Причины радиоактивного распада. Радиоактивный распад

Главная / Налоги

Явление радиоактивности сопровождается превращением ядра одного химического элемента в ядро другого химического элемента, а также выделением энергии, которая "уносится" с альфа- бета- и гамма-излучениями.

Все радиоактивные элементы подвержены радиоактивным превращениям.
В некоторых случаях у радиоактивного элемента наблюдается альфа- и бета-излучения одновременно.
Чаще химическому элементу присуще или альфа-излучение, или бета-излучение.
Альфа- или бета- излучения часто сопровождаются гамма- излучением.

Испускание радиоактивных частиц называется радиоактивным распадом.
Различают альфа-распад (с испусканием альфа-частиц), бета-распад (с испусканием бета-частиц), термина "гамма-распад" не существует.
Альфа- и бета-распады – это естественные радиоактивные превращения.

Альфа - распад

Альфа-частицы испускаются только тяжелыми ядрами, т.е. содержащими большое число протонов и нейтронов. Прочность тяжелых ядер мала. Для того, чтобы покинуть ядро, нуклон должен преодолеть ядерные силы, а для этого он должен обладать достаточной энергией.
При объединении двух протонов и двух нейтронов в альфа-частицу ядерные силы в подобном сочетании (между нуклонами частицы) являются наиболее крепкими, а связи с другими нуклонами слабее, поэтому альфа-частица способна "выйти" из ядра. Вылетевшая альфа-частица уносит положительный заряд в 2 единицы и массу в 4 единицы.
В результате альфа-распада радиоактивный элемент превращается в другой элемент, порядковый номер которого на 2 единицы, а массовое число на 4 единицы, меньше.

То ядро, которое распадается, называют материнским, а образовавшееся дочерним.
Дочернее ядро оказывается обычно тоже радиоактивным и через некоторое время распадается.
Процесс радиоактивного распада происходит до тех пор, пока не появится стабильное ядро, чаще всего ядро свинца или висмута.

Бета-распад

Явление бета-распада состоит в том, что ядра некоторых элементов самопроизвольно испускают электроны и элементарную частицу очень малой массы - антинейтрино.
Так как электронов в ядрах нет, то появление бета-лучей из ядра атома можно объяснить способностью нейтронов ядра распадаться на протон, электрон и антинейтрино. Появившийся протон переходит во вновь образующееся ядро. Электрон, вылетающий из ядра, и является частицей бета-излучения.
Такой процесс распада нейтронов характерен для ядер с большим количеством нейтронов.

В результате бета-распада образуется новое ядро с таким же массовым числом, но с большим на единицу зарядом.

Гамма - распад - не существует

В процессе радиоактивного излучения ядра атомов могут испускать гамма-кванты. Испускание гамма-квантов не сопровождается распадом ядра атома.


Гамма излучение зачастую сопровождает явления альфа- или бета-распада.
При альфа- и бета-распаде новое возникшее ядро первоначально находится в возбужденном состоянии и, когда оно переходит в нормальное состояние, то испускает гамма-кванты (в оптическом или рентгеновском диапазоне волн).

Так как радиоактивное излучение состоит из альфа-частиц, бета-частиц и гамма-квантов (т.е. ядер атома гелия, электронов и гамма-квантов), то явление радиоактивности сопровождается потерей массы и энергии ядра, атома и вещества в целом.
Доказательством того, что радиоактивное излучение несет энергию, является опыт, показывающий, что при поглощении радиоактивного излучения вещество нагревается.


33. Виды бета-распада.

Явление β-распада состоит в том, что ядро(A,Z) самопроизвольно испускает лептоны 1-го поколения – электрон (позитрон) и электронное нейтрино (электронное антинейтрино), переходя в ядро с тем же массовым числом А, но с атомным номером Z, на единицу большим или меньшим. При e-захвате ядро поглощает один из электронов атомной оболочки (обычно из ближайшей к нему K-оболочки), испуская нейтрино.В литературе для e-захвата часто используется термин EC (Electron Capture).
Существуют три типа β-распада – β - -распад, β + -распад и е-захват.

(от лат. Radio – «излучаю» radius – «луч» и activus – «действенный») – явление спонтанного превращения неустойчивого изотопа химического элемента в другой изотоп (обычно другого элемента) (радиоактивный распад) путем излучения гамма-квантов, элементарных частиц или ядерных фрагментов.
Символ, используемый для обозначения радиоактивных материалов Радиоактивность открыл в 1896 г. Антуан Анри Беккерель. Произошло это случайно. Ученый работал с солями урана и завернул свои образцы вместе с фотопластинки в непрозрачный материал. Фотопластинки оказались зажженными, хотя доступа света к ним не было. Беккерель сделал вывод о невидимом глазу излучение солей урана. Он исследовал это излучение и установил, что интенсивность излучения определяется только количеством урана в препарате и совершенно не зависит от того, в какие соединения он входит. То есть это свойство присуще не соединениям, а химическому элементу урана.
В 1898 г. Пьер Кюри и Мария Склодовская-Кюри открыли излучения тория, позднее были открыты полоний и радий. в 1903 году супругам Кюри была присуждена Нобелевская премия. На сегодня известно около 40 природных элементов, обладающих радиоактивностью.
Установлено, что все химические элементы с порядковым номером, большим 83 – радиоактивные.
Естественная радиоактивность – спонтанный распад ядер элементов, встречающихся в природе.
Искусственная радиоактивность – спонтанный распад ядер элементов, полученных искусственным путем, через соответствующие ядерные реакции.
Эрнест Резерфорд экспериментально установил (1899), что соли урана излучают 3 типа лучей, которые по-разному отклоняются в магнитном поле:
Спектры?-и?-излучений прерывистые («дискретные»), а спектр?-излучения – непрерывный.
?-распад
Беккерель доказал, что?-лучи представляют собой поток электронов. ?-распад – проявление слабого взаимодействия.
?-распад – внутришньонуклонний процесс, т.е. происходит превращение нейтрона в протон с вылетом электрона и антинейтрино с ядра:

+ ?.

После?-распада атомный номер элемента меняется и он смещается на одну клетку в таблице Менделеева.
?-распад
?-распадом называют самопроизвольный распад атомного ядра на ядро-продукт и?-частицу (ядро атома ).
?-распад является свойством тяжелых ядер с массовым числом А >= 200. Внутри таких ядер за счет свойства насыщения ядерных сил образуются обособления?-частицы, состоящие из двух протонов и двух нейтронов. Образована таким образом?-частица сильнее ощущает кулоновское отталкивание от других протонов ядра, чем отдельные протоны. Одновременно на?-частицу меньше влияет ядерное мижнуклонне притяжения за счет сильного взаимодействия, чем на остальные нуклонов.
Правило смещения Содди для?-распада:

В результате?-распада элемент смещается на 2 клетки к началу таблицы Менделеева. Дочернее ядро, образовавшееся в результате?-распада, обычно также оказывается радиоактивным и через некоторое время тоже распадается. Процесс радиоактивного распада будет происходить до тех пор, пока не появится стабильное, то есть нерадиоактивные ядро, которым чаще всего является ядра свинца или висмута.
?-распад
Гамма лучи это электромагнитные волны с длиной волны, меньше размеры атома. Они образуются обычно при переходе ядра атома из возбужденного состояния в основное состояние. При этом количество нейтронов или протонов в ядре не меняется, а значит ядро остается прежним элементом. Однако излучение гамма-лучей может сопровождать и другие ядерные реакции.
При радиоактивном распаде происходят превращения ядер атомов. Энергии частиц, которые при этом образуются, намного больше энергии, выделяемых в типичных химических реакциях. Поэтому эти процессы практически не зависят от химического окружения атома и от соединений, в которые этот атом входит. Радиоактивный распад происходит спонтанно. Это означает, что невозможно определить момент, когда распадется то или иное ядро. Однако для каждого типа распада является характерное время, за которое распадается половина всех радиоактивных ядер. Это время называется периодом полураспада. Для разных радиоактивных изотопов период полураспада может лежать в очень широких пределах – от наносекунд до миллионов лет. Изотопы с малым периодом полураспада очень радиоактивны, но быстро исчезают. Изотопы с большим периодом полураспада слабо радиоактивные, но эта радиоактивность сохраняется очень долгое время.

Детектирования радиоактивных излучения основано на его действия на вещество, в частности ее ионизации. Исторически впервые радиация была зарегистрирована благодаря почернение облученной фотопластинки. Фотоэмульсии, в которых под действием радиации происходят химические реакции, до сих пор остаются одним из методов детектирования. Другой принцип детектирования используется в счетчиках Гейгера – возникновение несамостоятельного электрического разряда в облученном газе. Дозиметры, которые регистрируют не отдельные акты пролета быстрой заряженной частицы, часто используют изменение свойств, например проводимости, облученного материала
Радиоктивнисть зависит от количества нестабильных изотопов и времени их жизни. Система СИ определяет единицей измерения активности Беккерель – такое количество радиоактивного вещества, в которой за секунду происходит один акт распада. Практически эта величина не очень удобна, поэтому чаще используют внесистемные единицы – Кюри. Иногда употребляется единица Резерфорд.
Относительно воздействия радиоактивного излучения на облученные вещества, то используются те же единицы, что и для рентгеновского излучения. Единицей измерения дозы поглощенного йонизуючи излучения в системе Си является Грей – такая доза, при которой в килограмме вещества выделяется один Джоуль энергии. Единицей биологического действия облучения в системе СИ является Зиверт. Внесистемная единица выделенной при облучении энергии – советов.
Такая единица, как рентген является мерой не выделенной энергии, а ионизации вещества при радиоактивном облучении. Для вимирювавння биологически действия облучения используется биологический эквивалент рентгена – бэр.
Для характеристики интенсивности облучения используют единицы, описывающие скорость набора дозы, например, рентген в час.
Радиоактивное облучение приводит к значительному повреждению ткани. Ионизация химических веществ в биологической ткани создает возможность химических реакций, которые несвойственны для биологических процессов, и к образованию вредных веществ. Повреждения радиацией ДНК вызывает мутации. Работа с радиоактивными веществами требует тщательного соблюдения правил техники безопасности. Радиоактивные вещества помечаются специальным символом, приведенным вверху страницы.
Радиоактивные вещества хранятся в специальных контейнерах, сконструированных таким образом, чтобы поглощать радиоактивное излучение. Большой проблемой является захоронение радиоактивных отходов атомной энергетики.
Радиоактивные вещества можно использовать для получения энергии в условиях, когда другие источники энергии недоступны, например, на космических аппаратах, предназначенных для полетов в отдаленных планет Солнечной системы. Энергия, выделяемая при радиоактивном распаде в таких устройствах может быть преобразована в электрическую с помощью термоэлементов.
В медицине радиоактивное облучение используется при лечении некоторых форм рака, рассчитывая на то, что раковые клетки, которые быстро делятся, чувствительны к облучению, а потому вражатимуться быстрее.
Метод меченых атомов позволяет провести анализ обмена веществ в организме и помогает при диагностике заболеваний.
Датировка за радиоактивными изотопами помогает установить возраст предметов и пород и применяется в геологии, археологии, палеонтологии.
Радиоактивность и радиоактивные вещества также широко используются в различных областях научных исследований.
Все виды радиоактивных излучений, сопровождающих радиоактивность, называют йонизуючи излучениями. Йонизуючи излучения – процесс возбуждения и ионизации атомов вещества при прохождении через них гамма-квантов и частиц, образовавшихся вследствие?-и?-распада. При прохождении, например, гамма-квантов сквозь вещество, кванты превращаются в пар электрон-позитрон при условии, что энергия гамма-кванта превышает энергию этих двух частиц (> 1 МэВ). ?-частицы быстро теряют всю энергию, поскольку возбуждают все атомы, которые встречаются на их пути (1-10 см на воздухе, 0,01-0,2 мм в жидкостях). ?-частицы менее эффективно взаимодействуют с веществами (2-3 м на воздухе, 1-10 мм в жидкостях). ?-кванты обладают наибольшей проникающей способностью. Нейтроны, не имеющие электрического заряда, непосредственно не йонизують атомы. Однако в результате взаимодействия нейтронов с ядрами возникают быстрые заряженные частицы и гамма-кванты, которые являются йонизуючи частицами. При длительному пребыванию человека в зоне радиоактивного излучения происходит ионизацию и возбуждение ее клеток. В результате клетки вступают в новые химические реакции и образуют новые химические вещества, нарушающие нормальное функционирование организма. Мерой действия йонизуючи излучений является поглощенная доза излучения (Грей), равный отношению переданной йонизуючи излучениями энергии к массе вещества (D = E / m). Мощность дозы излучения измеряется отношение поглощенной дозы излучения до времени (Pв = D / t). Радиоактивное излучение используют при рентгенологическом обследовании.

Второй случай рассмотрим на примере распада изотопа Хлора-17, схема которого приведена на рисунке Рис.7.

Из схемы видно, что собственно b -распад Хлора-17 может происходить по трем путям (синие линии).

В первом случае атом дочернего нуклида Аргон-18 образуется в основном состояниии. На этом акт единичного распада завершается.

Во втором случае атом дочернего нуклида образуется в возбужденном состоянии (энергия возбуждения составляет 2,170 МэВ). В возбужденном состоянии атом находится ограниченное время, после чего он переходит в основное состояние, испуская при этом g -квант. Энергия этого кванта в точности равна энергии возбуждения.

В третьем случае атом дочернего нуклида также образуется в возбужденном состоянии (энергия возбуждения составляет 3,77 МэВ). Однако, в отличие от второго случая здесь атом дочернего нуклида может перейти в основное состояние двумя путями.

Во-первых, атом может сразу перейти в основное состояние, испустив g -квант с энергией 3,77 МэВ. Вероятность такого перехода невелика и только 0,06% атомов "идут" по этому пути.

Во-вторых, (по этому пути идет подавляющее большинство атомов - 99,94%) атом может сначала испустить g -квант с энергией 1,60 Мэв и перейти в состояние с меньшей энергией возбуждения, а затем, по истечении некоторого времени, перейти в основное состояние, испуская g -квант с энергией 2,17 МэВ. Такое последовательное испускание g -квантов называется g -каскадом.

Очевидно, что энергетический спектр g -квантов в данном случае будет линейчатым . В спектре будет три линии с энергиями 1,60 МэВ, 2,17 МэВ и 3,77МэВ.

Если атомы дочернего нуклида образуются только в основном состоянии то в этом случае материнский нуклид будет чистым a - или b -излучателем, а g -излучения не будет.

Примером может служить распад Полония-210 (чистый a -излучатель), схема которого приведена на Рис.8.

При эмиссии g -квантов энергия квантов может находиться в пределах от 5 КэВ до 7МэВ, причем нижний предел находится в области характеристического рентгеновского излучения.

Ввиду того, что g -кванты не имеют ни электрического заряда, ни массы покоя испускание g -квантов не приводит к изменению числа нуклонов A и заряда ядра Z .

Кванту с энергией D E , равной разности энергий ядра дочернего нуклида в начальном (возбужденном) E 2 и E 1 конечном (основном или возбужденном с меньшей энергией возбуждения):

D E = E 2 - E 1 = E g

далеко не всегда удается покинуть атом.

Он часто взаимодействует с одним из электронов оболочек атома. Если энергия D E больше энергии связи электрона E св , то электрон имеет шанс покинуть атом. Такие электроны называются электронами конверсии . Очевидно, что энергия таких электронов будет также как и энергия g -квантов дискретной :

E е = E g - E св - E отд

где E отд энергия отдачи дочернего нуклида (см. Рис. 9).

Рис. 9 Пояснение понятия "отдача"

В большиестве случаев электронами конверсии являются электроны ближайшей к ядру К-оболочки. Если же энергия, отданная ядром, меньше E св для электронов К-оболочки, то электроны конверсии отщепляются от внешних оболочек (L, M), где энергия связи меньше.

После отщепления электрона конверсии образуется вакансия, которая заполняется электронами с внешних оболочек. При этом образуется соответствующее рентгеновское излучение, называемое характеристическим К a , К b , L a , ...

Характеристическое рентгеновское излучение может в свою очередь конвертироваться. Испускаемые при этом электроны называют по имени ученого их открывшего электронами Оже.

На Рис.10 приведена схема, поясняющая все сказанное.

Правило смещения при радиоактивном распаде в радиохимии и ядерной физике, которое также известно под названием закона Содди-Фаянса, представляет собой правило, определяющее превращение одного элемента в другой во время радиоактивного распада. Оно было изложено в 1913 году независимо двумя учеными: английским радиохимиком Фредериком Содди и американским физико-химиком с польскими корнями Казимиром Фаянсом.

Достижения Фредерика Содди в области радиоактивности

Содди вместе с Резерфордом стоит у истоков открытия радиоактивных атомных превращений. Так, в 1903 году Содди открыл, что радий в процессе своего распада излучает ядра гелия. Также этот ученый показал, что атомы одного и того же химического элемента могут иметь различные массы, что привело его к разработке концепции изотопов. Содди установил правила смещения химических элементов во время альфа- и бета- радиоактивных распадов, что стало важным шагом в понимании взаимосвязи между семействами радиоактивных элементов.

В 1921 году Фредерик Содди был удостоен Нобелевской премии по химии за важные открытия в области физики радиоактивных элементов и за исследования природы изотопов.

Работы Казимира Фаянса

Этот ученый провел важные исследования радиоактивности различных изотопов и разработал квантовую теорию электронной структуры молекул. В 1913 году одновременно с Фредериком Содди и независимо от него Фаянс открыл правила смещения, которые регулируют преобразование одних химических элементов в другие в процессе радиоактивных распадов. Также Фаянс открыл новый химический элемент - протактиний.

Понятие радиоактивности

Перед тем как рассмотреть законы радиоактивного распада и правила смещения, необходимо разобраться с понятием радиоактивности. В физике под этим словом понимают способность ядер некоторых химических элементов испускать излучение, обладающее следующими свойствами:

  • способность проникать в человеческие ткани, оказывая разрушающее действие;
  • способность ионизировать газы;
  • стимуляция процесса флюоресценции;
  • прохождение через различные твердые и жидкие тела.

Благодаря этим способностям обычно это излучение называют ионизирующим. Природа радиоактивного излучения может быть либо электромагнитной, например, рентгеновские лучи или гамма-излучение, либо носить корпускулярный характер, испускание ядер гелия, протонов, электронов, позитронов и других элементарных частиц.

Таким образом, радиоактивность - это феномен, наблюдаемый у нестабильных ядер атомов, которые спонтанно способны превращаться в ядра более стабильных элементов. Говоря простыми словами, нестабильный атом испускает радиоактивное излучение, чтобы стать стабильным.

Нестабильные атомные изотопы

Нестабильные изотопы, то есть атомы одного и того же химического элемента, которые обладают различной атомной массой, находятся в возбужденном состоянии. Это говорит о том, что они обладают повышенной энергией, которую стремятся отдать, чтобы перейти в равновесное состояние. Учитывая, что все энергии атома квантованы, то есть имеют дискретные значения, то и сам радиоактивный распад происходит за счет потери конкретной кинетической энергии.

Нестабильный изотоп в процессе радиоактивного распада переходит в более стабильный, но это не значит, что новое образованное ядро не будет обладать радиоактивностью, оно также может распадаться. Ярким примером этого процесса является ядро урана-238, которое за несколько столетий испытывает ряд распадов, превращаясь, в конце концов, в атом свинца. Отметим, что в зависимости от вида изотопа, он спонтанно может распадаться, как через миллионные доли секунды, так и через миллиарды лет, например, тот же уран-238 имеет период полураспада (время, за которое половина ядер распадается) равный 4,468 млрд лет, в то же время для изотопа калия-35 этот период равен 178 миллисекундам.

Различные виды радиоактивности

Применение того или иного правила радиоактивного смещения зависит от типа радиоактивного распада, который испытывает конкретный элемент. В общем случае выделяют следующие виды радиоактивности:

  • альфа-распад;
  • бета-распад;
  • гамма-распад;
  • распад с испусканием свободных нейтронов.

Все эти виды радиоактивного распада (за исключением испускания свободных нейтронов) установил новозеландский физик Эрнест Резерфорд еще в начале XX века.

Корпускулярные виды распада

Альфа-распад связан с испусканием ядер гелия-4, то есть речь идет о корпускулярном излучении, частицы которого состоят из двух протонов и двух нейтронов. Это означает, что масса этих частиц равна 4 в атомных единицах массы (АЕМ), а электрический заряд равен +2 в единицах элементарного электрического заряда (1 элементарный заряд в системе СИ равен 1,602*10 − 19 Кл). Испущенное ядро гелия до распада входило в состав ядра нестабильного изотопа.

Природа бета-распада заключается в испускании электронов, которые имеют массу 1/1800 АЕМ и заряд -1. Ввиду отрицательного заряда электрона, этот распад называют бета-отрицательным. В отличие от альфа-частицы электрон не существовал до распада в атомном ядре, а образовался в результате превращения в протон нейтрона. Последний остался в ядре после распада, а электрон покинул атомное ядро.

Впоследствии был обнаружен бета-положительный распад, который заключается в испускании позитрона-античастицы электрона. Радиоактивный позитрон образуется в результате обратной реакции, чем электрон, то есть протон в ядре превращается в нейтрон, теряя при этом свой положительный заряд.

В ряде радиоактивных превращений одного ядра в другое происходит испускание нейтронов различных энергий. Как и протон, нейтрон имеет массу 1 АЕМ (если быть более точным, то нейтрон на 0,137% тяжелее протона) и обладает нулевым электрическим зарядом. Таким образом, при данном типе распада ядро-родитель теряет только 1 единицу своей массы.

Гамма-распад в отличие от предыдущих видов распада имеет электромагнитную природу, то есть это излучение подобно рентгеновскому или видимому свету, однако, длина волны гамма-излучения намного меньше, чем у любой другой электромагнитной волны. Гамма-лучи не обладают массой покоя и зарядом. По сути, гамма-лучи - это лишняя энергия, которая существовала до распада в ядре атома, обуславливая его нестабильность. Химический элемент сохраняет свое положение в периодической таблице Д. И. Менделеева при гамма-распаде.

Правила радиоактивного смещения

Пользуясь этими правилами, можно легко определить, какой химический элемент должен получиться из данного родительского изотопа при определенном виде радиоактивного распада. Поясним эти правила смещения в физике:

  • При альфа-распаде, поскольку ядро теряет 4 АЕМ массы и +2 единицы заряда, образуется химический элемент, стоящий на 2 позиции левее в периодической системе Д. И. Менделеева. Например, 92 U 238 = 90 Th 234 , здесь нижний индекс - заряд, верхний - масса ядра.
  • В случае бета-отрицательного распада заряд материнского ядра увеличивается на 1 единицу, при этом масса остается неизменной (масса электрона, испускаемого в процессе этого распада, составляет всего 0,06% от массы протона). В данном случае правило смещения равновесия гласит, что должен образоваться изотоп химического элемента, стоящий на одну клетку правее от материнского элемента в таблице Д. И. Менделеева. Например, 82 Pb 212 = 83 Bi 212 .
  • Правило смещения при бета-положительном распаде (излучение позитрона) гласит, что в результате этого процесса образуется химический элемент, который на 1 позицию стоит левее от материнского элемента, и имеет ту же массу ядра, что и он. Например, 7 N 13 = 6 C 13 .

Все атомные ядра можно разделить на две группы - стабильные и радиоактивные (нестабильные) ядра. Число стабильных изотопов и изотопов, имеющих период полураспада, сравнимый с временем существования Земли, ~ 350. Большинство ядер является нестабильными изотопами. Чтобы радиоактивное вещество удалось обнаружить в природе период полураспада должен быть не намного меньше возраста Земли или оно должно образовываться в результате распада другого радиоактивного вещества или в ядерной реакции. Наряду с α-, β-, γ-радиоактивностью, делением атомных ядер были открыты новые типы радиоактивного распада.
К более редким типам радиоактивного распада относятся

  • двойной β-распад,
  • протонная и двухпротонная радиоактивности,
  • нейтронная радиоактивность,
  • кластерная радиоактивность.

Во всех видах радиоактивности (кроме гамма-радиоактивности) изменяется состав ядра - число протонов Z , массовое число А или и то и другое.
На характеристики радиоактивного распада оказывают существенное влияние взаимодействия, вызывающие распад. α-распад вызывается сильным взаимодействием. β-распад вызывается слабым взаимодействием, а гамма-распад – электромагнитным.
Существуют различные причины, в силу которых времена жизни нестабильных ядер могут изменяться на несколько порядков.
а) Испускание тяжелых положительно заряженных частиц сильно подавляется потенциальным (кулоновским) барьером.
б) Причиной больших времен жизни радиоактивных ядер может быть малая интенсивность взаимодействия, за счет которого происходит распад.
в) Время жизни радиоактивного ядра сильно зависит от энергии, выделяющейся при распаде. Если эта энергия мала, то время жизни резко возрастает. Особенно резкой зависимостью от энергии распада Q характеризуется слабое взаимодействие: τ ~ 1/Q 5 .
г) Время жизни радиоактивного ядра сильно зависит и от разности значений спинов исходного и конечного ядер.

Альфа-распад. Явление α-распада состоит в том, что тяжелые ядра самопроизвольно испускают α-частицы. При этом массовое число ядра уменьшается на четыре единицы, а атомный номер на две:

(A,Z) → (A-4,Z-2) + 4 He.

Перечислим характерные эмпирические особенности α-распада:
а) α-распад происходит на тяжелых ядрах с Z > 60.
б) Периоды полураспада известных α-радиоактивных ядер варьируются в широких пределах. Так, изотоп вольфрама 182 W имеет T 1/2 > 8.3·10 18 лет, а изотоп протактиния 219 Pa имеет T 1/2 = 5.3·10 -8 c.

Для четно-четных изотопов зависимость периода полураспада от энергии α-распада Q α хорошо описывается эмпирическим законом Гейгера-Неттола

lg T 1/2 = A + B/√Q α ,

где A и B константы, слабо зависящие от Z . С учётом заряда конечного ядра Z связь между периодом полураспада T 1/2 и энергией α-распада может быть представлена в виде

lg T 1/2 = 9.54·Z 0.6 /√Q α − 51.37,

где период полураспада T 1/2 выражен в секундах, а Q α в МэВ. На рисунке показаны экспериментальные значения периодов полураспада для a радиоактивных четно-четных ядер (Z изменяется от 74 до 106) и их описание с помощью соотношения Гейгера-Неттола.
Для нечетно-четных, четно-нечетных и нечетно-нечетных ядер общая тенденция сохраняется, но периоды полураспада в 2-1000 раз больше, чем для четно-четных ядер с теми же Z и Q α .

Э. Резерфорд, 1936 г. «В 1919 г. я показал, что при бомбардировке α-частицами легкие элементы могут разрушаться с испусканием протона, т. е. ядра водорода. Поэтому мы предположили, что протон должен быть одной из структурных единиц, из которых состоят ядра других атомов, а теоретики старались объяснить свойства ядра комбинациями протонов и отрица-тельных электронов. Однако очень трудно объединить медленный и тяжеловесный протон с легким и подвижным электроном в таком ограниченном пространстве, как ядро, и, когда Чедвик открыл существование незаряженной частицы — нейтрона, этот вопрос нашел, по-видимому, свое тео-ретическое решение. Тогда стало возможным предположить, что ядра всех атомов состоят из комбинации протонов и нейтронов, так что, например, кислород с зарядом 8 и массой 16 обладает 8 протонами и 8 нейтронами. Это была очень простая идея, значение которой состояло в том, что сос-тавляющие ядро частицы обладали одинаковой массой. Однако встал вопрос, как объяснить тот факт, что отрицательный электрон часто вылетает из ядра при радиоактивных превращениях и что положительный электрон проявляется при некоторых искусственных превращениях? В ответ на это теоретики предположили, что в ограниченном пространстве ядра, где силы взаимодействия между частицами огромны, протоны превращаются в нейтроны, и наоборот. Например, если нейтрон теряет отрицательный электрон, он переходит в протон, а если протон теряет положительный электрон, он становится нейтроном, так что в первом случае может испускаться отрицательная частица, а во втором — положительная. Электроны и позитроны не существуют в свободном состоянии в ядре, они связаны с нейтроном или протоном в зависимости от обстоятельств и могут высвобождаться лишь при определенных условиях, когда происходят большие измененияэнергии внутри ядра».

N-Z диаграмма атомных ядер. Тёмным цветом показаны стабильные изотопы.

Г. Гамов, 1930 г.: «Уже открытое в конце прошлого века явление радиоактивности указывало на то, что ядро атома не есть простая единица, но имеет весьма сложную структуру. Частицы α и β, наблюдаемые при радиоактивном распаде элементов, были истолкованы Резерфордом, как составные части ядра, выбрасываемые из неустойчивых ядер тяжелых атомов, а наблюдаемое при распаде весьма жесткое излучение, γ-лучи - как электромагнитные возмущения, вызванные перестройкой ядер после распада. Дальнейшие опыты Резерфорда показали также возможность искусственного расщепления ядер обычно устойчивых элементов под влиянием внешних энергичных воздействий.
Открытие изотопов и исследования Астона, показавшего, что атомные веса их выражаются числами, весьма близкими к целым, сделало более чем вероятным предположение, что ядра всех элементов построены из протонов и электронов, причем весьма большую роль в строении ядра имеют образования, состоящие из четырех протонов и двух электронов (α-частицы) и обладающие весьма большой устойчивостью.
Весьма точное измерение атомных весов изотопов обнаружило небольшие отклонения от целых чисел (дефект массы), что привело к возможности определения полной энергии, связывающей отдельные структурные элементы ядра в одно целое.
Детальные исследования спектров γ-лучей, показавшие их линейчатую структуру - исследования, которыми мы обязаны главным образом Эллису и Мейтнер, - привели к заключению, что в ядре атома мы имеем дело с существованием определенных квантовых уровней энергии, вполне аналогичных тем, которые мы встречаем в электронной системе атома.
Наиболее удивительный факт, с которым мы сталкиваемся в, теории самопроизвольного распада ядер, это - те, зачастую неимоверно длинные, промежутки времени в течение которых неустойчивое ядро остается in statu quo, прежде чем выбросить α-или β-частицу. Средняя продолжительность жизни радиоактивных элементов варьирует от ничтожной доли секунды до необычайно длинных периодов во много миллионов лет и, для каждого данного элемента, является величиной вполне определенной.
Казалось весьма трудным найти причины, задерживающие вылет частицы на столь долгие промежутки времени, если частица имеет достаточно энергии, чтобы.покинуть ядро, - а между тем выбрасываемые из ядра α- и β-частицы несут весьма и весьма солидные запасы энергии.
Уже давно был известен факт существования вполне определенной зависимости между энергией выбрасываемой частицы и средним периодом ее пребывания в ядре в неустойчивом состоянии (периодом распада ядра). В 1912 г. Гейгер и Нэттол заметили, что если для элементов, обладающих распадом, мы будем откладывать на оси абсцисс энергию α-частиц, а на оси ординат логарифм соответствующей константы распада, то для данного радиоактивного семейства точки будут лежать приблизительно на прямой линии. Три известных нам радиоактивных семейства урана, тория и актиния представляются тремя параллельными прямыми.

Опыты Резерфорда и Чедвика показали, что в случае весьма близких столкновений α-частиц с ядрами легких элементов наблюдаются отклонения числа рассеянных частиц от формулы, выведенной в предположении Кулоновского взаимодействия. Наблюденные отклонения могут быть объяснены предположением существования указанных притягательных сил, - таким образом мы можем составить себе представление об области действия и законах этих сил. К сожалению, в настоящее время не имеется достаточно детального исследования аномального рассеяния α-частиц, и теоретические заключения сводятся, примерно, к следующему. Для легких элементов (Mg, A1) аномальные силы притяжения начинают сказываться на расстояниях порядка 10 -12 см, варьируя примерно обратно пропорционально четвертной или пятой степени расстояния и пересиливают Кулоновские отталкивания на расстоянии около 3∙10 -13 см от центра ядра, - на меньших расстояниях α-частица находится, очевидно, уже под влиянием суммарных притягательных сил. Для интересующих нас ядер тяжелых радиоактивных элементов, в виду их большого заряда, имеющиеся в нашем распоряжении α частицы не могут подойти на столь близкие расстояния и достигнуть области аномальных сил. Резерфорд и Чедвик в опытах с рассеянием α частиц в уране могли достигнуть (употребляя самые быстрые α-частицы) лишь расстояния 3∙10 -12 см и никаких отклонений от нормального рассеяния не было замечено— область притягательных сил, очевидно, лежит здесь гораздо ближе к ядру, чем 3∙10 -12 см.
Казалось бы, что результаты этих опытов с ураном весьма мало могут нам помочь - поскольку область притягательных сил не могла быть достигнута; в этих опытах и заключался ключ к разгадке явления α-распада.
При сопоставлении с данными о распаде самих ядер урана опыты эти приводят к парадоксу, совершенно необъяснимому с точки зрения классической механики. В самом деле: ядра атомов урана являются неустойчивыми и выбрасывают α-частицы с энергией около 6,8.10
-6 эрг. Согласно нашему предположе-нию о существовании притягательных сил вблизи ядра, α-частица, сидящая в ядре радиоактивного элемента, окружена своего рода потенциальным барьером, как показано на рисунке. Тот факт, что еще на расстояниях 3∙10 -12 см мы имеем лишь Кулоновские силы, указывает, что максимальная вышина барьера во всяком случае больше, чем

Как может α-частица урана с энергией всего лишь 6,8.10 -6 эрг „перекатиться" через такой барьер? Другими словами: если α-частицы RaG", употребляемые в опытах рассеяния в уране, «вкатываясь» по внешнему откосу барьера, далеко еще не могли достигнуть его вершины, как могут α-частицы урана, обладающие значительно меньшей энергией, перекатиться через барьер и вылететь наружу? С точки зрения классической механики α-частица, проходя через такой барьер, более высокий, чем ее полная энергия, должна была бы обладать внутри барьера «отрицательной кинетической энергией» и следовательно «мнимой скоростью».
Однако возможность такого явления, находящегося в резком противоречии с классической механикой, есть прямое следствие современной волновой механики. Подобно тому как в волновой оптике свет, падая на границу раздела двух сред под углом большим, чем угол полного внутреннего отражения, отчасти проникает во вторую среду - так же точно в волновой механике волны де Бройля-Шредингера могут отчасти проникать в область «мнимой скорости», давая возможность частицам «перекатиться» через барьер.
Переходя к вопросу о вылете α-частицы из ядра, окруженного некоторым потенциальным барьером, мы прежде всего должны знать форму этого барьера. Мы уже видели, что ход потенциала аномальных притягательных сил вблизи и внутри ядра (внутренний скат) точно неизвестен; с другой стороны, легко видеть, что точный ход потенциала на внутреннем крутом спуске барьера сравнительно мало влияет на его проницаемость. В этом случае. является самым рациональным сделать наиболее простые предположения о его форме; для последующих вычислений мы примем модель барьера, даваемую формулами


Эта модель характеризуется двумя неизвестными величинами: радиусом ядра r 0 и внутренним потенциалом U. Вопрос о вылете α-частицы из пространства, окруженного потенциальным барьером, сводится к реше-нию волнового уравнения, дающего вне ядра разбегающуюся сферическую волну. Эта задача приводит к ряду дискретных (квантовых) энергий α частицы, сидящей внутри барьера, и к ряду соответствующих вероятностей вылета.
В настоящем очерке мы, однако, не будем останавливаться на точном решении задачи и удовлетворимся приближенным выводом, вполне однако достаточным для сравнения с опытными данными. Ввиду большой высоты барьера мы можем в первом приближении рассматривать движение частицы внутри ядра, как заключенной между бесконечно высокими стенками, забывая о том, что через миллиона два лет частица все же вылетит. Нас будет интересовать лишь состояние наименьшей энергии (основная орбита), так как сейчас можно считать более чем вероятным, что все α-частицы в ядре имеют квантовое число - единицу.
Вероятность вылета λ может быть вычислена приближенно, как произведение числа столкновений α-частицы с барьером на его проницаемость

.

Казалось бы, что явление β-распада должно быть легко объяснено на тех же общих основаниях, как и α-распад.
В самом деле, явление выбрасывания ядерного электрона во многих отношениях аналогично выбрасыванию α-частицы. Мы встречаемся здесь с теми же весьма длинными периодами и с количественно той же зависимостью между энергией и периодом распада: более медленным β частицам соответствуют более долгие периоды жизни ядра.
Существенным отличием, однако, является факт размытости спектра β-частиц.
Исследованиями Эллиса вполне достоверно установлено, что β частицы покидают ядра со скоростями, варьирующими в весьма широких пределах; с другой стороны, совершенно отсутствует какой-либо процесс, могущий скомпенсировать эту размытость энергий и подвести баланс общей энергии ядра. Согласно закону сохранения энергии, ядра, получающиеся после β-распада, должны были бы иметь самый разнообразный запас энергии, а между тем дискретность скоростей -частиц и линейчатость γ-спектров указывает на вполне определенную дискретную энергию ядер.
Мы приходим, таким образом, к заключению, что для находящихся внутри ядра и вылетающих из него электронов закон сохранения энергии оказывается неприложимым.
Это и целый ряд других затруднений, связанных с вопросом о движении электронов внутри ядра, указывают, что здесь мы натолкнулись на что-то совершенно новое, не могущее быть объясненным на основании современных теоретических представлений. Несомненно, что все эти трудности квантования частиц, двигающихся со скоростью весьма близкой к скорости света, находятся в непосредственной связи с теми фундаментальными противоречиями, которые встретила современная теоретическая физика в попытках обобщения волновой механики на случаи релятивистского движения. Исследование свойств электронов в ядре является в настоящее время единственной областью, могущей дать экспериментальный материал для дальнейшего развития основных принципов теоретической физики».

β-распад. Упомянутая проблема несохранения энергии при β-распаде была решена Паули, предположившим, что в β-распад одновременно с электроном образуется нейтрино. Общая энергия β-распада распределяется между электроном и нейтрино Поэтому регистрация энергии только электрона приводит к кажущемуся несохранению энергии β-распада. Недостающую энергию уносит нейтрино, регистрация которого представляет собой чрезвычайно сложную проблему.
Изучение β-распада сыграло чрезвычайно большую роль в понимании процессов, происходящих в атомных ядрах. Явление β-распада состоит в том, что ядро (A,Z) самопроизвольно испускает лептоны 1-го поколения - электрон (позитрон) и электронное нейтрино (электронное антинейтрино), переходя в ядро с тем же массовым числом А, но с атомным номером Z, на единицу бòльшим или меньшим. При e- захвате ядро поглощает один из электронов атомной оболочки (обычно из ближайшей к нему K-оболочки), испуская нейтрино. В литературе для e-захвата часто используется термин EC (Electron Capture).
Существуют три типа β-распада β - -распад, β + -распад и е-захват.
β - : (A, Z) → (A, Z+1) + e - + e ,
β + : (A, Z) → (A,Z-1) + e + + ν e ,
е: (A, Z) + e - → (A,Z-1) + ν e .
Главной особенностью β-распада является то, что он обусловлен слабым взаимодействием. Бета-распад − процесс не внутриядерный, а внутринуклонный. В ядре распадается одиночный нуклон. Происходящие при этом внутри ядра превращения нуклонов и энергетические условия β-распада имеют вид (массу нейтрино полагаем нулевой):
β - (n → p + e - + e), M(A, Z) > M(A, Z+1) + m e ,
β + (p → n + e + + ν e), M(A, Z) > M(A, Z-1) + m e ,
e-захват (p + e - → n + ν e), M(A, Z) + m e > M(A, Z-1).

β-Распад, так же как и α-распад, происходит между дискретными состояниями начального (A,Z) и конечного (A,Z±1) ядер. Поэтому долгое время после открытия явления β-распада было непонятно, почему спектры электронов и позитронов, вылетающих из ядра при β-распаде были непрерывными, а не дискретными, как спектры α-частиц.
Экспериментальные факты казались несовместимыми с законами сохранения энергии, импульса, момента количества движения. Так, суммарная энергия электрона и ядра, образовавшегося в результате распада, была меньше энергии начального ядра. Для того чтобы спасти законы сохранения В.Паули в 1930 г. в письме участникам физической конференции в г. Тюбингене высказал предположение, что в процессе β - -распада наряду с электроном должна рождаться еще одна очень легкая (неуловимая) частица с нулевым электрическим зарядом и спином J = 1/2.

В.Паули, 1930 г.: «Дорогие радиоактивные дамы и господа. Имея в виду... непрерывный β спектр, я предпринял отчаянную попытку спасти обменную статистику и закон сохранения энергии. Именно, имеется возможность того, что в ядрах существуют электрически нейтральные частицы, которые я буду называть «нейтронами» и которые обладают спином 1/2. Масса «нейтрона» по порядку величины должна быть сравнимой с массой электрона и во всяком случае не более 0,01 массы протона. Непрерывный β-спектр тогда стал бы понятным, если предположить, что при распаде вместе с электроном испускается ещё и «нейтрон» таким образом, что сумма энергий «нейтрона» и электрона остаётся постоянной».

После открытия в 1932 г. нейтрона Э. Ферми предложил называть частицу В.Паули «нейтрино». В 1933 г. на Сольвеевском конгрессе В.Паули выступил с докладом о механизме β-распада с участием нейтральной частицы со спином J = l/2. Гипотеза Паули спасла не только закон сохранения энергии, но и законы сохранения момента количества движения и импульса. Были отвергнуты последние сомнения в том, что надежно зарекомендовавшие себя в классической физике законы сохранения в квантовых процессах нарушаются. В 1934 г. Э. Ферми построил теорию β-распада, основанную на законе сохранения энергии и предположении, что из ядра одновременно вылетают электрон и нейтрино. Ферми объяснил наблюдаемый энергетический спектр электронов и связал скорость β-распада с максимальной энергией электронов, вылетающих при β-распаде. Наиболее важным элементом теории β-распада Ферми было утверждение, что в ядре нет электронов.

Электрон и нейтрино возникают в момент β-распада атомного ядра.

Этот распад аналогичен испусканию света атомом. Световой квант не существует в атоме, а возникает в результате изменения состояния атома. Нейтрино было экспериментально обнаружено в 1956 г. в экспериментах Ф.Райнеса и К.Коэна.

Основные характеристики электрона

Основные характеристики электронного нейтрино

Характеристика Численное значение
Спин J, ћ 1/2
Масса m ν c 2 , эВ < 3
Электрический заряд, Кулон 0
Магнитный момент, eћ/2m e c < 10 -10
Время жизни / Масса, сек/эВ > 7·10 9 (солнечные нейтрино)
> 300 (реакторные нейтрино)
Лептонное число L e +1
Лептонные числа L μ , L τ 0

1924 г. В. Паули предложил принцип Паули



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация