Стохастический процесс

Главная / Налоги

"Стохастический" – это слово, которое физики, математики и другие ученые используют для описания процессов, обладающих элементом случайности. Происхождение его древнегреческое. В переводе оно означает "умеющий угадывать".

Значение слова "стохастический"

"Стохастический" - это понятие, которое используется во множестве различных областей науки. Оно означает случайность, хаотичность, неопределенность чего-либо. В этике Аристотеля (его скульптурный портрет представлен выше) понятие "стохастический" – это определение, относящееся к способности угадывать. Очевидно, математики употребляли его на том основании, что элемент случайности появляется как раз при необходимости угадывать. Слово "стохастический" – это понятие, которое определено в "Новом международном словаре" как "предположительный".

Таким образом, можно заметить, что техническое значение данного понятия не точно соответствует его словарному (лексическому) значению. Некоторые авторы используют выражение "стохастический процесс" как синоним понятия "случайный процесс".

Стохастичность в математике

Употребление данного термина в математике в настоящее время широко распространено. К примеру, существует такое понятие в теории вероятности, как стохастический процесс. Его итог нельзя определить по изначальному состоянию данной системы.

Употребление в математике понятия "стохастичность" относят к трудам Владислава Борцкевича. Именно он использовал данный термин в значении "выдвигать гипотезы". В математике, в особенности в таком разделе этой науки, как теория вероятности, область случайных исследований играет большую роль. Существует, к примеру, такое понятие, как стохастическая матрица. Колонки или строки данной матрицы в сумме дают единицу.

Стохастическая математика (финансовая)

Данный раздел математики анализирует финансовые структуры, действующие в условиях неопределенности. Он призван находить самые рациональные методы управления финансовыми средствами и структурами, учитывая такие факторы, как стохастическая эволюция, риск, время и др.

В науке принято выделять следующие структуры и объекты, которые используются в финансовой математике в целом:

  • фирмы (к примеру, компании);
  • индивидуумы;
  • посреднические структуры (пенсионные фонды, банки);
  • финансовые рынки.

Основным объектом изучения финансовой математики стохастической является именно последний из них. Данный раздел базируется на таких дисциплинах, как статистика случайных процессов, теория случайных процессов и др.

В настоящее время даже людям, далеким от науки, хорошо известно по многочисленным новостям и публикациям в СМИ, что значения так называемых глобальных финансовых индексов (например, индекса Доу Джонса), цены акций меняются хаотически. Л. Башелье предпринял первую попытку описать с использованием математики эволюцию стоимости акций. Его стохастический метод опирается на теорию вероятностей. Диссертация Л. Башелье, где представлена эта попытка, была опубликована в 1900 году. Ученый доказал формулу, известную в настоящее время как формула справедливой стоимости опциона-колл. В ней отражается стохастическая вероятность.

Важные идеи, которые в дальнейшем привели к возникновению теории эффективного рынка, были изложены в труде М. Кендалла, изданном в 1953 году. В этой работе рассматривается вопрос динамики цен акций. Исследователь описывает ее с помощью стохастических процессов.

Стохастичность в физике

Благодаря физикам Э. Ферми, С. Уламу, Н. Метрополису и Д. Нейману большое распространение получил метод Монте-Карло. Его название произошло от казино, расположенного в одноименном городе такой страны, как Монако. Именно здесь занимал деньги для игры дядя Улама. Использование природы повторов и случайностей для изучения процессов является аналогичным происходящей в казино деятельности.

При применении данного метода моделирования сначала происходит поиск вероятностного аналога. До этого моделирование осуществлялось в противоположном направлении: оно использовалось для проверки результата детерминированной проблемы, полученной ранее. И хотя и до открытия метода Монте-Карло существовали подобные подходы, они не были популярными и общими.

Энрико Ферми в 1930 году применил стохастические приемы для расчета свойств нейтрона, в то время только что обнаруженного. Методы Монте-Карло в дальнейшем использовались при работе над манхэттенским проектом, хотя в то время были существенно ограничены возможности вычислительных машин. По этой причине они получили широкое распространение только после того, как появились компьютеры.

Стохастические сигналы

Регулярные и стохастические сигналы имеют разные формы колебаний. Если повторно измерить последние, мы получим колебания, имеющие новую форму, которая отлична от предыдущей, однако проявляет определенное сходство в существенных чертах. Пример стохастического сигнала – запись колебаний волн моря.

Почему же вообще необходимо вести речь об этих достаточно необычных сигналах? Дело в том, что при изучении автоматических систем они встречаются даже чаще, чем предсказуемые.

Стохастичность и искусственный интеллект

Стохастические программы в сфере искусственного интеллекта работают с применением вероятностных методов. В качестве примера можно привести такие алгоритмы, как стохастическая оптимизация или нейронные сети. Это же относится к имитации отжига и генетическим алгоритмам. Во всех этих случаях стохастичность может содержаться в проблеме как таковой или же в планировании чего-либо в условии неопределенности. Детерминированное окружение для агента моделирования является более простым, чем стохастическое.

Итак, как мы видим, интересующее нас понятие используется во многих областях науки. Мы перечислили и охарактеризовали лишь основные сферы его применения. Изучение всех этих процессов, согласитесь, очень важно и актуально. Именно поэтому интересующее нас понятие, вероятно, будет еще долго использоваться в науке.

Определение

X t (⋅) : Ω → R , t ∈ T {\displaystyle X_{t}(\cdot)\colon \Omega \to \mathbb {R} ,\quad t\in T} ,

где T {\displaystyle T} произвольное множество , называется случайной функцией .

Терминология

Данная классификация нестрогая. В частности, термин «случайный процесс» часто используется как безусловный синоним термина «случайная функция».

Классификация

  • Случайный процесс X (t) {\displaystyle X(t)} называется процессом дискретным во времени , если система, в которой он протекает, меняет свои состояния только в моменты времени t 1 , t 2 , … {\displaystyle \;t_{1},t_{2},\ldots } , число которых конечно или счётно. Случайный процесс называется процессом с непрерывным временем , если переход из состояния в состояние может происходить в любой момент времени.
  • Случайный процесс называется процессом с непрерывными состояниями , если значением случайного процесса является непрерывная случайная величина. Случайный процесс называется случайным процессом с дискретными состояниями , если значением случайного процесса является дискретная случайная величина:
  • Случайный процесс называется стационарным , если все многомерные законы распределения зависят только от взаимного расположения моментов времени t 1 , t 2 , … , t n {\displaystyle \;t_{1},t_{2},\ldots ,t_{n}} , но не от самих значений этих величин. Другими словами, случайный процесс называется стационарным , если его вероятностные закономерности неизменны во времени. В противном случае, он называется нестационарным .
  • Случайная функция называется стационарной в широком смысле , если её математическое ожидание и дисперсия постоянны, а АКФ зависит только от разности моментов времени, для которых взяты ординаты случайной функции. Понятие ввёл А. Я. Хинчин .
  • Случайный процесс называется процессом со стационарными приращениями определённого порядка, если вероятностные закономерности такого приращения неизменны во времени. Такие процессы были рассмотрены Ягломом .
  • Если ординаты случайной функции подчиняются нормальному закону распределения , то и сама функция называется нормальной .
  • Случайные функции, закон распределения ординат которых в будущий момент времени полностью определяется значением ординаты процесса в настоящий момент времени и не зависит от значений ординат процесса в предыдущие моменты времени, называются марковскими .
  • Случайный процесс называется процессом с независимыми приращениями , если для любого набора t 1 , t 2 , … , t n {\displaystyle t_{1},t_{2},\ldots ,t_{n}} , где n > 2 {\displaystyle n>2} , а t 1 < t 2 < … < t n {\displaystyle t_{1}, случайные величины (X t 2 − X t 1) {\displaystyle (X_{t_{2}}-X_{t_{1}})} , (X t 3 − X t 2) {\displaystyle (X_{t_{3}}-X_{t_{2}})} , … {\displaystyle \ldots } , (X t n − X t n − 1) {\displaystyle (X_{t_{n}}-X_{t_{n-1}})} независимы в совокупности.
  • Если при определении моментных функций стационарного случайного процесса операцию усреднения по статистическому ансамблю можно заменить усреднением по времени, то такой стационарный случайный процесс называется эргодическим .
  • Среди случайных процессов выделяют импульсные случайные процессы .

Траектория случайного процесса

Пусть дан случайный процесс { X t } t ∈ T {\displaystyle \{X_{t}\}_{t\in T}} . Тогда для каждого фиксированного t ∈ T {\displaystyle t\in T} X t {\displaystyle X_{t}} - случайная величина, называемая сечением . Если фиксирован элементарный исход ω ∈ Ω {\displaystyle \omega \in \Omega } , то X t: T → R {\displaystyle X_{t}\colon T\to \mathbb {R} } - детерминированная функция параметра t {\displaystyle t} . Такая функция называется траекто́рией или реализа́цией случайной функции { X t } {\displaystyle \{X_{t}\}} .

Рассмотрим переменную, подчиняющуюся марковскому стохастическому процессу. Предположим, что ее текущее значение равно 10, а изменение в течение года описывается функцией 0(0, 1), где а) - нормальное распределение вероятностей с математическим ожиданием // и стандартным отклонением о. Какое распределение вероятностей описывает изменение этой переменной в течение двух лет?
Изменение переменной через два года описывается суммой двух нормальных распределений с нулевыми математическими ожиданиями и единичными стандартными отклонениями. Поскольку переменная является марковской, эти распределения не зависят друг от друга. Складывая два независимых нормальных распределения, мы получим нормальное распределение, математическое ожидание которого равно сумме математических ожиданий каждого из слагаемых, а дисперсия - сумме их дисперсий. Таким образом, математическое ожидание изменений рассматриваемой переменной на протяжении двух лет равно нулю, а дисперсия - 2,0. Следовательно, изменение значения переменной через два года является случайной величиной с распределением вероятностей ф(0, %/2).
Рассмотрим далее изменение переменной за шесть месяцев. Дисперсия изменений этой переменной в течение одного года равна сумме дисперсий этих изменений на протяжении первых и вторых шести месяцев. Предположим, что эти дисперсии одинаковы. Тогда дисперсия изменений переменной на протяжении шести месяцев равна 0,5, а стандартное отклонение - 1/0,5. Следовательно, распределение вероятностей изменения переменной на протяжении шести месяцев равно ф(0, \ДЩ)
Аналогичные рассуждения позволяют доказать, что изменение переменной на протяжении трех месяцев имеет распределение 0(0, ^/0,25). Вообще говоря, изменение переменной на протяжении временного периода, имеющего длину Т, описывается распределением вероятностей ф(0, \[Т) В частности, изменение переменной за очень короткий промежуток времени, имеющий длину АТ, описывается распределением вероятностей ф(0, л/ДТ).
Квадратные корни в этих выражениях могуг показаться странными. Они возникают изза того, что при анализе марковского процесса дисперсии изменений переменной в последовательные моменты времени складываются, а стандартные отклонения - нет. В нашем примере дисперсия изменений переменной в течение одного года равна 1,0, поэтому дисперсия изменений этой переменной в течение длух лет равна 2,0, а через три года3,0. В то же время стандартные отклоне
ния изменений переменных через два и три года равны \/2 и \/3 соответственно. Строго говоря, мы не должны говорить, что стандартное отклонение изменений переменной за один год равно 1,0 в год. Следует говорить, что оно равно “корню квадратному из единицы в год”. Это объясняет, почему величину неопределенности часто считают пропорциональной квадратному корню из времени.
Винеровские процессы
Процесс, которому подчиняется рассмотренная выше переменная, называется винеровским (Wiener process). Он представляет собой частный случай марковского стохастического процесса, когда математическое ожидание изменений переменной равно нулю, а их дисперсия равна 1,0. Этот процесс широко используется в физике для описания движения частицы, участвующей в большом количестве столкновений с молекулами (это явление называется броуновским движением (Brownian motion)).
Говоря формально, переменная z подчиняется винеровскому процессу, если она имеет следующие свойства.
СВОЙСТВО 1. Изменение Az на протяжении малого промежутка времени At удовлетворяет равенству
Az = ey/At, (12.1)
где е - случайная величина, подчиняющаяся стандартизованному нормальному распределению ф(0,1).
Свойство 2. Величины Az на двух малых промежутках времени At являются независимыми.
Из первого свойства следует, что величина Az имеет нормальное распределение, у которого математическое ожидание равно нулю, стандартное отклонение равно VAt, а дисперсия равна At. Второе свойство означает, что величина 2 подчиняется марковскому процессу.
Рассмотрим увеличение переменной z на протяжении относительно долгого периода времени Т. Это изменение можно обозначить как z(T) - z(0). Его можно представить в виде суммы увеличения переменной г на протяжении N относительно малых промежутков времени, имеющих длину At. Здесь
Следовательно,
z(т)z(o) = J2?^t’ (12.2)
г=1
где?г,г = 1,2,...,ЛГслучайные величины, имеющие распределение вероятностей ф(0,1). Из второго свойства винеровского процесса следует, что величины?
?; являются независимыми друг от друга. Из выражения (12.2) следует, что случайная величина z(T) - z(0) имеет нормальное распределение, математическое ожидание которого равно нулю, дисперсия равна NAt = Т, а стандартное отклонение - у/Т. Эти выводы согласуются с результатами, указанными выше. Пример 12.1
Предположим, что значение г случайной переменной, подчиняющейся винеровскому процессу, в первоначальный момент времени равно 25, а время измеряется годами. В конце первого года значение переменной имеет нормальное распределение с математическим ожиданием, равным 25, и стандартным отклонением, равным 1,0. В конце пятого года значение переменной имеет нормальное распределение с математическим ожиданием, равным 25, и стандартным отклонением, равным л/5, т.е. 2,236. Неопределенность значения переменной в определенный момент в будущем, измеренная его стандартным отклонением, возрастает как квадратный корень из длины прогнозируемого интервала. ?
В математическом анализе широко используется переход к пределу, когда величина малых изменений стремится к нулю. Например, при At -> 0 величина Ах = aAt превращается в величину dx = adt. При анализе стохастических процессов используются аналогичные обозначения. Например, при At -> 0 описанный выше процесс Az стремится к винеровскому процессу dz.
На рис. 12.1 показано, как изменяется траектория переменной z при At -> 0. Обратите внимание на то, что этот график является “зазубренным”. Это объясняется тем, что изменение переменной z за время At пропорционально величине v^Af, а когда величина At становится малой, число \/Аt намного больше, чем At. Благодаря этому, винеровский процесс обладает двумя интригующими свойствами.
1. Ожидаемая длина траектории, которую проходит переменная z в течение любого промежутка времени, является бесконечной.
2. Ожидаемое количество совпадений переменной z с любым конкретным значением на любом промежутке времени является бесконечным.
Обобщенный винеровский процесс
Скоростью дрейфа (drift rate), или коэффициентом сноса, стохастического процесса называется средняя величина изменения переменной величины за единицу времени, а дисперсией (variance rate), или коэффициентом диффузии - величина колебаний за единицу времени. Скорость дрейфа основного винеровского процесса dz, рассмотренного выше, равна нулю, а дисперсия равна 1,0. Нулевой дрейф означает, что ожидаемое значение переменной z в любой момент времени равно ее текущему значению. Единичная дисперсия процесса означает, что дисперсия изменения переменной z на интервале времени Т равна его длине.
Рис. 12.1. Изменение цены акции в примере
Обобщенный винеровский процесс (generalized Wiener process) для переменной х можно определить через величину dz следующим образом.
dx - adt + bdz, (12.3)
где а и b - константы.
Чтобы понять смысл уравнения (12.3), полезно рассмотреть два слагаемых в правой части по отдельности. Слагаемое a dt означает, что ожидаемая скорость дрейфа переменной х равна о единиц в единицу времени. Без второго члена уравнение (12.3) превращается в уравнение
dx = adt,
откуда следует, что
dx
Интегрируя это уравнение по времени, получаем
х = хо + а?,
где хо - значение переменной х в нулевой момент времени. Таким образом, за период времени Т переменная х увеличивается на величину ей. Член Ь dz можно рассматривать как шум, или изменчивость траектории, которую проходит переменная х. Величина этого шума в Ь раз больше значения винеровского процесса. Стандартное отклонение винеровского процесса равно 1,0. Отсюда следует, что стандартное отклонение величины Ь dz равно Ь. На небольших промежутках времени АЬ изменение Ах переменной х определяется уравнениями (12.1) и (12.3).
Ах = аАЬ + ЪЕУ/АЬ,
где е, как и прежде, - случайная величина, имеющая стандартизованное нормальное распределение. Итак, величина Ах имеет нормальное распределение, математическое ожидание которого равно аАЬ, стандартное отклонение - 6л/Д7, а дисперсия - Ь2Д/. Аналогичными рассуждениями можно показать, что изменение переменной х в течение произвольного интервала времени Т имеет нормальное распределение с математическим ожиданием с.Т, стандартным отклонением Ьу/Т и дисперсией Ь2Т. Таким образом, ожидаемая скорость дрейфа обобщенного винеровского процесса (12.3) (т.е. среднее изменение дрейфа в единицу времени) равна а, а дисперсия (т.е. дисперсия переменной за единицу времени) - Ь2. Этот процесс изображен на рис. 12.2. Проиллюстрируем скачанное следующим примером.
Пример 12.2
Рассмотрим ситуацию, в которой доля активов компании, вложенных в краткосрочные денежные эквиваленты (cash position), измеренные тысячами долларов, подчиняется обобщенному винеровскому процессу со скоростью дрейфа, равной 20 тыс. долл. в год, и дисперсией, равной 900 тыс. долл. в год. В первый момент времени доля активов равна 50 тыс. долл. Через год эта доля активов будет иметь нормальное распределение с математическим ожиданием, равным 70 тыс. долл., и стандартным отклонением, равным л/900, т.е. 30 долл. Через шесть месяцев она будет иметь нормальное распределение с математическим ожиданием, равным 60 тыс. долл., и стандартным отклонением, равным 30\ДЦ> = 21,21 долл. Неопределенность, связанная с долей активов, вложенных в краткосрочные эквиваленты наличности, измеренная с помощью стандартного отклонения увеличивается как корень квадратный из длины прогнозируемого интервала. Обратите внимание на то, что эта доля активов может стать отрицательной (когда компания делает займы). ?
Процесс Ито
Стохастическим процессом Ито (Ito process) называется обобщенный винеровский процесс, б котором параметры а и Ь являются функциями, зависящими от переменной х и времени t. Процесс Ито можно выразить следующей формулой.
dx = а(х, t)dt + b(x, t)d,z,?
И ожидаемая скорость дрейфа, и дисперсия этого процесса со временем изменяются. За небольшой промежуток времени от t до At переменная изменяется от
х до х + Ах, где
Ах = а{х, t) At + Ъ(х, t)e\fAt.
Это отношение содержит небольшую натяжку. Она связана с тем, что мы считаем дрейф и дисперсию переменной х постоянными величинами, которые на интервале времени от t до At равны а(х, t) и b(x, t)2 соответственно.

Стохастичность (др.-греч. στόχος - цель, предположение) означает случайность. Стохастический процесс - это процесс, поведение которого не является детерминированным, и последующее состояние такой системы описывается как величинами, которые могут быть предсказаны, так и случайными. Однако, по М. Кацу и Э. Нельсону, любое развитие процесса во времени (неважно, детерминированное или вероятностное) при анализе в терминах вероятностей будет стохастическим процессом (иными словами, все процессы, имеющие развитие во времени, с точки зрения теории вероятностей, стохастические).

Примером реального стохастического процесса в нашем мире может служить моделирование давления газа при помощи Винеровского процесса. Несмотря на то, что каждая молекула газа движется по своему строго определённому пути (в данной модели, а не в реальном газе), движение совокупности таких молекул практически нельзя просчитать и предсказать. Достаточно большой набор молекул будет обладать стохастическими свойствами, такими как наполнение сосуда, выравнивание давление, движение в сторону меньшего градиента концентрации и т. д. Таким образом проявляется эмерджентность системы.

Метод Монте-Карло получил распространение благодаря физикам Станиславу Уламу, Энрико Ферми, Джону фон Нейману и Николасу Метрополису. Название произошло от казино в городе Монте Карло, Монако, где дядя Улама занимал деньги для игры. Использование природы случайностей и повторов для изучения процессов аналогично деятельности, происходящей в казино.

Методы проведения расчётов и экспериментов на основе случайных процессов как формы стохастического моделирования применялись ещё на заре развития теории вероятностей (напр. Задача Буффона и работах по оценке малых выборок Уильяма Госсета), но наиболее развились в предкомпьютерную эру. Отличительной чертой методов моделирования Монте-Карло является то, что сначала идёт поиск вероятностного аналога (см. алгоритм имитации отжига). До этого методы моделирования шли в противоположном направлении: моделирование использовалось для того, чтобы проверить результат полученной ранее детерминированной проблемы. И хотя подобные подходы существовали до этого, они не были общими и популярными до тех пор, пока не появился метод Монте-Карло.

Возможно, наиболее известное из ранних применений подобных методом принадлежит Энрико Ферми, который в 1930 году использовал стохастические методы для расчёта свойств только что открытого нейтрона. Методы Монте-Карло широко использовались в ходе работы над манхэттенским проектом, несмотря на то, что возможности вычислительных машин были сильно ограничены. По этой причине только с появлением компьютеров методы Монте-Карло начали широко распространяться. В 1950х их использует Лос-Аламосская национальная лаборатория для создания водородной бомбы. Широкое распространения методы получили в таких областях, как Физика, Физическая химия и Исследование операций.

Использование методов Монте-Карло требует большого числа случайных величин, что, как следствие, привело к развитию генераторов псевдослучайных чисел, которые были намного быстрее, чем табличные методы генерации, которые ранее использовались для статистической выборки.

Изучение статистических закономерностей - важнейшая познавательная задача статистики, которую она решает с помощью особых методов, видоизменяющихся в зависимости от характера исходной информации и целей познания. Знание характера и силы связей позволяет управлять социально-экономическими процессами и предсказывать их развитие.

Среди многих форм связей важнейшей является причинная, определяющая все другие формы. Сущность причинности состоит в порождении одного явления другим. Вместе с тем, причина сама по себе еще не определяет следствия, она зависит также от условий, в которых протекает действие причины. Для возникновения следствия нужны все определяющие его факторы - причина и условия. Необходимая обусловленность явлений множеством факторов называется детерминизмом.

Объектами исследования при статистическом измерении связей служит, как правило, детерминированность следствия факторами (причиной и условиями). Признаки по их значению для изучения взаимосвязи делятся на два класса. Признаки, являющиеся причиной изменения других, связанных с ними признаков, называют факторными, или просто факторами. Признаки, изменяющиеся под действием факторных признаков, называют результативными.

Связи между явлениями и их признаками классифицируют по степени тесноты связи, направлению и аналитическому выражению.

Между различными явлениями и их признаками необходимо, прежде всего, выделить два типа связей: функциональную (жестко детерминированную) и статистическую (стохастически детерминированную).

Связь признака "y" с признаком "x" называется функциональной, если каждому возможному значению независимого признака "x" соответствует одно или несколько строго определенных значений зависимого признака "y". Определение функциональной связи может быть легко обобщено для случая многих признаков x 1 ,x 2 ,...,x n .

Характерной особенностью функциональных связей является то, что в каждом отдельном случае известен полный перечень факторов, определяющих значение зависимого (результативного) признака, а также точный механизм их влияния, выраженный определенным уравнением.

Функциональную связь можно представить уравнением: y i =f(x i), где y i - результативный признак (i = 1, ...,n); f(x i) - известная функция связи результативного и факторного признаков; x i - факторный признак.

Чаще всего функциональные связи наблюдаются в явлениях, описываемых математикой, физикой и другими точными науками. Имеют место функциональные связи и в социально-экономических процессах, но довольно редко (они отражают взаимосвязь только отдельных сторон сложных явлений общественной жизни). В экономике примером функциональной связи может служить связь между оплатой труда у и количеством изготовленных деталей х при простой сдельной оплате труда.

В реальной общественной жизни, ввиду неполноты информации жестко детерминированной системы, может возникнуть неопределенность, из-за которой эта система по своей природе должна рассматриваться как вероятностная, при этом связь между признаками становится стохастической.

Стохастическая связь – это связь между величинами, при которой одна из них, случайная величина у, реагирует на изменение другой величины х или других величин x 1 ,x 2 ,...,x n , (случайных или неслучайных) изменением закона распределения. Это обусловливается тем, что зависимая переменная (результативный признак), кроме рассматриваемых независимых, подвержена влиянию ряда неучтенных или неконтролируемых (случайных) факторов, а также некоторых неизбежных ошибок измерения переменных. Поскольку значения зависимой переменной подвержены случайному разбросу, они не могут быть предсказаны с достаточной точностью, а только указаны с определенной вероятностью.

Характерной особенностью стохастических связей является то, что они проявляются во всей совокупности, а не в каждой ее единице (причем не известен ни полный перечень факторов, определяющих значение результативного признака, ни точный механизм их функционирования и взаимодействия с результативным признаком).

Модель стохастической связи может быть представлена в общем виде уравнением: ŷ i = f(x i) + ε i , где ŷ i - расчетное значение результативного признака; f(x i ) - часть результативного признака, сформировавшаяся под воздействием учтенных известных факторных признаков (одного или множества), находящихся в стохастической связи с признаком; ε i - часть результативного признака, возникшая вследствие действия неконтролируемых или неучтенных факторов, а также измерения признаков, неизбежно сопровождающегося некоторыми случайными ошибками.

Проявление стохастических связей подвержено действию закона больших чисел: лишь в достаточно большом числе единиц индивидуальные особенности сгладятся, случайности взаимопогасятся и зависимость, если она имеет существенную силу, проявится достаточно отчетливо.

В социально-экономической жизни приходится сталкиваться со многими явлениями, имеющими вероятностный характер. Например, уровень производительности труда рабочих стохастически связан с целым комплексом факторов: квалификацией, стажем работы, уровнем механизации и автоматизации производства, интенсивностью труда, простоями, состоянием здоровья работника, его настроением, атмосферным давлением и другими. Полный перечень факторов определить практически невозможно.

Частным случаем стохастической связи является корреляционная связь, при которой среднее значение (математическое ожидание) случайной величины результативного признака у закономерно изменяется в зависимости от изменения другой величины х или других случайных величин x 1 ,x 2 ,...,x n . Корреляционная связь проявляется не в каждом отдельном случае, а во всей совокупности в целом. Только при достаточно большом количестве случаев каждому значению случайного признака х будет соответствовать распределение средних значений случайного признака у. Наличие корреляционных связей присуще многим общественным явлениям.

В зависимости от направления действия функциональные и стохастические связи могут быть прямыми и обратными. При прямой связи направление изменения результативного признака совпадает с направлением изменения признака-фактора, т.е. с увеличением факторного признака увеличивается и результативный, и наоборот, с уменьшением факторного признака уменьшается и результативный признак. В противном случае между рассматриваемыми величинами существуют обратные связи. Например, чем выше квалификация рабочего (разряд), тем выше уровень производительности труда – прямая связь. А чем выше производительность труда, тем ниже себестоимость единицы продукции – обратная связь.

По аналитическому выражению (форме) связи могут быть прямолинейными и нелинейными (криволинейными). При прямолинейной связи с возрастанием значения факторного признака происходит непрерывное возрастание (или убывание) значений результативного признака. Математически такая связь представляется уравнением прямой, а графически - прямой линией. Отсюда ее более короткое название - линейная связь.

При криволинейных связях с возрастанием значения факторного признака возрастание (или убывание) результативного признака происходит неравномерно или же направление его изменения меняется на обратное. Геометрически такие связи представляются кривыми линиями (гиперболой, параболой и т.д.).

По количеству факторов, действующих на результативный признак, связи различаются однофакторные (один фактор) и многофакторные (два и более факторов). Однофакторные (простые) связи обычно называются парными (так как рассматривается пара признаков). Например, корреляционная связь между прибылью и производительностью труда. В случае многофакторной (множественной) связи имеют в виду, что все факторы действуют комплексно, т.е. одновременно и во взаимосвязи, например, корреляционная связь между производительностью труда и уровнем организации труда, автоматизации производства, квалификации рабочих, производственным стажем, простоями и другими факторными признаками.

С помощью множественной корреляции можно охватить весь комплекс факторных признаков и объективно отразить существующие множественные связи.

  • СТОХАСТИЧЕСКИЙ ПРОЦЕСС
    то же, что случайный …
  • СТОХАСТИЧЕСКИЙ ПРОЦЕСС
    процесс, то же, что случайный процесс …
  • ПРОЦЕСС
    ФОРМУЛЯРНЫЙ - см ФОРМУЛЯРНЫЙ ПРОЦЕСС …
  • ПРОЦЕСС в Словаре экономических терминов:
    УГОЛОВНЫЙ - см УГОЛОВНЫЙ ПРОЦЕСС …
  • ПРОЦЕСС в Словаре экономических терминов:
    ТОКИЙСКИЙ - см ТОКИЙСКИЙ ПРОЦЕСС …
  • ПРОЦЕСС в Словаре экономических терминов:
    ПЕРЕВОЗОЧНЫЙ - см ПЕРЕВОЗОЧНЫЙ ПРОЦЕСС …
  • ПРОЦЕСС в Словаре экономических терминов:
    НЮРНБЕРГСКИЙ - см НЮРНБЕРГСКИЙ ПРОЦЕСС …
  • ПРОЦЕСС в Словаре экономических терминов:
    ЛЕГИСАКЦИОННЫЙ - см ЛЕГИСАК -ЦИОННЫЙ …
  • ПРОЦЕСС в Словаре экономических терминов:
    КОНСТИТУЦИОННЫЙ - см. КОНСТИТУЦИОННЫЙ ПРОЦЕСС …
  • ПРОЦЕСС в Словаре экономических терминов:
    ИЗБИРАТЕЛЬНЫЙ - см. ИЗБИРАТЕЛЬНЫЙ ПРОЦЕСС …
  • ПРОЦЕСС в Словаре экономических терминов:
    ЗАКОНОДАТЕЛЬНЫЙ - см ЗАКОНОДАТЕЛЬНЫЙ ПРОЦЕСС …
  • ПРОЦЕСС в Словаре экономических терминов:
    ГРАЖДАНСКИЙ МЕЖДУНАРОДНЫЙ - см. МЕЖДУНАРОДНЫЙ ГРАЖДАНСКИЙ ПРОЦЕСС …
  • ПРОЦЕСС в Словаре экономических терминов:
    БЮДЖЕТНЫЙ - см. БЮДЖЕТНЫЙ ПРОЦЕСС …
  • ПРОЦЕСС в Словаре экономических терминов:
    АДМИНИСТРАТИВНЫЙ- см АДМИНИСТРАТИВНЫЙ …
  • СТОХАСТИЧЕСКИЙ в Большом энциклопедическом словаре:
    (от греч. stochastikos - умеющий угадывать) случайный, …
  • ПРОЦЕСС в Большом энциклопедическом словаре:
    (от лат. processus - продвижение) 1) последовательная смена явлений, состояний в развитии чего-нибудь. 2) Совокупность последовательных действий для достижения какого-либо …
  • ПРОЦЕСС в Большой советской энциклопедии, БСЭ:
    (от лат. processus - продвижение), 1) последовательная смена состояний стадий развития. 2) Совокупность последовательных действий для достижения какого-либо результата (например, …
  • ПРОЦЕСС
    [от латинского processus прохождение, продвижение] 1) последовательная смена состояний, тесная связь закономерно следующих друг за другом стадий развития, представляющих непрерывное …
  • СТОХАСТИЧЕСКИЙ в Энциклопедическом словарике:
    ая, ое мат. Случайный, происходящий с вероятностью, которую невозможно предсказать. С. процесс. Стохас-тичность - свойство …
  • СТОХАСТИЧЕСКИЙ
    СТОХАСТ́ИЧЕСКИЙ ПРОЦЕСС, то же, что случайный процесс …
  • СТОХАСТИЧЕСКИЙ в Большом российском энциклопедическом словаре:
    СТОХАСТ́ИЧЕСКИЙ (от греч. stochastikos - умеющий угадывать), случайный, …
  • ПРОЦЕСС в Большом российском энциклопедическом словаре:
    "ПРОЦ́ЕСС 16-ти", 25-30.10.1880 в С.-Петербурге, первый крупный процесс над членами "Нар. воли". Обвинение в подготовке покушений на имп. Александра II. …
  • ПРОЦЕСС в Большом российском энциклопедическом словаре:
    "ПРОЦ́ЕСС 14-ти", 24-28.9.1884 в С.-Петербурге над членами "Нар. воли". Обвинение в подготовке гос. переворота и покушений на имп. Александра II. …
  • ПРОЦЕСС в Большом российском энциклопедическом словаре:
    "ПРОЦ́ЕСС 32-х", в Сенате в 1863-65, по обвинению в сношениях с А.И. Герценом и Н.П. Огарёвым. Гл. обвиняемые Н.А. Серно- …
  • ПРОЦЕСС в Большом российском энциклопедическом словаре:
    "ПРОЦ́ЕСС 193-х" ("Большой процесс"), 18.10.1877-23.1.1878 в С.-Петербурге, крупнейший полит. процесс в России 1870-х гг. над рев. народниками - участниками "хождения …
  • ПРОЦЕСС в Большом российском энциклопедическом словаре:
    "ПРОЦ́ЕСС 17-ти", 28.3-5.4.1883 в С.-Петербурге над членами "Нар. воли" (5 чл., 2 агента Исполнит. к-та) по обвинению в подготовке покушений …
  • ПРОЦЕСС в Большом российском энциклопедическом словаре:
    "ПРОЦ́ЕСС 50-ти", 21.2-14.3.1877 над членами группы "москвичей" (в т.ч. 14 рабочих, 16 женщин). 10 чел. приговорены к разл. срокам каторги, …
  • ПРОЦЕСС в Большом российском энциклопедическом словаре:
    "ПРОЦ́ЕСС 12-ти", 1-9.11.1884 в Киеве над членами "Нар. воли". В.С. Панкратов приговорён к 20 годам каторги, остальные - к разл. …
  • ПРОЦЕСС в Большом российском энциклопедическом словаре:
    "ПРОЦ́ЕСС 27-ми", в C.-Петербурге в 1861- 1863 по делу нелегального изд-ва и 1-й Вольной типографии в Москве. П.Г. Заичневский, В.Д. …
  • ПРОЦЕСС в Большом российском энциклопедическом словаре:
    "ПРОЦЕСС 21-го", 26.5-5.6.1887 в С.-Петербурге (Г.А. Лопатин и др.), по обвинению в принадлежности к "Нар. воле" и убийстве жандармского подполк. …
  • ПРОЦЕСС в Большом российском энциклопедическом словаре:
    "ПРОЦ́ЕСС 28-ми", 25.7-5.8.1879 в Одессе над рев. народниками (Д.А. Лизогуб, С.Ф. Чубаров, С.Я. Виттенберг и др.). Обвинение в принадлежности к …
  • ПРОЦЕСС в Большом российском энциклопедическом словаре:
    "ПРОЦ́ЕСС 20-ти", 9-15.2.1882 в С.-Петербурге над членами "Нар. воли" (11 чл., 9 агентов Исполнит. к-та). Обвинение в подготовке 8 покушений …
  • ПРОЦЕСС в Большом российском энциклопедическом словаре:
    ПРОЦ́ЕСС (от лат. рrосеssus - продвижение), последоват. смена явлений, состояний в развитии чего-нибудь. Совокупность последоват. действий для достижения к.-л. результата …
  • ПРОЦЕСС в Популярном толково-энциклопедическом словаре русского языка:
    -а, м. 1) Ход развития какого-л. явления; последовательная смена состояний в развитии чего-л. Исторический процесс. Необратимый процесс. Процесс воспитания. Процесс …
  • СТОХАСТИЧЕСКИЙ в Тезаурусе русской деловой лексики:
  • СТОХАСТИЧЕСКИЙ в Новом словаре иностранных слов:
    (гр. stochasis догадка) случайный, или вероятностный, напр, с. процесс - процесс, характер изменения которого во времени точно предсказать …
  • СТОХАСТИЧЕСКИЙ в Словаре иностранных выражений:
    [ случайный, или вероятностный, напр, с. процесс - процесс, характер изменения которого во времени точно предсказать …
  • СТОХАСТИЧЕСКИЙ в Тезаурусе русского языка:
    Syn: вероятностный, случайный Ant: закономерный, …
  • ПРОЦЕСС в Словаре синонимов Абрамова:
    см. действие, дело, спор || вести …
  • СТОХАСТИЧЕСКИЙ в словаре Синонимов русского языка:
    Syn: вероятностный, случайный Ant: закономерный, …
  • СТОХАСТИЧЕСКИЙ в Полном орфографическом словаре русского языка.
  • СТОХАСТИЧЕСКИЙ в Орфографическом словаре.
  • ПРОЦЕСС в Словаре русского языка Ожегова:
    ход, развитие какого-нибудь явления, последовательная смена состояний в развитии чего-нибудь П. роста. Творческий п. Производственный п. процесс! порядок разбирательства …
  • СТОХАСТИЧЕСКИЙ
    (от греч. stochastikos - умеющий угадывать), случайный, …
  • «ПРОЦЕСС в Современном толковом словаре, БСЭ:
    12-ти» , 1-9.11.1884 в Киеве над членами «Народной воли». Приговор: В. С. Панкратов к 20 годам каторги, остальные к различным …
  • ПРОЦЕСС в Толковом словаре русского языка Ушакова:
    процесса, м. (латин. processus). 1. Ход, развитие какого-н. явления; последовательная закономерная смена состояний в развитии чего-н. Процесс ликвидации феодализма и …
  • СЛУЧАЙНЫЙ ПРОЦЕСС в Большом энциклопедическом словаре:
    (вероятностный или стохастический), процесс изменения во времени состояния или характеристик некоторой системы под влиянием различных случайных факторов, для которого определена …


© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация