 1 = b , проводим прямую, параллельную АВ , и отмечаем точку A 1 , в которой она пересечет отрезок а .

5) х = а (n и m -- данные натуральные числа).

Разделим отрезок а на m равных частей и увеличим полученный отрезок в п раз.

6) х = (построение отрезка, четвертого пропорционального трем данным отрезкам).

Запишем условие в виде пропорции с: а = b: х . Пусть (рис. 12) ОА = а , ОС = с , так что члены одного из отношений отложены на одном луче, исходящем из точки О . На другом луче, исходящем из той же точки, откладываем известный член другого отношения ОB = b . Через точку А проводим прямую, параллельную ВС , и отмечаем точку X ее пересечения с прямой ОВ . Отрезок ОХ искомый, то есть ОХ = х .


Рис. 12

Можно воспользоваться построением 6), полагая b = а.

8) х = (построение среднего пропорционального двух данных отрезков).

Строим отрезки АС = а , ВС = b , так что АВ = а + b . На АВ как на диаметре строим полуокружность (см. рис. 13). В точке С восставим перпендикуляр к АВ и отметим точку D его пересечения с окружностью. Тогда х = CD .

9) х = Отрезок x строится как гипотенуза прямоугольного треугольника с катетами а и b (см. рис. 14).

10) х = (a > b). Отрезок x строится как катет прямоугольного треугольника с гипотенузой а и катетом b .

К рассмотренным построениям можно свести построение отрезков, заданных более сложными формулами.

Желательно постепенное изучение этих формул, когда каждая из них разбирается при рассмотрении теории, необходимой для осуществления соответствующего построения.

На этом месте целесообразно также введение простейших задач на алгебраический метод (например, задача о восстановлении отрезков по их сумме и разности) с тем, чтобы формулы рассматривались во взаимосвязи. В дальнейшем, перед серьезным изучением метода, формулы следует повторить.

В Приложении 4 приведена задача на алгебраический метод: “Из вершин данного треугольника как из центров описать три окружности, касающиеся попарно внешним образом”.

Вывод. Описанные методы рекомендуется использовать для решения геометрических задач на построение. При этом необходимо обращать внимание в том числе и на развитие инициативы учащихся, привитие им вкуса и навыков к решению конструктивных задач.

Было бы неправильно думать, что методы решения задач на построение могут служить основой для классификации самих задач. Существенным, а не случайным следует признавать то обстоятельство, что целый ряд задач на построение может одинаково успешно решаться различными методами. С другой стороны, существуют задачи, которые решаются просто комбинацией основных построений без явного применения какого-либо метода.

С методической точки зрения наиболее приемлемым является применение при обучении решению задач на построение следующего принципа. Необходимо осуществлять последовательный подбор задач в соответствии с целями курса геометрии и постепенное ознакомление учащихся с методами решения задач на построение.

В свою очередь, необходимо ознакомить учащихся с самими методами и научить определять, каким из них можно решить предложенную задачу. Для этого, прежде всего, учащихся необходимо научить выделять наиболее характерные признаки задач, решаемых тем или иным методом. Эти признаки определяются самим содержанием метода.



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация