Из чего состоит вода: из каких молекул и атомов. Состав и функции биологических мембран

Главная / Суд

Структура и свойства биологических мембран

Биологическими мембранами называют функциональные структуры клеток, толщина которых составляет несколько молекулярных слоев, ограничивающие цитоплазму и большинство внутриклеточных структур. Они образуют единую внутриклеточную структуру каналов, складок и замкнутых полостей. Толщина биологических мембран редко превышает 10,0 нм, но вследствие плотной упаковки в них основных молекулярных компонентов (белки и липиды), а также большой общей площади клеточных мембран они составляют обычно более половины массы сухих клеток.

Биологические мембраны построены в основном из белков, липидов и углеводов. Белки и липиды составляют основную часть сухой массы мембран. Доля углеводов 10-15 %, причем они связаны с молекулами белка (гликопротеины), либо с молекулами липидов (гликолипиды). В мембранах различного происхождения содержание липидов составляет 25-75 % по массе по отношению к белку.

В состав биомембран входят липиды, относящиеся к трем основным классам: глицерофосфатиды (фосфолипиды), сфинго- и гликолипиды. Редко в состав мембран входят стероиды.

Мембранные липиды имеют сравнительно небольшую полярную (заряженную) головку и длинные незаряженные (неполярные) углеводородные цепи. Полярные головки глицерофосфитидов – фосфатидилхолин, фосфатидилэтаноламин и сфингомиелин. Они несут положительный и отрицательный заряд и при нейтральных значениях рН электронейтральны. Жирные кислоты, входящие в состав липидов, содержат 12-22 углеродных атома. Углеводородные цепи могут быть полностью насыщенными или содержать 1-6 двойных связей. В природных фосфолипидах жирные кислоты, имеющие ненасыщенные связи, обнаруживаются обычно во втором положении глицеринового остатка.

Белковый состав мембран также разнообразен. Большинство мембран содержат разнообразные белки, молекулярная масса которых составляет от 10 000 до 240 000. В зависимости от степени гидрофобности аминокислотных остатков, белки либо частично, либо целиком погружены в липидный слой мембран или пронизывают его насквозь. Наиболее слабо связаны с мембраной периферические белки, которые удерживаются за счет слабых электростатических взаимодействий. Белки, сильно связанные с липидами мембран и глубоко погруженные в них называют интегральными . Они составляют основную массу мембранных белков. В функциональном отношении мембранные белки подразделяются на группы: ферментативные, транспортные и регуляторные . Выделяют также структурные белки, которые выполняют опорно-строительные функции.

Важным структурным компонентом мембран является вода . Воду, входящую в состав мембран, подразделяют на группы: связанную, свободную и захваченную воду . Наименьшей подвижностью обладает связанная вода, присутствующая в виде одиночных молекул в углеводородной зоне мембран. Основная часть связанной воды – это вода гидратных оболочек макромолекул. Гидратные оболочки образуются главным образом вокруг полярных частей молекул липидов и белков. Гидратные оболочки основных структурообразующих липидов состоят обычно из 10-12 молекул воды. Эта вода осмотически неактивна и неспособна растворять какие-либо вещества.


Иногда в составе связанной воды выделяют слабосвязанную воду. Слабосвязанная вода по подвижности и некоторым другим свойствам занимает промежуточное положение между водой гидратных оболочек и жидкой свободной водой.

Свободная вода входит в состав мембран в виде самостоятельной фазы и обладает подвижностью, как и у жидкой воды.

Захваченная вода обнаружена в центральной части мембран между липидными бислоями. По параметрам подвижности она соответствует жидкой свободной воде, но медленно обменивается с внешней средой из-за физической разобщенности.

Функции биомембран:

1.Барьерная – обеспечивает селективный, регулируемый, пассивный и активный обмен веществом с окружающей средой.

2.Матричная – обеспечивает определенное взаимное расположение и ориентацию мембранных белков, их оптимальное взаимодействие.

3.Механическая – обеспечивает прочность и автономность клетки, внутриклеточных структур.

4.Энергетическая – синтез АТФ на внутренних мембранах митохондрий и фотосинтез в мембранах хлоропластов.

Организм человека почти на 70% состоит из воды. Вода — прежде всего растворитель, в среде которого протекают все элементарные акты жизнедеятельности. К тому же вода — продукт и субстрат энергетического метаболизма в живой клетке. Образно говоря, вода — это арена, на которой разыгрывается действие жизни и участник основных биохимических превращений.

Известно что вода присутствует во всех частях нашего организма, хотя например в коре мозга её 85%, в коже 72%, в зубной эмали всего лишь3%. Это свидетельствует о том, что в наиболее интенсивно работающих органах содержится большее число воды.

Некоторая часть воды в организме может более или менее прочно связываться с растворёнными в ней веществами и с поверхностью биополимерных макромолекул с помощью как водородных связей, так и сил ион-дипольного взаимодействия. Это может приводить к заметному изменению конфигурации, эффективных размеров и весов тех или иных частиц, участвующих в реакции, и в некоторых случаях к существенной модификации их свойств. Например, оказывается, что натриевые каналы нервных клеток, имеющие диаметр около 0,5 нм, практически недоступны для прохождения по ним ионов калия, хотя диаметр самого иона K+ равен 0,26 нм. В действительности ион K+ гидратирован и, следовательно, для расчёта его эффективных размеров к диаметру K+ следует прибавить диаметр молекулы воды 0,28 нм. В итоге комплексный ион + диаметром почти 0,6 нм сквозь натриевый канал пройти не может, тогда как гидратированный ион + диаметром около 0,47 нм свободно диффундирует через этот канал.

Другим примером изменения размеров биологического субстрата может быть молекула ДНК. В частности известно, что на каждый нуклеотид макромолекулы приходится около 50 молекул воды, связанных с ДНК. В общей сложности водная плёнка ДНК увеличивает эффективный диаметр цилиндрической макромолекулы ДНК с 2 нм в безводном состоянии до 2,9 нм в водном растворе, что чрезвычайно важно, например, при считывании с неё информации.

Строение воды

Вода — уникальное вещество и все её аномальные свойства: высокая температура кипения, значительная растворяющая и диссоциирующая способность, малая теплопроводность, высокая теплота испарения и другие обусловлены строением её молекулы и пространственной структурой.

У отдельно взятой молекулы воды есть качество, которое проявляется только в присутствии других молекул: способность образовывать водородные мостики между атомами кислорода двух оказавшихся рядом молекул, так, что атом водорода располагается на отрезке, соединяющем атомы кислорода. Свойство образовывать такие мостики обусловлено наличием особого межмолекулярного взаимодействия, в котором существенную роль играет атом водорода. Это взаимодействие называется водородной связью.

Каждая из присоединённых к данной молекул воды сама способна к присоединению дальнейших молекул. Этот процесс можно называть« полимеризацией». Если только одна из двух возможных связей участвует в присоединении следующей молекулы, а другая остаётся вакантной, то «полимеризация» приведёт к образованию либо зигзагообразной цепи, либо замкнутого кольца. Наименьшее кольцо, по-видимому , может состоять из четырёх молекул, но величина угла 90° делает водородные связи крайне напряжёнными. Практически ненапряжёнными должны быть пятизвенные кольца(угол 108°), а шестизвенные(угол 120°), также как и семизвенные — напряжённые.

Рассмотрение реальных структур гидратов показывает, что, действительно, наиболее устойчиво шестизвенное кольцо, находимое в структурах льдов. Плоские кольца являются привилегией клатратных гидратов, причём во всех известных структурах чаще всего встречаются плоские пятизвенные кольца из молекул воды. Они, как правило, чередуются во всех структурах клатратных гидратов с шестизвенными кольцами, очень редко с четырёхзвенными, а в одном случае — с плоским семизвенным.

В целом структура воды представляется как смесь всевозможных гидратных структур, которые могут в ней образоваться.

В прикладном аспекте это, например, имеет важное значение для понимания действия лекарственных веществ. Как было показано Л. Полингом структурированная клатратная форма воды в межсинаптических образованиях мозга обеспечивает, с одной стороны, передачу импульсов с нейрона на нейрон, а, с другой стороны при попадании в эти участки наркозного вещества такая передача нарушается, то есть наблюдается явление наркоза. Гидратация некоторых структур мозга является одной из основ реализации действия наркотических анальгетиков(морфина).

Биологическое значение воды

Вода как растворитель. Вода — превосходный растворитель для полярных веществ. К ним относятся ионные соединения, такие как соли, у которых заряженные частицы(ионы) диссоцииируют в воде, когда вещество растворяется, а также некоторые неионные соединения, например сахара и простые спирты, в молекуле которых присутствуют заряженные(полярные) группы(-OH).

Результаты многочисленных исследований строения растворов электролитов свидетельствуют, что при гидратации ионов в водных растворах основную роль играет ближняя гидратация — взаимодействие ионов с ближайшими к ним молекулами воды. Большой интерес представляет выяснение индивидуальных характеристик ближней гидратации различных ионов, как степени связывания молекул воды в гидратных оболочках, так и степени искажения в этих оболочках тетраэдрической льдоподобной структуры чистой воды — связи в молекуле изменяются на неполный угол. Величина угла зависит от иона.

Когда вещество растворяется, его молекулы или ионы получают возможность двигаться более свободно и, соответственно, его реакционная способность возрастает. По этой причине в клетке большая часть химических реакций протекает в водных растворах. Неполярные вещества, например липиды, не смешиваются с водой и потому могут разделять водные растворы на отдельные компартаменты, подобно тому, как их разделяют мембраны. Неполярные части молекул отталкиваются водой и в её присутствии притягиваются друг к другу, как это бывает, например, когда капельки масла сливаются в более крупные капли; иначе говоря, неполярные молекулы гидрофобны. Подобные гидрофобные взаимодействия играют важную роль в обеспечении стабильности мембран, а также многих белковых молекул, нуклеиновых кислот и других субклеточных структур.

Присущие воде свойства растворителя означают также, что вода служит средой для транспорта различных веществ. Эту роль она выполняет в крови, в лимфатической и экскреторных системах, в пищеварительном тракте и во флоэме и ксилеме растений.

Большая теплоёмкость. Удельной теплоёмкостью воды называют количество теплоты в джоулях, которое необходимо, чтобы поднять температуру 1 кг воды на 1° C. Вода обладает большой теплоёмкостью(4,184 Дж/г). Это значит, что существенное увеличение тепловой энергии вызывает лишь сравнительно небольшое повышение её температуры. Объясняется такое явление тем, что значительная часть этой энергии расходуется на разрыв водородных связей, ограничивающих подвижность молекул воды.

Большая теплоёмкость воды сводит к минимуму происходящие в ней температурные изменения. Благодаря этому биохимические процессы протекают в меньшем интервале температур, с более постоянной скоростью и опасность нарушения этих процессов от резких отклонений температуры грозит им не столь сильно. Вода служит для многих клеток и организмов средой обитания, для которой характерно довольно значительное постоянство условий.

Большая теплота испарения. Скрытая теплота испарения есть мера количества тепловой энергии, которую необходимо сообщить жидкости для её перехода в пар, то есть для преодоления сил молекулярного сцепления в жидкости. Испарение воды требует довольно значительных количеств энергии(2494 Дж/г). Это объясняется существованием водородных связей между молекулами воды. Именно в силу этого температура кипения воды — вещества со столь малыми молекулами — необычно высока.

Энергия, необходимая молекулам воды для испарения, черпается из их окружения. Таким образом, испарение сопровождается охлаждением. Это явление используется у животных при потоотделении, при тепловой одышке у млекопитающих или у некоторых рептилий(например, у крокодилов), которые на солнцепёке сидят с открытым ртом; возможно, оно играет заметную роль и в охлаждении транспирирующих листьев.

Большая теплота плавления. Скрытая теплота плавления есть мера тепловой энергии, необходимой для расплавления твёрдого вещества(льда). Воде для плавления(таяния) необходимо сравнительно большое количество энергии. Справедливо и обратное: при замерзании вода должна отдать большое количество тепловой энергии. Это уменьшает вероятность замерзания содержимого клеток и окружающей их жидкости. Кристаллы льда особенно губительны для живого, когда они образуются внутри клеток.

Плотность и поведение воды вблизи точки замерзания. Плотность воды(максимальна при +4° С) от +4 до 0° С понижается, поэтому лёд легче воды и в воде не тонет. Вода — единственное вещество, обладающее в жидком состоянии большей плотностью, чем в твёрдом, так как структура льда более рыхлая, чем структура жидкой воды.

Поскольку лёд плавает в воде, он образуется при замерзании сначала на её поверхности и лишь под конец в придонных слоях. Если бы замерзание прудов шло в обратном порядке, снизу вверх, то в областях с умеренным или холодным климатом жизнь в пресноводных водоёмах вообще не могла бы существовать. То обстоятельство, что слои воды, температура которых упала ниже 4° С, поднимаются вверх, обусловливает перемешивание воды в больших водоёмах. Вместе с водой циркулируют и находящиеся в ней питательные вещества, благодаря чему водоёмы заселяются живыми организмами на большую глубину.

После проведения ряда экспериментов было установлено, что связанная вода при температуре ниже точки замерзания не переходит в кристаллическую решётку льда. Это энергетически невыгодно, так как вода достаточно прочно связана с гидрофильными участками растворённых молекул. Это находит применение в криомедицине.

Большое поверхностное натяжение и когезия. Когезия — это сцепление молекул физического тела друг с другом под действием сил притяжения. На поверхности жидкости существует поверхностное натяжение — результат действующих между молекулами сил когезии, направленных внутрь. Благодаря поверхностному натяжению жидкость стремится принять такую форму, чтобы площадь её поверхности была минимальной(в идеале — форму шара). Из всех жидкостей самое большое поверхностное натяжение у воды(7,6 · 10-4 Н/м). Значительная когезия, характерная для молекул воды, играет важную роль в живых клетках, а также при движении воды по сосудам ксилемы в растениях. Многие мелкие организмы извлекают для себя пользу из поверхностного натяжения: оно позволяет им удерживаться на воде или скользить по её поверхности.

Вода как реагент. Биологическое значение воды определяется и тем, что она представляет собой один из необходимых метаболитов, то есть участвует в метаболических реакциях. Вода используется, например, в качестве источника водорода в процессе фотосинтеза, а также участвует в реакциях гидролиза.

Особенности талой воды Уже небольшое нагревание(до 50-60° С) приводит к денатурации белков и прекращает функционирование живых систем. Между тем охлаждение до полного замерзания и даже до абсолютного нуля не приводит к денатурации и не нарушает конфигурацию системы биомолекул, так что жизненная функция после оттаивания сохраняется. Это положение очень важно для консервирования органов и тканей предназначенных для пересадки. Как указывалось выше, вода в твёрдом состоянии имеет другую упорядоченность молекул, чем в жидком и после замерзания и оттаивания приобретает несколько иные биологические свойства, что послужило причиной применения талой воды с лечебной целью. После оттаивания вода имеет более упорядоченную структуру, с зародышами клатратов льда что позволяет ей взаимодействовать с биологическими компонентами и растворёнными веществами, например с другой скоростью. При употреблении талой воды в оганизм попадают мелкие центры льдоподобной структуры, которые в дальнейшем могут разрастись и перевести воду во льдоподобное состояние и тем самым произвести оздоравливающее действие.

Информационная роль воды

При взаимодействии молекул воды со структурными компонентами клетки могут образовываться не только вышеописанные пяти-, шести- и т. д. компонентные структуры, но и трёхмерные образования могут образовываться додекаэдральные формы, которые могут обладать способностью к образованию цепочечных структур, связанных общими пятиугольными сторонами. Подобные цепочки могут существовать и в виде спиралей, что делает возможным реализацию механизма протонной проводимости по этому универсальному токопроводу. Следует также учесть данные С. В. Зенина(1997 г.), что молекулы воды в таких образованиях могут взаимодействовать между собой по принципу зарядовой комплементарности, то есть посредством дальнего кулоновского взаимодействия без образования водородных связей между гранями элементов, что позволяет рассматривать структурированное состояние воды в виде исходной информационной матрицы. Такая объёмная структура имеет возможность переориентироваться, в результате чего происходит явление« памяти воды», так как в новом состоянии отражено кодирующее действие введённых веществ или других возмущающих факторов. Известно, что такие структуры существуют непродолжительное время, но в случае нахождения внутри додекаэдра кислорода или радикалов происходит стабилизация таких структур.

В прикладном аспекте возможности« памяти воды» и передачи информации посредством структурированной воды объясняют действие гомеопатических средств и акупунктурных воздействий.

Как уже говорилось, все вещества при растворении в воде образуют гидратные оболочки и поэтому каждой частице растворённого вещества соответствует конкретная структура гидратной оболочки. Встряхивание такого раствора приводит к схлопыванию микропузырьков с диссоциацией молекул воды и образованию протонов, стабилизирующих такую воду, которая приобретает излучательные свойства и свойства памяти, присущие растворённому веществу. При дальнейшем разведении этого раствора и встряхивании образуются всё более длинные цепи — спирали и в 12-сотенном разведении уже нет самого вещества, но сохраняется память о нём. Введение этой воды в организм передаёт эту информацию в структурированные компоненты воды биологических жидкостей, которая передаётся структурным компонентам клеток. Таким образом, гомеопатический препарат действует прежде всего информационно. Добавление спирта в процессе приготовления гомеопатического средства удлиняет устойчивость во времени структурированной воды.

Не исключено, что спиралеобразные цепи структурированной воды являются возможными компонентами переноса информации из биологически активных точек(точек акупунктуры) на структурные компоненты клеток определённых органов.

Садовничая Л. П. с соавт. Биофизическая химия, К.: Вища школа, 1986. — 271 с.
Габуда С. П. Связанная вода. Факты и гипотезы, Новосибирск: Наука, 1982. — 159 с.
Сб. Структура и роль воды в живом организме, Л.: Изд. ЛГУ, 1966. — 208 с.
Бышевский А. Ш., Терсенов О. А. Биохимия для врача, Екатеринбург: изд. «Уральский рабочий», 1994. — 378 с.
Грин Н., Стаут У., Тейлор Д. Биология, т. 1.: Пер. с англ. — М.: Мир, 1993. — 368 с.
Чанг Р. Физическая химия с приложениями к биологическим системам М.: Мир, 1980. — 662 с.
Зенин С. В. Водная среда как информационная матрица биологических процессов. В кн. Тезисы докладов 1 Международного симпозиума, Пущино, 1997, с. 12-13.
Смит С. Электромагнитная биоинформация и вода. Вестник биофизической медицины, 1994 №1, с. 3-13.
Антонченко В. Я., Ильин В. В. Проблемные вопросы физики воды и гомеопатии. Вестник биофизической медицины, 1992 №1, с.11-13.

Без воды жизнь на нашей планете не могла бы существовать. Вода важна для живых организмов по двум причинам. Во-первых, она является необходимым компонентом живых клеток, и, во-вторых, для многих организмов она служит еще и средой обитания. Именно поэтому следует сказать несколько слов о ее химических и физических свойствах.

Свойства эти довольно необычны и обусловлены главным образом малыми размерами молекул воды , их полярностью и способностью соединяться друг с другом водородными связями. Под полярностью подразумевают неравномерное распределение зарядов в молекуле. У воды один конец молекулы («полюс») несет небольшой положительный заряд, а другой - отрицательный. Такую молекулу называют диполем. У атома кислорода способность притягивать электроны выражена сильнее, чем у водородных атомов, поэтому атом кислорода в молекуле воды стремится оттянуть к себе электроны двух водородных атомов. Электроны заряжены отрицательно, в связи с чем атом кислорода приобретает небольшой отрицательный заряд, а водородные атомы - положительный.

В результате между молекулами воды возникает слабое электростатическое взаимодействие и, поскольку противоположные заряды притягиваются, молекулы как бы «склеиваются». Эти взаимодействия, более слабые, чем обычные ионные или ковалентные связи, называются водородными связями. Водородные связи постоянно образуются, распадаются и вновь возникают в толще воды. И хотя это слабые связи, но их совокупный эффект обусловливает многие необычные физические свойства воды. Учитывая данную особенность воды, мы можем теперь перейти к рассмотрению тех ее свойств, которые важны с биологической точки зрения.

Водородные связи между молекулами воды. А. Две молекулы воды, соединенные водородной связью-6+ - очень маленький положительный заряд; 6~ - очень маленький отрицательный заряд. Б. Сеть из молекул воды, удерживаемых вместе водородными связями. Такие структуры постоянно образуются, распадаются и вновь возникают в воде, находящейся в жидком состоянии.

Биологическое значение воды

Вода как растворитель .Вода - превосходный растворитель для полярных веществ. К ним относятся ионные соединения, такие как соли, содержащие заряженные частицы (ионы), и некоторые неионные соединения, например сахара, в молекуле которых присутствуют полярные (слабо заряженные) группы (у Сахаров это несущая небольшой отрицательный заряд гидроксильная группа, -ОН). Когда вещество растворяется в воде, молекулы воды окружают ионы и полярные группы, отделяя ионы или молекулы друг от друга.

В растворе молекулы или ионы получают возможность двигаться более свободно, так что реакционная способность вещества возрастает. По этой причине в клетке большая часть химических реакций протекает в водных растворах . Неполярные вещества, например липиды, отталкиваются водой и в ее присутствии обычно притягиваются друг к другу, иными словами, неполярные вещества гидрофобны (гидрофобный - водоотталкивающий). Подобные гидрофобные взаимодействия играют важную роль в формировании мембран, а также в определении трехмерной структуры многих белковых молекул, нуклеиновых кислот и других клеточных компонентов.

Присущие воде свойства растворителя означают также, что вода служит средой для транспорта различныхвеществ . Эту роль она выполняет в крови, в лимфатической и экскреторной системах, в пищеварительном тракте и во флоэме и ксилеме растений.



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация