Сложные высказывания. Их виды и условия истинности. Алгебра высказываний. Логические операции

Главная / Налоги

Урок №2

Алгебра высказываний. Логические операции.

(урок комбинированный, включающий повторение предыдущей темы,

введение нового материала и закрепление)

Цель урока: Сформировать у учащихся понятия: логическое высказывание, логические операции.

Задачи урока :

Повторить основные материалы 1 урока (формы человеческого мышления: понятие, суждение, умозаключение);

Познакомить с определением алгебры высказываний;

Познакомить с основными логическими операциями.

Требования к знаниям и умениям:

Учащиеся должны знать:

Что изучает алгебра высказываний и что является объектом изучения алгебры высказываний;

Значения понятий: логическое высказывание, логические операции;

Таблицы истинности логических операций.

Учащиеся должны уметь:

Приводить примеры логических высказываний;

Определять значения логических высказываний;

Называть логические операции и строить для них таблицы истинности.

Этапы урока

I. Организационный момент. Постановка цели урока. 2 мин.

II. Повторение. 7мин.

III. Проверка домашнего задания. 5 мин.

IV. Введение нового материала. 20 мин.

V. Закрепление. 7 мин.

VI. Подведение итогов урока. 3 мин.

VII. Постановка домашнего задания. 1 мин.

Ход урока

II. Повторение .

1) Повторение основных определений и понятий 1 урока:

· Понятие – форма мышления, в которой отражены существенные признаки объектов.

o Объём понятия – множество предметов, каждому из которых принадлежат признаки, составляющие содержание понятия.

Привести примеры .

· Суждение (высказывание, утверждение) - форма мышления, в которой что-либо утверждается или отрицается о предметах, их свойствах или отношениях между ними.

o Форма суждения – это его строение, способ связи его составных частей.

· Умозаключение - форма мышления, посредством которой из одного или нескольких суждений, называемых посылками, по определенным правилам вывода получаем суждение-заключение (вывод умозаключения)

- Определите, какие из перечисленных фраз являются высказываниями и почему?

1. Как хорошо быть генералом!

2.

3. Познай самого себя.

4. Все медведи живут на севере.

5. Революция не может быть мирной и бескровной.

6.

7.

(Примеры 1 и 3 не являются высказываниями, т. к. являются восклицательным и побудительным предложениями соответственно).

- Теперь определите, простые или составные суждения даны .

(В 5 примере можно разбить на два простых утверждения, значит, оно составное.)

- Определите значения высказываний (истина или ложь).

На 6 примере убеждаемся, что содержание высказывания часто субъективная характеристика. Обоснование истинности или ложности простых высказываний решается вне науки логики. Например, опираясь на свой жизненный опыт, мы присваиваем определённое значение суждению 6.

Русские пословицы как в примере 4 будут всегда истинны, т. к. опираются на жизненный опыт целых поколений людей.

В примере 7 значение высказывания решается в курсе геометрии, а в 5 утверждении в курсе истории.

Результаты оформляются в виде следующей таблицы:

Фразы

Высказывания

Истина или ложь

Простые высказывания

1. Как хорошо быть генералом!

2. Без труда не выловишь и рыбку из пруда.

3. Познай самого себя.

4. Все медведи живут на севере.

5. Революция не может быть мирной и бескровной.

6. Талант всегда пробьёт себе дорогу.

7. Сумма углов треугольника равна 1800.

На прошлом уроке мы говорили, что каждое высказывание состоит из трех элементов:
субъекта, предиката и связки . Субъект (S) - понятие о предмете. Предикат (P) - понятие о свойствах и отношениях предмета. Связка - отношение между субъектом и предикатом.

Определите, что в простых высказываниях является субъектом, предикатом и связкой.

Без труда не выловишь и рыбку из пруда.

Все медведи живут на севере.

Талант всегда пробьёт себе дорогу.

Сумма углов треугольника равна 1800.

III. Проверка домашнего задания:

Карточка для домашней работы

1.Из приведенных простых высказываний составьте и запишите не менее 3-ёх составных высказываний:

1) Поедем на дачу.

2) Хорошая погода.

3) Плохая погода.

4) Мы поедем на пляж.

5) Антон приглашает нас в театр .

2. Выведите, если это возможно, заключение из каждой пары посылок:

А) Все птицы – животные.

Все воробьи – птицы.

Б) Некоторые уроки трудны.

Всё, что трудно, требует внимания.

В) Ни один добрый поступок не является незаконным.

Всё, что законно, можно делать без страха.

А) Тем, кто лыс, расчёска не нужна.

Ни одна ящерица не имеет волос.

Следовательно, ящерицам расчёска не нужна.

Б) Всем, кто отлично закончит 3 четверть, подарят компьютер.

Ты закончил 3 четверть без троек.

Значит, готовься получить в подарок компьютер.

VI. Объяснение нового материала

Алгебра высказываний

Идею о возможности математизации логики высказал еще в XVII веке. Он пытался создать универсальный язык, с помощью которого каждому понятию и высказыванию можно было бы дать числовую характеристику и установить такие правила оперирования с этими числами, которые позволили бы сразу определить, истинно данное высказывание или ложно. То есть споры между людьми можно было бы разрешать посредством вычислений. Идея Лейбница оказалось ложной, так как невозможно (не найдены способы) свести человеческое мышление к некоторому математическому исчислению.

Однако, подлинный прогресс этой науки был достигнут в середине XIX века прежде всего благодаря трудам Дж. Буля "Математический анализ логики". Он перенес на логику законы и правила алгебраических действий, ввёл логические операции, предложил способ записи высказываний в символической форме.

В развитии математической логики приняли участие многие выдающиеся математики и логики конца XIX и XX веков, в том числе К. Гедель (австр.), Д. Гильберт (нем.), С. Клини (амер.), Э. Пост (амер.), А. Тьюринг (анг.), А. Чёрч (амер.), и многие другие.

Современная математизированная формальная логика представляет собой обширную научную область, которая находит широкое применение как внутри математики (исследование оснований математики), так и вне ее (синтез и анализ автоматических устройств, теоретическая кибернетика, в частности, искусственный интеллект).

Таким образом, объектами изучения алгебры логики являются высказывания.

Под высказыванием (суждением) будем понимать повествовательное предложение, относительно которого можно однозначно сказать, истинно оно или ложно.

Обозначать высказывания будем большими латинскими буквами. Если высказывание А истинное, то будем писать "А = 1" и говорить: "А - истинно". Если высказывание Х ложно, то будем писать "Х = 0" и говорить "Х ложно".

Обоснование истинности или ложности простых высказываний решается вне алгебры логики. Например, истинность или ложность высказывания «Сумма углов треугольника равно 180о» устанавливается геометрией, причём в геометрии Евклида это высказывание является истинным, а в геометрии Лобачевского – ложным.

Алгебра логики отвлекается от смыслового содержания высказываний. Её интересует только один факт – истинно или ложно данное высказывание. Такое суждение интересов даёт возможность изучать высказывания алгебраическими методами.

Логические операции

В алгебре логики над высказываниями можно производить различные операции (как и в алгебре действительных чисел определены операции сложения, деления, возведения в степень над числами). Мы рассмотрим только некоторые, наиболее важные из них:

    Дизъюнкция (логическое сложение) Импликация (логическое следование) Эквивалентность (логическое равенство)

1) Инверсия (логическое отрицание)

Инверсия (логическое отрицание) – это логическая операция, которая каждому данному высказыванию ставит в соответствие новое высказывание, которое истинно, если данное высказывание – ложно, и ложно, если данное высказывание истинно.

Логические операции задаются таблицами истинности и могут быть графически проиллюстрированы с помощью кругов Эйлера , названных в честь великого математика, физика и астронома Леонарда Эйлера ()

Обозначение инверсии: ; неА ; А; NOT А

0 " style="border-collapse:collapse;border:none">

А

Образуется из простого высказывания с помощью добавления частицы НЕ к сказуемому или использованием оборота речи "НЕВЕРНО, ЧТО...".

Пример: А = "На улице дождь"

= "Неверно, что на улице дождь"

Задание 1. Приведите пример высказывания и его отрицания.

Определите истинность каждого.

Итак, инверсия высказывания истинна, когда высказывание ложно.

2) Конъюнкция (логическое умножение)

истинно тогда и только тогда, когда оба исходных высказывания истинны.

Обозначение конъюнкции: А &В , А andВ , А LВ , А В .

Таблица истинности:

А &В

Образуется соединением двух высказываний в одно с помощью союза «И»

Пример: А = "На улице дождь"

В= "Небо голубое"

А &В = "На улице дождь и небо голубое"

Задание 2. а) Приведите примеры двух высказываний и получите составное высказывание используя логическую связку "И".

Итак, конъюнкция двух высказываний истинна тогда и только тогда, когда оба исходных высказывания истинны.

3) Дизъюнкция (логическое сложение) – это логическая операция, ставящая в соответствие каждым двум высказываниям новое высказывание, которое

истинно тогда и только тогда, когда хотя бы одно из двух исходных высказываний истинно.

Обозначение дизъюнкции: А V В , А OR В , А +В .

0 " style="border-collapse:collapse;border:none">

А V В

Образуется соединением двух высказываний в одно с помощью союза «ИЛИ»

Пример: А = "На улице дождь"

В= "Небо голубое"

А V В = "На улице дождь или небо голубое"

Задание 3. а) Приведите примеры двух высказываний и получите составное высказывание используя связку "ИЛИ".

Итак, дизъюнкция двух высказываний истинна тогда и только тогда, когда хотя бы одно из двух исходных высказываний истинно.

4) Импликация (логическое следование) – это логическая операция, ставящая в соответствие каждым двум высказываниям новое высказывание, которое

ложно тогда и только тогда, когда первое высказывание (условие) истинно, а второе высказывание (следствие) ложно.

Обозначение дизъюнкции: А ® В .

Таблица истинности: Диаграмма Эйлера:

«ЕСЛИ …, ТО …»

Если клятва дана, то она должна выполняться.

Если число делится на 9, то оно делится и на 3.

Пример: А = " На улице дождь"

В= "Небо голубое"

А ® В = "Если на улице дождь, то небо голубое"

Задание 4 . а) Приведите примеры двух высказываний и получите составное высказывание, используя связку "ЕСЛИ, ТО...".

б) Определите истинность или ложность каждого из трех высказываний

Итак, импликация двух высказываний ложна тогда и только тогда, когда первое высказывание (условие) истинно, а второе высказывание (следствие) ложно.

5) Эквивалентность (логическое равенство) – это логическая операция, ставящая в соответствие каждым двум высказываниям новое высказывание, которое

истинно тогда и только тогда, когда оба исходных высказывания одновременно истинны или одновременно ложны.

Обозначение дизъюнкции: А « В, А = В, А≡В .

Таблица истинности: Диаграмма Эйлера:


Образуется соединением двух высказываний в одно с помощью оборота речи «…ТОГДА И ТОЛЬКО ТОГДА, КОГДА…»

Угол называется прямым тогда и только тогда, когда он равен 900

Все законы математики, физики, все определения – эквивалентность высказываний

Две прямые параллельны тогда и только тогда, когда они не пересекаются.

Пример: А = "На улице дождь"

В= "Небо голубое"

А « В = "На улице дождь тогда и только тогда, когда небо голубое"

Задание 5. а) Приведите примеры двух высказываний и получите составное высказывание используя связку речи «…ТОГДА И ТОЛЬКО ТОГДА, КОГДА…»

б) Определите истинность или ложность каждого из трех высказываний.

Итак, эквивалентность двух высказываний истинна тогда и только тогда, когда оба исходных высказывания одновременно истинны или одновременно ложны.

VI. Закрепление изученного.

1. Объясните, почему следующие предложения не являются высказываниями :

· Какого цвета этот дом?

· Число Х не превосходит единицы.

· Посмотрите в окно.

· Пейте томатный сок!

· Эта тема скучна.

· Вы были в театре?

2. Объясните, почему формулировка любой теоремы является высказыванием.

3. Приведите по 2 примера истинных и ложных высказываний из математики, биологии, истории, информатики, литературы.

4. Из следующих предложений выбрать те, которые являются высказываниями:

    Коля спросил: «Как пройти к Большому театру?» Как пройти в библиотеку? Картины Пикассо слишком абстрактны. Решение задачи – информационный процесс. Число 2 является делителем числа 7 в некоторой системе счисления.

5. Выбрать истинные высказывания:

· “Число 28 является совершенным числом”

· “Без труда не выловишь и рыбку из пруда”

· “Талант всегда пробьёт себе дорогу”

· “Некоторые животные мыслят”

· “Информатика - наука об алгоритмах”

· “2+3*5=30”

· “Все ученики любят информатику”

6.

7. Какая логическая операция соответствует данной таблице истинности?

8. Какая логическая операция соответствует данной таблице истинности?

9. Какая логическая операция соответствует данной таблице истинности?

10. Какая логическая операция соответствует данной таблице истинности?

Итог урока:

    Вы познакомились с основными понятиями алгебры логики. Рассмотрели логические операции. Разобрали для каждой логической операции таблицу истинности и проиллюстрировали ЛО с помощью кругов Эйлера.

2. Выучить все определения в тетради из конспекта урока .

3. Подобрать высказывания для каждой логической операциипримера)

Основным разделом математической логики является логика высказываний.

Высказыванием называют повествовательное предложение, которое имеет определенное значение истинности: истина или ложь. Истинному высказыванию ставится в соответствии 1, ложному – 0. Высказывания обозначаются буквами латинского алфавита.

Примеры простых высказываний:

1. А= «Число 100 больше числа 10»

2. В= «Сегодня я в школу не пойду»

Задания.

1) Объясните, почему следующие предложения не являются высказываниями:

1. Какого цвета этот дом?

2. Число Х не превосходит единицы.

4. Посмотрите в окно.

5. Пейте томатный сок!

6. Эта тема скучна.

7. Валерий Леонтьев – популярный певец.

2) Приведите примеры простых высказываний, определите их истинность или ложность.

Используя простые высказывания, можно образовать сложные , или составные, высказывания, в которые простые входят в качестве элементарных составляющих. Примеры сложных высказываний:

1. А= «Число 100 больше 10, но меньше 1000»

2. В= «Если завтра будет дождь, то в поход мы не пойдем»

Какие простые высказывания входят в сложные А и В?

В образовании сложных высказываний используются слова: и, или, тогда и только тогда, когда (в том и только в том случае), если..., то..., нет. Их называют логическими связками или логическими операциями.

Основная задача логики высказываний заключается в том, чтобы на основании истинности или ложности простых высказываний определить истинность или ложность сложных высказываний.

Логические операции

1) Инверсия (операция отрицания или логическое отрицание, НЕ). Обозначается ù, ` .

Если А - истинное высказывание, то `А – ложное высказывание, и наоборот .


_ А

2) Конъюнкция (логическое умножение, соответствует союзу И). Обозначается Ù, × , & , математическим знаком умножения или опуская его.

Например: С = «Солнце светит и нет дождя».

Обозначим А = «Солнце светит», В= «нет дождя».

Тогда высказывание С можно записать: А Ù В (или А&В, А×В, АВ).

Таблица истинности:
А В А&В (АВ)

3) Дизъюнкция (логическое сложение, ИЛИ), имеет два различных значения. Следует различать исключающее «или» и неисключающее «или».

В русском языке союз «или» используется в двояком смысле.

Например, в предложении «Обычно в 8 вечера я смотрю теле­визор или пью чай» союз «или» взят в неисключающем (объедини­тельном) смысле, так как вы можете только смотреть телевизор или только пить чай, но вы можете также пить чай и смотреть телевизор одновременно, потому что мама у вас нестрогая. Такая операция называетсянестрогой дизъюнкцией или просто дизъюнкцией. (Если бы мама была строгая, то она разрешила бы или только смотреть телевизор, или только пить чай, но не совмещать прием пищи с просмотром телепередач.)

В высказывании «Данный глагол I или II спряжения» союз «или» используется в исключающем (разделительном) смысле.Такаяоперация называетсястрогой дизъюнкцией.

Примеры строгих и нестрогих дизъюнкций:

а) Операция дизъюнкция (логическое сложение, нестрогая дизъюнкция), соответствует неисключающему ИЛИ, обозначается Ú , +.

Строгая дизъюнкция истинна только тогда, когда одно высказывание истинно, а другое ложно.


4) Импликация . Выражается словосочетанием «если … то». Импликация А ® В истинна всегда, за исключением случая, когда А истинно, а В ложно . Таблица истинности импликации имеет следующий вид:

А В А®В 1

(Из опыта : Операция импликации (логического следования) является наиболее сложной для учащихся, так как она самая «формально опреде­ленная» и не подкрепляется «здравым смыслом». В процессе ее изучения имеет смысл поговорить о формальном исполнителе и его отличии от неформального .)

Примеры импликаций:

1) Если клятва дана, то она должна выполняться.

2) Если число делится на 9, то оно делится на 3.

В логике допустимо рассматривать и бессмысленные с житейской точки зрения высказывания.

Приведем примеры суждений, которые не только правомерно рассматривать в логике, но и которые к тому же имеют значение «истина»;

1) Если коровы летают, то 2 + 2 = 5.

2) Если я - Наполеон, то у кошки четыре ноги.

Объяснить операцию импликацию можно, например, следующим образом.

Пусть даны высказывания:

А = На улице дождь. В = Асфальт мокрый .

А®В = «Если на улице дождь, то асфальт мокрый.»

Тогда, если идет дождь (А = 1) и асфальт мокрый (В = 1), то это правильно. Но если вам скажут, что на улице идет дождь (А = 1), а асфальт остается сухим (В = 0), то вы посчитаете это ложью. А вот когда дождя на улице нет (А = 0), то асфальт может быть и сухим, и мокрым (например, только что проехала поливальная машина).

5) Операция эквиваленция обозначается знаками «, =, Û. Сложное высказывание А«В
(А эквивалентно В) истинно тогда и только тогда, когда и А и В истинны, или когда и А и В – ложны.

Сводная таблица логических операций

(заполняется учащимися самостоятельно):

Ниже приведена таблица логических операций и их перевода на естественный язык.

Операция Обозначение Перевод на естественный язык
Инверсия (отрицание) Ā, ùА, не А не А; неверно, что А
Конъюнкция (логическое произведение) АВ, АÙВ, А и В, А and В, А´В, А&В, А×В и А, и В; как А, так и В; А вместе с В; А несмотря на В; А, в то время как В
Дизъюнкция простая (логическая сумма, не исключающее ИЛИ) А+В, А Ú В, А или В, А or В А или В
Дизъюнкция строгая (исключающее ИЛИ) А"В, А Å В или А или В либо А, либо В
Импликация А®В, АÞВ Если А, то В; В если А; В необходимо для А; А достаточно для В; А только тогда, когда В; В тогда, когда А; все А есть В
Эквиваленция А«В, АÛВ А равно В; А эквивалентно В; А необходимо и достаточно для В; А тогда и только тогда, когда В

Приоритет выполнения операций : при отсутствии скобок первой всегда выполняется операция отрицания, затем конъюнкция, дизъюнкция, импликация и в последнюю очередь эквиваленция.

Упражнения.

1. Даны два высказывания:

А={Число 5 - простое},

В={Число 4 - нечетное},

Очевидно, что А=1, В=0.

В чем заключаются высказывания:

а) Ā, б) `В, в) АВ, г) А+В д) А®В

Какие из высказываний а) – г) истинны? Составьте таблицы истинности.

2. Найдите значения выражений:


а) (1 + 1) Ú (1 + 0);

б) ((1 + 0) + 1) + 1;

в) (А + 1) + (В + 0);

г) (0 Ù 1) Ù 1;

д) 1 Ù (1 Ù 1) Ù 1;

е) ((1 Ú 0) Ù (1 Ù 1) Ù (0 Ú 1);

ж) ((1 Ù А) Ú (В Ù 0)) Ú 1;

з) ((1 Ù 1) Ú 0) Ù (0 Ú 1);

и) ((0 Ù 0) Ú 0) Ù (1 Ú 1);

к) ((0 × 1) + (1 + 1)) × 1.


3. Переведите на язык алгебры логики высказывания:

1) «Я поеду в Москву, и если встречу там друзей, то мы интересно проведем там время»

2) «Если я поеду в Москву и встречу там друзей, то мы интересно проведем там время»

3) «Неверно, что если дует ветер, то солнце светит только тогда, когда нет дождя».

4) «Если будет солнечная погода, то ребята пойдут в лес, а если будет пасмурно, то пойдут в кино»

5) «Неверно, что если погода пасмурная, то дождь тогда и только тогда, когда нет ветра».

6) «Если урок по информатике будет интересным, то ни Миша, ни Света, ни Вика не будут смотреть в окно»

Решение:

1) М × (В ® И); 2) (М × В) ® И; 3) В ® С ®`Д;

4) (С ® Л) × (`С ® К); 5) П ® (Д « `В); 6) И ® `М ×`С ×`В

1) «Вам никогда не удастся создать мудрецов, если будете убивать в детях шалунов» (Ж.Руссо).

2) «Чтение художественной литературы – неоценимый источник познания жизни и законов ее борьбы».

4) «Мудрость – это способность предвидеть отдаленные последствия совершаемых действий, готовность пожертвовать сиюминутной выгодой ради больших благ в будущем и умение управлять тем, что управляемо, не сокрушаясь из-за того, что неуправляемо» (Ракофф).

6) «Верность друга нужна и в счастье, в беде же она совершенно необходима».

4. Являются ли высказываниями русские народные пословицы и поговорки? Приведите примеры. (Из опыта : Объявляется конкурс «Знаешь ли ты пословицы, которые являются высказываниями». Победителей обычно несколько, поощряются оценками и поощрительными аплодисментами одноклассников )

Самостоятельная работа №1.

(примерные задания в приложении 1, некоторые решения и ответы в приложении 2)

1) Решить логическую задачу табличным способом;

2) Записать сложные высказывания на языке алгебры логики;

3) Найти значение выражения.

Таблицы истинности

Итак, сложное высказывание принимает значение 1 или 0 в зависимости от значений простых высказываний, входящих в него.

Таблицу, показывающую, какие значения принимает сложное высказывания при всех сочетаниях (наборах) значений входящих в него простых высказываний, называют таблицей истинности сложного высказывания.


В `В А`В А`В А`В ® А

Из полученной таблицы видно, что значения формулы А`В ® А совпадают со значениями формулы А. Такие формулы называются равносильными . Для обозначения равносильности используют обычно знак равенства.

Для составления таблицы истинности сложного высказывания, в которое входит более двух переменных, можно воспользоваться следующим алгоритмом:

2. Определить число строк в таблице m= 2 n .

3. Определить количество столбцов в таблице: число переменных плюс число операций.

4. Выписать наборы входных переменных с учетом того, что они представляют собой натуральный ряд n–разрядных двоичных чисел от 0 до 2 n -1.

5. Провести заполнение таблицы истинности по столбцам, выполняя логические операции в соответствии приоритета операций.

Пример. Построить таблицу истинности для формулы F=A ® B&C

0

Упражнения.

1. Проверьте равносильность следующих формул с помощью таблиц истинности:


1) А (А + В) = А

2) А + АВ = А

3) А ® В = Ā + В


4) А ® В = `А ®`В

5) `А +`В = А В

6) А + В = Ā ×`В


2. Определите значение формулы: F= ((С+В)®В) × (АВ) ®В.

Свойства

Рассмотрим несколько свойств декартова произведения:

1. Если A ,B - конечные множества, то A ×B - конечное. И наоборот, если одно из множеств-сомножителей бесконечное, то и результат их произведения - бесконечное множество.

2. Количество элементов в декартовом произведении равно произведению чисел элементов множеств-сомножителей (в случае их конечности, разумеется): |A ×B |=|A |⋅|B | .

3. A np ≠(A n ) p - в первом случае целесообразно рассмотреть результат декартова произведения как матрицу размеров 1×np , во втором же - как матрицу размеров n ×p .

4. Коммутативный закон не выполняется, т.к. пары элементов результата декартова произведения упорядочены: A ×B B ×A .

5. Ассоциативный закон не выполняется: (A ×B C A ×(B ×C ) .

6. Имеет место дистрибутивность относительно основных операциях на множествах: (A B C =(A ×C )∗(B ×C ),∗∈{∩,∪,∖}

11. Понятие высказывания. Элементарные и составные высказывания.

Высказывание - это утверждение или повествовательное предложение, о котором можно сказать, что оно истинно (И-1) или ложно (Л-0), но не то и другое одновременно.

Например, «Сегодня идет дождь», «Иванов выполнил лабораторную работу №2 по физике».

Если у нас имеется несколько исходных высказываний, то из них при помощи логических союзов или частиц мы можем образовывать новые высказывания, истинностное значение которых зависит только от истинностных значений исходных высказываний и от конкретных союзов и частиц, которые участвуют в построении нового высказывания. Слова и выражения «и», «или», «не», «если... , то», «поэтому», «тогда и только тогда» являются примерами таких союзов. Исходные высказывания называются простыми , а построенные из них с помощью тех или иных логических союзов новые высказывания - составными . Разумеется, слово «простые» никак не связано с сутью или структурой исходных высказываний, которые сами могут быть весьма сложными. В данном контексте слово «простой» является синонимом слова «исход-ный». Важно то, что значения истинности простых высказываний предполагаются известными или заданными; в любом случае они никак не обсуждаются.

Хотя высказывание типа «Сегодня не четверг» не составлено из двух различных простых высказываний, для единообразия конструкции оно также рассматривается как составное, по-скольку его истинностное значение определяется истинностным значением другого высказыва-ния «Сегодня четверг»

Пример 2. Cледующие высказывания рассматриваются как составные:

Я читаю «Московский комсомолец» и я читаю «Коммерсант».

Если он сказал это, значит, это верно.

Солнце не является звездой.

Если будет солнечно и температура превысит 25 0 , я приеду поездом или автомобилем

Простые высказывания, входящие в составные, сами по себе могут быть совершенно произвольными. В частности, они сами могут быть составными. Описываемые ниже базисные типы составных высказываний определяются независимо от образующих их простых высказываний.

12. Операции над высказываниями.

1. Операция отрицания.

Отрицанием высказывания А (читается «не А », «неверно, что А »), которое истинно, когда А ложно и ложно, когда А – истинно.

Отрицающие друг друга высказывания А и называются противоположными.

2. Операция конъюнкции .

Конъюнкцией высказываний А и В называется высказывание, обозначаемое А В (читается «А и В »), истинные значения которого определяются в том и только том случае, когда оба высказывания А и В истинны.

Конъюнкцию высказываний называют логическим произведением и часто обозначают АВ.

Пусть дано высказывание А – «в марте температура воздуха от 0 С до +7 С » и высказывание В – «в Витебске идет дождь». Тогда А В будет следующей: «в марте температура воздуха от 0 С до +7 С и в Витебске идет дождь». Данная конъюнкция будет истинной, если будут высказывания А и В истинными. Если же окажется, что температура была меньше 0 С или в Витебске не было дождя, то А В будет ложной.

3 . Операция дизъюнкции .

Дизъюнкцией высказываний А и В называется высказывание А В (А или В ), которое истинно тогда и только тогда, когда хотя бы одно из высказываний истинно и ложно – когда оба высказывания ложны.

Дизъюнкцию высказываний называют также логической суммой А+В.

Высказывание «4<5 или 4=5 » является истинным. Так как высказывание «4<5 » – истинное, а высказывание «4=5 » – ложное, то А В представляет собой истинное высказывание «4 5 ».

4 . Операция импликации .

Импликацией высказываний А и В называется высказывание А В («если А , то В », «из А следует В »), значение которого ложно тогда и только тогда, когда А истинно, а В ложно.

В импликации А В высказывание А называют основанием, или посылкой, а высказывание В следствием, или заключением.

13. Таблицы истинности высказываний.

Таблица истинности - это таблица, устанавливающая соответствие между всеми возможными наборами логических переменных, входящих в логическую функцию и значениями функции.

Таблицы истинности применяются для:

Вычисления истинности сложных высказываний;

Установления эквивалентности высказываний;

Определения тавтологий.

Установление истинности сложных высказываний.

Пример 1. Установить истинность высказывания · С

Решение. В состав сложного высказывания входят 3 простых высказывания: А, В, С. В таблице заполняются колонки значениями (0, 1). Указываются все возможные ситуации. Простые высказывания от сложных отделяются двойной вертикальной чертой.
При составлении таблицы надо следить за тем, чтобы не перепутать порядок действий; заполняя столбцы, следует двигаться “изнутри наружу”, т.е. от элементарных формул к более и более сложным; столбец, заполняемый последним, содержит значения исходной формулы.

А В С А+ · С

Из таблицы видно, что данное высказывание истинно только в случае, когда А=0, В=1, С=1. Во всех остальных случаях оно ложно.

14. Равносильные формулы.

Две формулы А и В называются равносильными, если они принимают одинаковые логические значения при любом наборе значений входящих в формулу элементарных высказываний.

Равносильность обозначается знаком « ». Для преобразования формул в равносильные важную роль играют основные равносильности, выражающие одни логические операции через другие, равносильности, выражающие основные законы алгебры логики.

Для любых формул А , В , С справедливы равносильности.

I. Основные равносильности

закон идемпотентности

1-истина

0-ложь

Закон противоречия

Закон исключенного третьего

закон поглощения

формулы расщепления

закон склеивания

II. Равносильности, выражающие одни логические операции через другие.

закон де Моргана

III. Равносильности, выражающие основные законы алгебры логики.

коммутативный закон

ассоциативный закон

дистрибутивный закон

15. Формулы логики высказываний.

Виды формул классической логики высказываний – в логике высказываний различают следующие виды формул:

1. Законы (тождественно-истинные формулы) – формулы, которые при любых интерпретациях пропозициональных переменных принимают значение «истинно» ;

2. Противоречия (тождественно-ложные формулы) – формулы, которые при любых интерпретациях пропозициональных переменных принимают значение «ложно» ;

3. Выполнимые формулы – такие, которые принимают значение «истинно» хотя бы при одном наборе значений истинности входящих в их состав пропозициональных переменных.

Основные законы классической логики высказываний:

1. Закон тождества: ;

2. Закон противоречия: ;

3. Закон исключенного третьего: ;

4. Законы коммутативности и : , ;

5. Законы дистрибутивности относительно ,и наоборот: , ;

6. Закон удаления истинного члена конъюнкции: ;

7. Закон удаления ложного члена дизъюнкции: ;

8. Закон контрапозиции: ;

9. Законы взаимовыразимости пропозициональных связок: , , , , , .

Процедура разрешимости – метод, позволяющий для каждой формулы установить является она законом, противоречием или выполнимой формулой. Самой распространенной процедурой разрешимости является метод истинностных таблиц. Однако он не единственный. Эффективным методом разрешимости является метод нормальных форм для формул логики высказываний. Нормальной формой формулы логики высказываний является форма, не содержащая знака импликации « ». Различают конъюнктивную и дизъюнктивную нормальные формы. Конъюнктивная форма содержит только знаки конъюнкции « ». Если в формуле, приведенной к конъюнктивной нормальной форме, встречается подформула вида , то вся формула в этом случае является противоречием . Дизъюнктивная форма содержит только знаки дизъюнкции « ». Если в формуле, приведенной к дизъюнктивной нормальной форме, встречается подформула вида , то вся формула в этом случае является законом . Во всех остальных случаях формула является выполнимой формулой .

16. Предикаты и операции над ними. Кванторы.

Предложение, содержащее одну или несколько переменных и которое при конкретных значениях переменных является высказыванием, называется высказывательной формой или предикатом.

В зависимости от числа переменных, входящих в предложение, различают одноместные, двухместные, трехместные и т.д. предикаты, обозначаемые соответственно: А(х ), В(х , у ), С(х , у , z ).

Если задан некоторый предикат, то с ним связаны два множества:

1. Множество (область) определения Х , состоящее из всех значений переменных, при подстановке которых в предикат последний обращается в высказывание. При задании предиката обычно указывают его область определения.

2. Множество истинности Т, состоящее из всех тех значений переменных, при подстановке которых в предикат получается истинное высказывание.

Множество истинности предиката всегда является подмножеством его области определения, то есть .

Над предикатами можно совершать те же операции, что и над высказываниями.

1. Отрицанием предиката А(х ), заданного на множестве Х, называется предикат , истинный при тех значениях , при которых предикат А(х ) обращается в ложное высказывание, и наоборот.

Из данного определения следует, что предикаты А(х ) и В(х ) не являются отрицаниями друг друга, если найдется хотя бы одно значение , при котором предикаты А(х ) и В(х ) обращаются в высказывания с одинаковыми значениями истинности.

Множество истинности предиката является дополнением к множеству истинности предиката А(х ). Обозначим через Т А множество истинности предиката А(х ), а через Т - множество истинности предиката . Тогда .

2. Конъюнкцией предикатов А(х ) и В(х х ) В(х х Х, при которых оба предиката обращаются в истинные высказывания.

Множество истинности конъюнкции предикатов есть пересечение множеств истинности предиката А(х ) В(х ). Если обозначить множество истинности предиката А(х) через Т А, а множество истинности предиката В(х) через Т В и множество истинности предиката А(х) В(х) через , то

3. Дизъюнкцией предикатов А(х) и В(х ), заданных на множестве Х, называется предикат А(х ) В(х ), обращающийся в истинное высказывание при тех и только тех значениях х Х, при которых хотя бы один из предикатов обратился в истинное высказывание.

Множество истинности дизъюнкции предикатов есть объединение множеств истинности образующих ее предикатов, т.е. .

4.Импликацией предикатов А(х ) и В(х ), заданных на множестве Х, называется предикат А(х ) В(х ), который ложен при тех и только тех значениях переменной, при которых первый предикат обращается в истинное высказывание, а второй – в ложное.

Множество истинности импликации предикатов есть объединение множества истинности предиката В(х ) с дополнением к множеству истинности предиката А(х ), т.е.

5. Эквиваленцией предикатов А(х ) и В(х ), заданных на множестве Х, называется предикат , который обращается в истинное высказывание при всех тех и только тех значениях переменной, при которых оба предиката обращаются либо в истинные высказывания, либо в ложные высказывания.

Множество истинности эквиваленции предикатов есть пересечение множества истинности предиката с множеством истинности предиката .

Кванторные операции над предикатами

Предикат можно перевести в высказывание способом подстановки и способом «навешивание квантора».

Про числа 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 можно сказать: а) все данные числа простые; б) некоторые из данных чисел четные.

Так как относительно этих предложений можно сказать, что они истинны или ложны, то полученные предложения – высказывания.

Если из предложения «а» убрать слово «все», а из предложения «б» - слово «некоторые», то получим следующие предикаты: «данные числа простые», «данные числа нечетные».

Слова «все» и «некоторые» называются кванторами. Слово «квантор» латинского происхождения и означает «сколько», т. е. квантор показывает, о скольких (всех или некоторых) объектах говорится в том или ином предложении.

Различают два основных вида кванторов: квантор общности и квантор существования.

Термины «всякий», «любой», «каждый» носят название квантор всеобщности. Обозначается .

Пусть А(х ) – определенный предикат, заданный на множестве Х. Под выражением А(х ) будем понимать высказывание истинное, когда А(х ) истинно для каждого элемента из множества Х, и ложное в противном случае.R .

В примере 1 для R 1 область определения: , множество значений - . Для R 2 область определения: , множество значений: .

Во многих случаях удобно использовать графическое изображение бинарного отношения. Оно осуществляется двумя способами: с помощью точек на плоскости и с помощью стрелок.

В первом случае выбирают две взаимно перпендикулярные линии в качестве горизонтальной и вертикальной осей. На горизонтальной оси откладывают элементы множества A и через каждую точку проводят вертикальную линию. На вертикальной оси откладывают элементы множества B , через каждую точку проводят горизонтальную линию. Точки пересечения горизонтальных и вертикальных линий изображают элементы прямого произведения

18. Способы задания бинарных отношений.

Всякое подмножество декартова произведения A×B называется бинарным отношением, определенным на паре множеств A и B (по латыни «бис» обозначает «дважды»). В общем случае по аналогии с бинарными можно рассматривать и n-арные отношения как упорядоченные последовательностиn элементов, взятых по одному из n множеств.

Для обозначения бинарного отношения применяют знак R. Поскольку R- это подмножество множества A×B, то можно записать R⊆A×. Если же требуется указать, что (a, b) ∈ R, т. е. между элементами a ∈ A и b ∈ B существует отношение R, то пишут aRb.

Способы задания бинарных отношений:

1. Это использование правила, согласно которому указываются все элементы, входящие в данное отношение. Вместо правила можно привести список элементов заданного отношения путем непосредственного их перечисления;

2. Табличный, в виде графов и с помощью сечений. Основу табличного способа составляет прямоугольная система координат, где по одной оси откладываются элементы одного множества, по второй - другого. Пересечения координат образуют точки, обозначающие элементы декартова произведения.

На (рисунке 1.16) изображена координатная сетка для множеств. Точкам пересечения трех вертикальных линий с шестью горизонтальными соответствуют элементы множества A×B. Кружочками на сетке отмечены элементы отношения aRb, где a ∈ A и b ∈ B, R обозначает отношение «делит».

Бинарные отношения задаются двухмерными системами координат. Очевидно, что все элементы декартова произведения трех множеств аналогично могут быть представлены в трехмерной системе координат, четырех множеств- в четырехмерной системе и т. д;

3. Способ задания отношений с помощью сечений используется реже, поэтому рассматривать его не будем.

19. Рефлексивность бинарного отношения. Пример.

В математике бинарное отношение на множестве называется рефлексивным, если всякий элемент этого множества находится в отношении с самим собой.

Свойство рефлексивности при заданных отношениях матрицей характеризуется тем, что все диагональные элементы матрицы равняются 1; при заданных отношениях графом каждый элемент имеет петлю - дугу (х, х).

Если это условие не выполнено ни для какого элемента множества, то отношение называется антирефлексивным.

Если антирефлексивное отношение задано матрицей, то все диагональные элементы являются нулевыми. При задании такого отношения графом каждая вершина не имеет петли - нет дуг вида (х, х).

Формально антирефлексивность отношения определяется как: .

Если условие рефлексивности выполнено не для всех элементов множества, говорят, что отношение нерефлексивно.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-12

Логика высказываний , называемая также пропозициональной логикой - раздел математики и логики, изучающий логические формы сложных высказываний, построенных из простых или элементарных высказываний с помощью логических операций.

Логика высказываний отвлекается от содержательной нагрузки высказываний и изучает их истинностное значение, то есть является ли высказывание истинным или ложным.

Рисунок сверху - иллюстрация явления, известного как "Парадокс лжеца". При этом, на взгляд автора проекта, такие парадоксы возможны только в средах, несвободных от политических заморочек, где на ком-то могут априори поставить клеймо лжеца. В естественном многослойном мире на предмет "истины" или "лжи" оцениваются только отдельно взятые высказывания . И далее на этом уроке вам представится возможность самим оценить на этот предмет немало высказываний (а затем посмотреть правильные ответы). В том числе сложных высказываний, в которых более простые связаны между собой знаками логических операций. Но прежде рассмотрим сами эти операции над высказываниями.

Логика высказываний применяется в информатике и программировании в виде объявления логических переменных и присвоения им логических значений "ложь" или "истина", от которых зависит ход дальнейшего исполнения программы. В небольших программах, где задействована лишь одна логическая переменная, этой логической переменной часто даётся имя, например, "флаг" ("flag") и подразумевается, что "флаг поднят", когда значение этой переменной - "истина" и "флаг опущен", когда значение этой переменной - "ложь". В программах большого объёма, в которых несколько или даже очень много логических переменных, от профессионалов требуется придумывать имена логических переменных, имеющих форму высказываний и смысловую нагрузку, отличающую их от других логических переменных и понятных другим профессионалам, которые будут читать текст этой программы.

Так, может быть объявлена логическая переменная с именем "ПользовательЗарегистрирован" (или его англоязычный аналог), имеющая форму высказывания, которой может быть присвоено логическое значение "истина" при выполнении условий, что данные для регистрации отправлены пользователем и эти данные программой признаны годными. В дальнейших вычислениях значения переменных могут меняться в зависимости от того, какое логическое значение ("истина" или "ложь") имеет переменная "ПользовательЗарегистрирован". В других случах переменной, например, с именем "ДоДняХОсталосьБолееТрёхДней", может быть присвоено значение "Истина" до некоторого блока вычислений, а в ходе дальнейшего исполнения программы это значение может сохраняться или меняться на "ложь" и от значения этой переменной зависит ход дальнейшего исполнения программы.

Если в программе используются несколько логических переменных, имена которых имеют форму высказываний, и из них строятся более сложные высказывания, то намного проще разрабатывать программу, если перед её разработкой записать все операции с высказываний в виде формул, применяемых в логике высказываний, чем мы в ходе этого урока и займёмся.

Логические операции над высказываниями

Для математических высказываний всегда можно сделать выбор между двумя различными альтернативами "истина" и "ложь", а для высказываний, сделанных на "словесном" языке, понятия "истинности" и "ложности" несколько более расплывчаты. Однако, например, такие словесные формы, как "Иди домой" и "Идёт ли дождь?", не являются высказываниями. Поэтому понятно, что высказываниями являются такие словесные формы, в которых что-либо утверждается . Не являются высказываниями вопросительные или восклицательные предложения, обращения, а также пожелания или требования. Их невозможно оценить значениями "истина" и "ложь".

Высказывания же, напротив, можно рассмотривать как величину, которая может принимать два значения: "истина" и "ложь".

Например, даны суждения: "собака - животное", "Париж - столица Италии", "3

Первое из этих высказываний может быть оценено символом "истина", второе - "ложь", третье - "истина" и четвёртое - "ложь". Такая трактовка высказываний составляет предмет алгебры высказываний. Будем обозначать высказывания большими латинскими буквами A , B , ..., а их значения, то есть истину и ложь, соответственно И и Л . В обычной речи употребляются связи между высказываниями "и", "или" и другие.

Эти связи позволяют, соединяя между собой различные высказывания, образовывать новые высказывания - сложные высказывания . Например, связка "и". Пусть даны высказывания: "π больше 3" и высказывание "π меньше 4". Можно организовывать новое - сложное высказывание "π больше 3 и π меньше 4". Высказывание "если π иррационально, то π ² тоже иррационально" получается связыванием двух высказываний связкой "если - то". Наконец, мы можем получить из какого-либо высказывания новое - сложное высказывание - отрицая первоначальное высказывание.

Рассматривая высказывания как величины, принимающие значения И и Л , мы определим далее логические операции над высказываниями , которые позволяют из данных высказываний получать новые - сложные высказывания.

Пусть даны два произвольных высказывания A и B .

1 . Первая логическая операция над этими высказываниями - конъюнкция - представляет собой образование нового высказывания, которое будем обозначать A B и которое истинно тогда и только тогда, когда A и B истинны. В обычной речи этой операции соответствует соединение высказываний связкой "и".

Таблица истинности для конъюнкции:

A B A B
И И И
И Л Л
Л И Л
Л Л Л

2 . Вторая логическая операция над высказываниями A и B - дизъюнкция, выражаемая в виде A B , определяется следующим образом: оно истинно тогда и только тогда, когда хотя бы одно из первоначальных высказываний истинно. В обычной речи эта операция соответствует соединению высказываний связкой "или". Однако здесь мы имеем не разделительное "или", которое понимается в смысле "либо-либо", когда A и B не могут быть оба истинны. В определении логики высказываний A B истинно и при истинности лишь одного из высказываний, и при истинности обоих высказываний A и B .

Таблица истинности для дизъюнкции:

A B A B
И И И
И Л И
Л И И
Л Л Л

3 . Третья логическая операция над высказываниями A и B , выражаемая в виде A B ; полученное таким образом высказывание ложно тогда и только тогда, когда A истинно, а B ложно. A называется посылкой , B - следствием , а высказывание A B - следованием , называемая также импликацией. В обычной речи эта операция соответствует связке "если - то": "если A , то B ". Но в определении логики высказываний это высказывание всегда истинно независимо от того, истинно или ложно высказывание B . Это обстоятельство можно кратко сформулировать так: "из ложного следует всё, что угодно". В свою очередь, если A истинно, а B ложно, то всё высказывание A B ложно. Оно будет истинным тогда и только тогда, когда и A , и B истинны. Кратко это можно сформулировать так: "из истинного не может следовать ложное".

Таблица истинности для следования (импликации):

A B A B
И И И
И Л Л
Л И И
Л Л И

4 . Четвёртая логическая операция над высказываниями, точнее над одним высказыванием, называется отрицанием высказывания A и обозначается ~ A (можно встретить также употребление не символа ~, а символа ¬, а также верхнего надчёркивания над A ). ~ A есть высказывание, которое ложно, когда A истинно, и истинно, когда A ложно.

Таблица истинности для отрицания:

A ~ A
Л И
И Л

5 . И, наконец, пятая логическая операция над высказываниями называется эквивалентностью и обозначается A B . Полученное таким образом высказывание A B есть высказывание истинное тогда и только тогда, когда A и B оба истинны или оба ложны.

Таблица истинности для эквивалентности:

A B A B B A A B
И И И И И
И Л Л И Л
Л И И Л Л
Л Л И И И

В большинстве языков программирования есть специальные символы для обозначения логических значений высказываний, записываются они почти во всех языках как true (истина) и false (ложь).

Подытожим вышесказанное. Логика высказываний изучает связи, которые полностью определяются тем, каким образом одни высказывания строятся из других, называемых элементарными. Элементарные высказывания при этом рассматриваются как целые, не разложимые на части.

Систематизируем в таблице ниже названия, обозначения и смысл логических операций над высказываниями (они нам вскоре вновь понадобятся для решения примеров).

Связка Обозначение Название операции
не отрицание
и конъюнкция
или дизъюнкция
если..., то... импликация
тогда и только тогда эквивалентность

Для логических операций верны законы алгебры логики , которые можно использовать для упрощения логических выражений. При этом следует отметить, что в логике высказываний отвлекаются от смыслового содержания высказывания и ограничиваются рассмотрением его с той позиции, что оно либо истинно, либо ложно.

Пример 1.

1) (2 = 2) И (7 = 7) ;

2) Не(15 ;

3) ("Сосна" = "Дуб") ИЛИ ("Вишня" = "Клён") ;

4) Не("Сосна" = "Дуб") ;

5) (Не(15 20) ;

6) ("Глаза даны, чтобы видеть") И ("Под третьим этажом находится второй этаж") ;

7) (6/2 = 3) ИЛИ (7*5 = 20) .

1) Значение высказывания в первых скобках равно "истина", значение выражения во вторых скобках - также истина. Оба высказывания соединены логической операцией "И" (смотрим правила для этой операции выше), поэтому логическое значение всего данного высказывания - "истина".

2) Значение высказывания в скобках - "ложь". Перед этим зтим высказыванием стоит логическая операция отрицания, поэтому логическое значение всего данного высказывания - "истина".

3) Значение высказывания в первых скобках - "ложь", значение высказывания во вторых скобках - также "ложь". Высказывания соединены логической операцией "ИЛИ" и ни одно из высказываний не имеет значения "истина". Поэтому логическое значение всего данного высказывания - "ложь".

4) Значение высказывания в скобках - "ложь". Перед этим высказыванием стоит логическая операция отрицания. Поэтому логическое значение всего данного высказывания - "истина".

5) В первых скобках отрицается высказывание во внутренних скобках. Это высказывание во внутренних скобках имеет значение "ложь", следовательно, его отрицание будет иметь логическое значение "истина". Высказывание во вторых скобках имеет значение "ложь". Два этих высказывания соединены логической операцией "И", то есть получается "истина И ложь". Следовательно, логическое значение всего данного высказывания - "ложь".

6) Значение высказывания в первых скобках - "истина", значение высказывания во вторых скобках - также "истина". Два этих высказывания соединены логической операцией "И", то есть получается "истина И истина". Следовательно, логическое значение всего данного высказывания - "истина".

7) Значение высказывания в первых скобках - "истина". Значение высказывания во вторых скобках - "ложь". Два этих высказывания соединены логической операцией "ИЛИ", то есть получается "истина ИЛИ ложь". Следовательно, логическое значение всего данного высказывания - "истина".

Пример 2. Запишите с помощью логических операций следующие сложные высказывания:

1) "Пользователь не зарегистрирован";

2) "Сегодня воскресенье и некоторые сотрудники находятся на работе";

3) "Пользователь зарегистрирован тогда и только тогда, когда отправленные пользователем данные признаны годными".

1) p - одиночное высказывание "Пользователь зарегистрирован", логическая операция: ;

2) p - одиночное высказывание "Сегодня воскресенье", q - "Некоторые сотрудники находятся на работе", логическая операция: ;

3) p - одиночное высказывание "Пользователь зарегистрирован", q - "Отправленные пользователем данные признаны годными", логическая операция: .

Решить примеры на логику высказываний самостоятельно, а затем посмотреть решения

Пример 3. Вычислите логические значения следующих высказываний:

1) ("В минуте 70 секунд") ИЛИ ("Работающие часы показывают время") ;

2) (28 > 7) И (300/5 = 60) ;

3) ("Телевизор - электрический прибор") И ("Стекло - дерево") ;

4) Не((300 > 100) ИЛИ ("Жажду можно утолить водой")) ;

5) (75 < 81) → (88 = 88) .

Пример 4. Запишите с помощью логических операций следующие сложные высказывания и вычислите их логические значения:

1) "Если часы неправильно показывают время, то можно невовремя прийти на занятия";

2) "В зеркале можно увидеть своё отражение и Париж - столица США";

Пример 5. Определите логическое значение выражения

(p q ) ↔ (r s ) ,

p = "278 > 5" ,

q = "Яблоко = Апельсин" ,

p = "0 = 9" ,

s = "Шапка покрывает голову" .

Формулы логики высказываний

Понятие логической формы сложного высказывания уточняется с помощью понятия формулы логики высказываний .

В примерах 1 и 2 мы учились записывать с помощью логических операций сложные высказывания. Вообще-то они называются формулами логики высказываний.

Для обозначения высказываний, как и упомянутом примере, будем продолжать использовать буквы

p , q , r , ..., p 1 , q 1 , r 1 , ...

Эти буквы будут играть роль переменных, принимающих в качестве значений истинностные значения "истина" и "ложь". Эти переменные называются также пропозициональными переменными. Мы будем далее называть их элементарными формулами или атомами .

Для построения формул логики высказываний кроме указанных выше букв используются знаки логических операций

~, ∧, ∨, →, ↔,

а также символы, обеспечивающие возможность однозначного прочтения формул - левая и правая скобки.

Понятие формулы логики высказываний определим следуюшим образом:

1) элементарные формулы (атомы) являются формулами логики высказываний;

2) если A и B - формулы логики высказываний, то ~A , (A B ) , (A B ) , (A B ) , (A B ) тоже являются формулами логики высказываний;

3) только те выражения являются формулами логики высказываний, для которых это следует из 1) и 2).

Определение формулы логики высказываний содержит перечисление правил образования этих формул. Согласно определению, всякая формула логики высказываний либо есть атом, либо образуется из атомов в результате последовательного применения правила 2).

Пример 6. Пусть p - одиночное высказывание (атом) "Все рациональные числа являются действительными", q - "Некоторые действительные числа - рациональные числа", r - "некоторые рациональные числа являются действительными". Переведите в форму словесных высказываний следующие формулы логики высказываний:

6) .

1) "нет действительных чисел, которые являются рациональными";

2) "если не все рациональные числа являются действительными, то нет рациональных чисел, являющихся действительными";

3) "если все рациональные числа являются действительными, то некоторые действительные числа - рациональные числа и некоторые рациональные числа являются действительными";

4) "все действительные числа - рациональные числа и некоторые действительные числа - рациональные числа и некоторые рациональные числа являются действительными числами";

5) "все рациональные числа являются действительными тогда и только тогда, когда не имеет место быть, что не все рациональные числа являются действительными";

6) "не имеет места быть, что не имеет место быть, что не все рациональные числа являются действительными и нет действительных чисел, которые являются рациональными или нет рациональных чисел, которые являются действительными".

Пример 7. Составьте таблицу истинности для формулы логики высказываний , которую в таблице можно обозначить f .

Решение. Составление таблицы истинности начинаем с записи значений ("истина" или "ложь") для одиночных высказываний (атомов) p , q и r . Все возможные значения записываются в восемь строк таблицы. Далее, определяя значения операции импликации, и продвигаясь вправо по таблице, помним, что значение равно "лжи" тогда, когда из "истины" следует "ложь".

p q r f
И И И И И И И И
И И Л И И И Л И
И Л И И Л Л Л Л
И Л Л И Л Л И И
Л И И Л И Л И И
Л И Л Л И Л И Л
Л Л И И И И И И
Л Л Л И И И Л И

Заметим, что никакой атом не имеет вида ~A , (A B ) , (A B ) , (A B ) , (A B ) . Такой вид имеют сложные формулы.

Число скобок в формулах логики высказываний можно уменьшить, если принять, что

1) в сложной формуле будем опускать внешнюю пару скобок;

2) упорядочим знаки логических операций "по старшинству":

↔, →, ∨, ∧, ~ .

В этом списке знак ↔ имеет самую большую область действия, а знак ~ - самую маленькую. Под областью действия знака операции понимаются те части формулы логики высказываний, к которым применяется (на которые действует) рассматриваемое вхождение этого знака. Таким образом, можно опускать во всякой формуле те пары скобок, которые можно восстановить, учитывая "порядок старшинства". А при восстановлении скобок сначала расставляются все скобки, относящиеся ко всем вхождениям знака ~ (при этом мы продвигаемся слева направо), затем ко всем вхождениям знака ∧ и так далее.

Пример 8. Восстановите скобки в формуле логики высказываний B ↔ ~ C D A .

Решение. Скобки восстанавливаются пошагово следующим образом:

B ↔ (~ C ) ∨ D A

B ↔ (~ C ) ∨ (D A )

B ↔ ((~ C ) ∨ (D A ))

(B ↔ ((~ C ) ∨ (D A )))

Не всякая формула логики высказываний может быть записана без скобок. Например, в формулах А → (B C ) и ~ (A B ) дальнейшее исключение скобок невозможно.

Тавтологии и противоречия

Логические тавтологии (или просто тавтологии) - это такие формулы логики высказываний, что если буквы произвольным образом заменить высказываниями (истинными или ложными), то в результате всегда получится истинное высказывание.

Так как истинность или ложность сложных высказываний зависит лишь от значений, а не от содержания высказываний, каждому из которых соответствует определённая буква, то проверку того, является ли данное высказывание тавтологией, можно подставить следующим способом. В исследуемом выражении на место букв подставляются значения 1 и 0 (соответственно "истина" и "ложь") всеми возможными способами и с использованием логических операций вычисляются логические значения выражений. Если все эти значения равны 1, то исследуемое выражение есть тавтология, а если хотя бы одна подстановка даёт 0, то это не тавтология.

Таким образом, формула логики высказываний, которая принимает значение "истина" при любом распределении значений входящих в эту формулу атомов, называется тождественно истинной формулой или тавтологией .

Противоположный смысл имеет логическое противоречие. Если все значения высказываний равны 0, то выражение есть логическое противоречие.

Таким образом, формула логики высказываний, которая принимает значение "ложь" при любом распределении значений входящих в эту формулу атомов, называется тождественно ложной формулой или противоречием .

Кроме тавтологий и логических противоречий существуют такие формулы логики высказываний, которые не являются ни тавтологиями, ни противоречиями.

Пример 9. Составьте таблицу истинности для формулы логики высказываний и определите, является ли она тавтологией, противоречием или ни тем, ни другим.

Решение. Составляем таблицу истинности:

И И И И И
И Л Л Л И
Л И Л И И
Л Л Л Л И

В значениях импликации не встречаем строку, в которой из "истины" следует "ложь". Все значения исходного высказывания равны "истине". Следовательно, данная формула логики высказываний является тавтологией.

Понятие «высказывание» первично. Под высказыванием в логике понимают повествовательное предложение, о котором можно говорить, что оно истинно или ложно. Любое высказывание либо истинно, либо ложно, и никакое высказывание не является одновременно истинным и ложным.

Примеры высказываний: есть четное число», «1 есть простое число». Истинностное значение первых двух высказываний - «истина», истинностное значение последних двух

Вопросительные и восклицательные предложения не являются высказываниями. Определения не являются высказываниями. Например, определение «целое число называется четным, если оно делится на 2» не является высказыванием. Однако повествовательное предложение «если целое число делится на 2, то оно четное» есть высказывание, и притом истинное. В логике высказываний отвлекаются от смыслового содержания высказывания, ограничиваясь рассмотрением его с той позиции, что оно либо истинно, либо ложно.

В дальнейшем будем понимать под значением высказывания его истинностное значение («истина» или «ложь»). Высказывания будем обозначать прописными латинскими буквами, а их значения, т. е. «истина» или «ложь» - соответственно буквами И и Л.

Логика высказываний изучает связи, которые полностью определяются тем, каким образом одни высказывания строятся из других, называемых элементарными. Элементарные высказывания при этом рассматриваются как целые, не разложимые на части, внутренняя структура которых нас не будет интересовать.

Логические операции над высказываниями.

Из элементарных высказываний с помощью логических операций можно получать новые, более сложные высказывания. Истинностное значение сложного высказывания зависит от истинностных значений высказываний, составляющих сложное высказывание. Эта зависимость устанавливается в данных ниже определениях и отражается в истинностных таблицах. В левых столбцах этих таблиц размещаются всевозможные распределения истинностных значений для высказываний, непосредственно составляющих рассматриваемое сложное высказывание. В правом столбце пишут истинностные значения сложного высказывания соответственно распределениям в каждой строке.

Пусть А и В - произвольные высказывания, относительно которых мы не предполагаем, что известны их истинностные значения. Отрицанием высказывания А называется новое высказывание, истинное тогда и только тогда, когда А ложно. Отрицание А обозначается через и читается «не A» или «неверно, что А». Операция отрицания полностью определяется истинностной таблицей

Пример. Высказывание «неверно, что 5 - четное число», имеющее значение И, есть отрицание ложного высказывания «5 - четное число».

С помощью операции конъюнкции из двух высказываний получается одно сложное высказывание, обозначаемое А Д В. По определению, высказывание А Д В истинно тогда и только тогда, когда оба высказывания истинны. Высказывания А и В называются соответственно первым и вторым членами конъюнкции А Д В. Запись «А Д В» читается как «Л и В». Истинностная таблица для конъюнкции имеет вид

Пример. Высказывание «7 - простое число и 6 - нечетное число» ложно, как конъюнкция двух высказываний, одно из которых ложно.

Дизъюнкцией двух высказываний А и В называется высказывание, обозначаемое , истинное в том и только в том случае, когда хотя бы одно из высказываний А и В истинно.

Соответственно этому высказывание А V В ложно в том и только том случае, когда и А и В оба ложны. Высказывания А и В называются соответственно первым и вторым членами дизъюнкции А V В. Читается запись А V В как «A или В». Союз «или» в данном случае носит неразделительный смысл, поскольку высказывание А V В истинно и при истинности обоих членов. Дизъюнкция имеет следующую истинностную таблицу:

Пример. Высказывание «3 Высказывание, обозначаемое , ложное в том и только в том случае, когда А истинно, а В ложно, называется импликацией с посылкой А и заключением В. Высказывание А-+ В читается как «если А, то 5», или «A влечет В», или «из A следует В». Истинностная таблица для импликации такова:

Отметим, что между посылкой и заключением могут отсутствовать причинно-следственные связи, но это не может повлиять на истинность или ложность импликации. Например, высказывание «если 5 - простое число, то биссектриса равностороннего треугольника является медианой» будет истинным, хотя в обычном понимании второе не следует из первого. Истинным также будет высказывание «если 2 + 2 = 5, то 6 + 3 = 9», поскольку истинно его заключение. При данном определении, если заключение истинно, импликация будет истинной независимо от истинностного значения посылки. В том случае, когда ложна посылка, импликация будет истинна независимо от истинностного значения заключения. Эти обстоятельства кратко формулируют так: «истина следует из чего угодно», «из ложного следует все, что угодно».



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация