Правильные многогранники или тела платона

Главная / Налоги

Текущая страница: 4 (всего у книги 36 страниц) [доступный отрывок для чтения: 9 страниц]

Платон I: Структура из симметрии – платоновы тела

Платоновы тела поддерживают вокруг себя какую-то магию. Они всегда были и остаются теми объектами, с которыми можно творить волшебство. Они уходят корнями глубоко в доисторическую пору человечества и живут сейчас как предметы, сулящие удачу или неудачу в самых известных настольных играх, в частности в знаменитых «Подземельях и драконах». Кроме того, их таинственная сила вдохновила ученых на некоторые из самых плодотворных открытий в развитии математики и физики. Их невыразимая красота достойна того, чтобы поглубже сконцентрироваться на них.

Альбрехт Дюрер на своей гравюре «Меланхолия I» (илл. 4) подразумевает очарование правильных многогранников, хотя тело, изображенное на его картине, не вполне платоново. (Технически это усеченный треугольный трапецоэдр. Он может быть получен растягиванием граней октаэдра определенным образом.) Возможно, Крылатый Гений впал в меланхолию, потому что не может вникнуть, почему злобная летучая мышь сбросила ему в кабинет именно это, не вполне платоново тело вместо правильной фигуры.


Илл. 4. Альбрехт Дюрер «Меланхолия I»


На картине изображено усеченное платоново тело, магический квадрат и множество других эзотерических символов. С моей точки зрения, она прекрасно показывает досаду, которую я часто испытываю, пытаясь с помощью чистой идеи понять реальность. К счастью, так бывает не всегда.

Правильные многоугольники

Прежде чем перейти к платоновым телам, давайте начнем с чего-нибудь попроще – с их самых близких аналогов в двух измерениях, а именно с правильных многоугольников. Правильный многоугольник – это плоская фигура, у которой все стороны равны и смыкаются под равными углами. Самый простой правильный многоугольник имеет три стороны – это равносторонний треугольник. Далее идет квадрат с четырьмя сторонами. Затем – правильный пятиугольник, или пентагон (который был выбран символом пифагорейцев и взят за основу в проекте хорошо известной штаб-квартиры вооруженных сил9
Имеется в виду Пентагон – главное административное здание Министерства обороны США. – Прим. пер.

), шестиугольник (часть пчелиного улья и, как мы увидим далее, графена10
Слой атомов углерода, соединенных в гексагональную двумерную кристаллическую решетку. – Прим. пер.

), семиугольник (его можно найти на различных монетах), восьмиугольник (знаки обязательной остановки), девятиугольник… Этот ряд можно продолжать бесконечно: для каждого целого числа, начиная с трех, существует уникальный правильный многоугольник. В каждом случае количество вершин равно количеству сторон. Мы также можем рассматривать круг как предельный случай правильного многоугольника, где число сторон становится бесконечным.

Правильные многоугольники, в некотором интуитивном смысле, могут приобрести значение идеального воплощения плоскостных «атомов». Они могут служить как концептуальные атомы, из которых мы можем составлять более сложные построения порядка и симметрии.

Платоновы тела

Теперь перейдем от плоских фигур к объемным. Для максимального единообразия мы можем обобщать понятие правильного многогранника различными способами. Самый естественный из них, который оказывается наиболее плодотворным, ведет к платоновым телам. Мы говорим об объемных телах, грани которых являются правильными многоугольниками, все одинаковы и одинаково смыкаются в каждой вершине. Тогда вместо бесконечного ряда решений мы получим ровно пять тел!


Илл. 5. Пять платоновых тел – волшебных фигур


Пять платоновых тел – это:

тетраэдр с четырьмя треугольными гранями и четырьмя вершинами, в каждой из которых сходится по три грани;

октаэдр с восемью треугольными гранями и шестью вершинами, в каждой из которых сходится по четыре грани;

икосаэдр с 20 треугольными гранями и 12 вершинами, в каждой из которых сходится по пять граней;

Додекаэдр с 20 пятиугольными гранями и 20 вершинами, в каждой из которых сходится по три грани;

Куб с шестью квадратными гранями и восемью вершинами, в каждой из которых сходится по три грани.


Существование этих пяти многогранников легко понять, без особых трудностей можно и сконструировать их модели. Но почему их только пять? (Или есть еще другие?)

Чтобы разобраться с этим вопросом, заметим, что вершины тетраэдра, октаэдра и икосаэдра объединяют три, четыре и пять треугольников, сходящихся вместе, и зададим вопрос: «Что произойдет, если мы продолжим и их будет шесть?» Тогда мы поймем, что шесть равносторонних треугольников, имеющих общую вершину, будут лежать на плоскости. Сколько ни повторяй этот плоский объект, он не позволит нам построить законченную фигуру, ограничивающую некий объем. Вместо этого фигура будет бесконечно распространяться по плоскости, как показано на илл. 6 (слева).


Илл. 6. Три бесконечных платоновы поверхности

На рисунке показаны только конечные их части. Эти три правильных замещения плоскости могут и должны восприниматься как родственные платоновым телам – их блудные братья, которые отправились в паломничество и никогда не вернутся.


Мы получим такие же результаты, если совместим четыре квадрата или три шестиугольника. Эти три правильные сечения на плоскости – достойные дополнения к платоновым телам. Далее мы увидим, как они воплощаются в жизнь в микромире (илл. 29).

Если мы попытаемся совместить более шести равносторонних треугольников, четырех квадратов или трех любых бо́льших правильных многоугольников, нам не хватит места и мы просто не сможем разместить вокруг вершины их суммарный угол. И поэтому пять платоновых тел – это все конечные правильные многогранники, которые могут существовать.

Знаменательно, что определенное конечное число – пять – появляется из соображений геометрической правильности и симметрии. Правильность и симметрия – это естественные и прекрасные вещи для размышления, но у них нет очевидной или прямой связи с определенными числами. Как мы увидим, Платон интерпретировал этот сложный случай их возникновения удивительно творческим образом.

Предыстория

Часто известным людям достается слава за открытия, сделанные другими. Это «эффект Матфея», обнаруженный социологом Робертом Мёртоном и основанный на строчках из Евангелия от Матфея:

Ибо каждому имеющему будет дано, и у него будет изобилие, а у неимеющего будет взято и то, что он имеет11
Евангелие от Матфея, 13:12. – Прим. пер.

Так случилось и с платоновыми телами.

В музее Ашмолин в Оксфордском университете12
Музей искусства и археологии в Оксфорде. – Прим. пер.

Можно увидеть стенд с пятью резными камнями, изготовленными примерно в 2000 г. до н. э. в Шотландии, которые кажутся реализациями пяти платоновых тел (хотя некоторые ученые и оспаривают это). По всей видимости, они использовались в какой-то игре с костями. Можно представить, как пещерные люди собирались вокруг общего костра и резались в «Подземелья и драконы» эпохи палеолита. Вполне возможно, что не Платон, а его современник Теэтет (417–369 гг. до н. э.) первым математически доказал, что это эти самые пять тел – единственные возможные правильные многогранники. Не ясно, в какой степени Платон вдохновил Теэтета или наоборот, или в воздухе античных Афин витало что-то такое, что вдохнули они оба. В любом случае платоновы тела получили свое название, потому что Платон оригинально использовал их в работе гения, одаренного творческим воображением, чтобы провидческим образом создать теорию физического мира.


Илл. 7. Доплатоновские изображения платоновых тел, которые, возможно, использовались в играх с костями около 2000 г. до н. э.


Заглянув в гораздо более далекое прошлое, мы понимаем, что некоторые простейшие создания биосферы, в том числе вирусы и диатомеи (не пары атомов, как можно было бы подумать из названия, а морские водоросли, которые часто отращивают вычурные панцири в виде платоновых тел), не только «открыли», но и буквально воплотили платоновы тела задолго до того, как на Земле появились первые люди. Вирус герпеса; вирус, который вызывает гепатит В; вирус иммунодефицита человека и вирусы многих других болезней имеют форму, напоминающую икосаэдр или додекаэдр. Они заключают свой генетический материал – ДНК или РНК – в белковые капсулы-экзоскелеты, которые определяют их внешние формы, как показано на цветной вклейке D. Капсулы маркированы цветом таким образом, что одинаковые цвета обозначают одинаковые «строительные блоки». В глаза бросается характерное для додекаэдра соединение трех пятиугольников. Но если провести прямые линии через центры синих областей, то мы увидим икосаэдр.

Более сложные микроскопические существа, в том числе радиолярии, которые любил изображать Эрнст Геккель в своей великолепной книге «Красота форм в природе», также воплощают в жизнь платоновы тела. На илл. 8 мы видим замысловатый кремниевый экзоскелет этих одноклеточных организмов. Радиолярии – древняя форма жизни, которую обнаруживают в самых ранних окаменелостях. Ими полны океаны и сегодня. Каждое из пяти платоновых тел воплощается в некотором количестве биологических видов живых организмов. В названиях некоторых из них даже закрепилась их форма, в том числе Circoporus octahedrus, Circogonia icosahedra и Circorrhegma dodecahedra .

Вдохновляющая идея Евклида

«Начала» Евклида являются величайшим учебником всех времен, и другие книги им в этом не чета. Эта книга принесла в геометрию систему и строгость. Если посмотреть более широко, она ввела в область идей – путем практического применения – метод анализа и синтеза.


Илл. 8. Радиолярии становятся видимыми под объективом самого простого микроскопа. Их экзоскелеты часто демонстрируют симметрию платоновых тел.


Анализ и Синтез являются предпочтительной формулировкой «редукционизма» для Исаака Ньютона и для нас тоже. Вот что говорит Ньютон:

Путем такого анализа мы можем переходить от соединений к ингредиентам, от движений – к силам, их производящим, и вообще от действий – к их причинам, от частных причин – к более общим, пока аргумент не закончится наиболее общей причиной. Таков метод анализа, синтез же предполагает причины открытыми и установленными в качестве принципов; он состоит в объяснении при помощи принципов явлений, происходящих от них, и доказательстве объяснений13
Цит. по: Ньютон И. Оптика, или Трактат об отражениях, преломлениях, изгибаниях и цветах света. – М.-Л.: Госиздат, 1927. – С. 306.

Эту стратегию можно сравнить с подходом Евклида к геометрии, где он начинает с простых, интуитивно понятных аксиом, чтобы потом вывести из них более сложные и удивительные следствия. Великие «Математические начала» Ньютона, основополагающий документ современной математической физики, тоже следуют показательному стилю Евклида, пошагово переходя от аксиом при помощи логических построений к более значительным результатам.

Важно подчеркнуть, что аксиомы (или законы физики) не говорят вам, что с ними делать. Собирая их вместе без всякой цели, легко создать большое количество ничего не значащих фактов, о которых скоро забудут. Это как пьеса или музыкальный отрывок, которые бредут как неприкаянные и не приходят никуда. Как обнаружили те, кто пытался приспособить искусственный интеллект для решения творческих математических задач, самое трудное в этом деле – определить цели. Имея в голове стóящую цель, становится легче найти средства, чтобы достичь ее. Я люблю печенье с предсказаниями, и раз мне попалось самое удачное на свете печенье: изречение, которое я в нем нашел, великолепно подытоживает все сказанное:

Работа сама научит вас, как ее сделать.

И, конечно, для лучшего усвоения материала, для студентов и потенциальных читателей заманчиво иметь перед собой вдохновляющую цель. С самого начала на них производит глубокое впечатление понимание того, что они могут предвкушать ощущение удивительного трюка создания конструкции, которая неумолимо движется от «очевидных» аксиом к далеко не очевидным заключениям.

Итак, какова была цель Евклида в «Началах»? Тринадцатый и последний том этого шедевра завершается построением пяти платоновых тел и доказательством, почему их существует только пять. Мне приятно думать – тем более что это вполне правдоподобно, – что Евклид думал об этом заключении, когда начинал работать над всей книгой и пока писал ее. В любом случае это подходящее и приносящее чувство завершенности заключение.

Платоновы тела как атомы

Древние греки признавали в материальном мире четыре основные составляющие, или элемента: огонь, вода, земля и воздух. Вы, возможно, заметили, что количество элементов – четыре – близко к пяти, количеству правильных многогранников. Платон, разумеется, заметил! В его самом авторитетном, пророческом и непостижимом диалоге «Тимей» можно найти теорию элементов, основанную на многогранниках. Она состоит в следующем.

Каждый элемент состоит из атомов определенного вида. Атомы имеют форму платоновых тел: атомы огня – форму тетраэдра, атомы воды – икосаэдра, атомы земли – куба, атомы воздуха – октаэдра.

В этих утверждениях есть определенное правдоподобие. Они дают объяснения. Атомы огня имеют острую форму, что объясняет, почему прикосновение к огню болезненно. Атомы воды самые гладкие и круглые, поэтому они могут плавно обтекать друг друга. Атомы земли могут быть плотно прижаты друг к другу и заполняют пространство без пустот. Воздух, который может быть и горячим, и влажным, имеет промежуточную между огнем и водой форму атомов.

Хотя четыре и близко к пяти, но они не могут быть равны, поэтому полного совпадения между правильными многогранниками, рассмотренными как атомы, и элементами быть не может. Менее одаренный мыслитель был бы, возможно, обескуражен этой трудностью, но гениальный Платон не утратил присутствия духа. Он воспринял это как вызов и как возможность. Он предположил, что оставшийся правильный многогранник, додекаэдр, тоже сыграл свою роль в руках Творца-строителя, но не как атом. Нет, додекаэдр – это не просто какой-то атом, скорее, он повторяет форму самой Вселенной в целом.

Аристотель, который всегда старался превзойти Платона, предложил другую, более консервативную и последовательную теорию. Две главные идеи этих влиятельных философов состояли в том, что Луна, планеты и звезды, населяющие небесный свод, состоят из совершенно иной материи, чем та, которую мы можем найти в подлунном мире, и в том, что «природа не терпит пустоты»; таким образом, небесное пространство не могло быть пустым. Эти рассуждения требовали существования пятого элемента, или квинтэссенции, отличающейся от земли, огня, воды и воздуха, чтобы заполнить небесный свод. Так додекаэдр нашел свое место в качестве атома квинтэссенции или эфира.

Сегодня трудно согласиться с деталями обеих этих теорий. Науке нет никакой пользы от того, чтобы анализировать мир в терминах этих четырех (или пяти) элементов. В современном представлении атомы – вовсе не твердые тела, и уж подавно они не имеют форму платоновых тел. Теория элементов Платона с сегодняшней точки зрения выглядит грубой и во всех отношениях безнадежно неверной.

Структура из симметрии

Но хотя взгляды Платона провалились как научная теория, они были успешны как предсказание и, я бы сказал, как произведение интеллектуального искусства. Чтобы оценить концепцию в этом качестве, мы должны отойти от деталей и посмотреть на нее в целом. Глубинная, ключевая догадка в системе физического мира с точки зрения Платона состоит в том, что мир этот должен по большому счету воплощать в жизнь красивые понятия. И эта красота должна быть красотой особого рода: красотой математической правильности, идеальной симметрии. Для Платона, как и для Пифагора, эта догадка была в то же время верой, страстным желанием и основополагающим принципом. Они жаждали привести Разум в гармонию с Веществом, показав, что Вещество состоит из чистейших произведений Разума.

Важно подчеркнуть, что Платон поднялся в своих идеях над общепринятым уровнем философских обобщений своего времени, чтобы сделать определенные заявления о том, что же такое вещество. Его своеобразные, хотя и неправильные, идеи не попадают в позорную категорию «даже не ошибочно»14
Говорят, что знаменитый физик-теоретик Вольфганг Паули однажды раскритиковал беспомощную работу молодого ученого такими вошедшими в поговорку словами: «Это не просто неверно, это даже не дотягивает до ошибочного!» – Прим. пер.

Как мы уже видели, Платон даже сделал некоторые шаги в направлении сравнения этой теории с реальностью. Огонь обжигает, потому что у тетраэдра острые грани, вода течет, потому что икосаэдры легко перекатываются друг по другу, и т. д. В диалоге Платона «Тимей», где говорится обо всем этом, вы также найдете причудливые объяснения того, что мы бы назвали химическими реакциями и свойствами сложных (состоящих больше чем из одного элемента) веществ. Эти объяснения основаны на геометрии атомов. Но эти напрасно потраченные усилия удручающе далеки от того, что мы при всем желании могли бы считать серьезным экспериментальным доказательством научной теории и еще дальше от использования научных знаний для практических целей.

И все же взгляды Платона в нескольких направлениях предвосхищают современные идеи, находящиеся сегодня на переднем крае научного мышления.

Хотя строительные «кирпичики» материи, которые предложил Платон, совсем не те, которые мы знаем сегодня, сама идея о том, что есть лишь немногие строительные элементы, существующие в множестве одинаковых копий, остается основополагающей.

Но даже если не принимать во внимание эту смутную вдохновляющую идею, более специфический принцип построения теории Платона – выделение структуры из симметрии – оставил свой след в веках. Мы приходим к небольшому числу особых структур из чисто математических соображений – соображений симметрии – и преподносим их Природе как возможные элементы ее строения. Тот вид математической симметрии, который избрал Платон, чтобы составить свой список составляющих элементов, весьма отличен от симметрии, которую мы используем сегодня. Но идея о том, что в основе Природы лежит симметрия, стала доминировать в нашем восприятии физической реальности. Умозрительная идея о том, что симметрия определяет структуру – т. е. что кто-то может использовать высокие требования математического совершенства, чтобы прийти к небольшому перечню возможных реализаций, а потом воспользоваться этим списком как руководством по построению модели мира, – стала нашей путеводной звездой на границах неизведанного, не нанесенных ни на одну карту. Эта идея почти кощунственна в своем безрассудстве, поскольку провозглашает, что мы можем разобраться, как действовал Мастер и точно узнать, как все было сделано. И, как мы увидим далее, она оказалась совершенно правильной.

Для того чтобы обозначить Творца физического мира, Платон использовал слово «демиург». Буквальное его значение – «мастер»; обычно его переводят словом «создатель», что не совсем верно. Это греческое слово Платон подобрал очень тщательно. Оно отражало его веру в то, что физический мир не является окончательной реальностью. Есть также вечный и вневременной мир Идей, которые существуют до какого-либо, с необходимостью несовершенного, физического воплощения и независимо от него. Беспокойный творческий ум – Мастер или Создатель – отливает свои создания из идей, используя последние как формы.

«Тимей» – непростое для понимания произведение, и всегда остается соблазн принять неясность или ошибку за глубину. Осознавая это, я нахожу тем не менее интересным и вдохновляющим то, что Платон не останавливается на платоновых телах, но размышляет о том, что атомы в иных формах, подобно физическим объектам, в свою очередь могут быть составлены из более примитивных треугольников. Детали, конечно, «даже не ошибочны», но интуиция, призывающая рассмотреть модель серьезно, говорить на ее языке и раздвигать границы, в корне верна. Идея о том, что атомы могут иметь составные части, предвосхищает современное стремление анализировать все глубже и глубже. А идея о том, что эти составные части в нормальных условиях не могут существовать как отдельные объекты, а обнаруживаются только как части более сложных объектов, возможно, как раз и реализуется в сегодняшних кварках и глюонах, вечно связанных внутри атомных ядер.

Помимо всего прочего среди размышлений Платона мы найдем идею, которая является центральной в наших размышлениях, – идею о том, что мир в своей глубинной структуре воплощает Красоту. Это оживший дух умозаключений Платона. Он предполагает, что сама основа структуры мира – его атомы – это воплощения чистых идей, которые могут быть открыты и четко сформулированы одним лишь напряжением ума.

Экономия средств

Возвращаясь к вирусам: где же они научились своей геометрии?

Это тот случай, когда простота приобретает вид сложности или, если быть более точным, когда простые правила определяют строение кажущихся сложными структур, которые по зрелом размышлении становятся идеально простыми. Суть в том, что ДНК вирусов15
Не во всех вирусах генетический материал представлен в виде ДНК; есть и РНК-содержащие вирусы. – Прим. ред.

Которая должна нести в себе информацию обо всех аспектах их жизнедеятельности, очень ограничена в размерах. Чтобы сэкономить на длине строительного материала, стоит делать что-либо из простых идентичных частей, соединенных одинаковым образом. Мы уже слышали эту песню: «простые, идентичные части, одинаково соединенные» – и как раз в определении платоновых тел! Поскольку часть создает целое, вирусам не нужно знать о додекаэдрах или икосаэдрах, а только о треугольниках, да еще одно или два правила, чтобы соединить их вместе. Это только более разнородным, нерегулярным и на первый взгляд даже случайным телам – таким как люди – требуются более подробные сборочные инструкции. Симметрия появляется как структура по умолчанию, когда информация и ресурсы ограничены.

ПЛАТОНОВЫ ТЕЛА С ПОДРОБНЫМ ИХ ОПИСАНИЕМ

ПЛАТОНОВЫ ТЕЛА [П. - от греч. Platon (427–347 гг. до н. э. / Т. - происх. см. ТЕЛО), совокупность всех правильных многогранников [т. е. объемных (трехмерных) тел, ограниченных равными правильными многоугольниками] трехмерного Мира, впервые описанных Платоном (им также посвящена заключительная, XIII-я книга «Начал» Платонова ученика Евклида); // при всём бесконечном многообразии правильных многоугольников (двумерных геометрических фигур, ограниченных равными сторонами, смежные пары которых попарно образуют равные между собой углы), существует всего пять объемных П.т. (см. Табл. 6), в соответствие которым со времен Платона ставятся пять стихий Мироздания; любопытна связь, существующая между гексаэдром и октаэдром, а также между додекаэдром и икосаэдром: геометрические центры граней каждого первого являются вершинами каждого второго.

Человек проявляет интерес к многогранникам на протяжении всей своей сознательной деятельности - от двухлетнего ребенка, играющего деревянными кубиками, до зрелого математика. Некоторые из правильных и полуправильных тел встречаются в природе в виде кристаллов, другие - в виде вирусов, которые можно рассмотреть с помощью электронного микроскопа. Что же такое многогранник? Для ответа на этот вопрос напомним, что собственно геометрию определяют иногда как науку о пространстве и пространственных фигурах - двумерных и трехмерных. Двумерную фигуру можно определить как множество отрезков прямых, ограничивающих часть плоскости. Такая плоская фигура называется многоугольником. Из этого следует, что многогранник можно определить как множество многоугольников, ограничивающих часть трехмерного пространства. Многоугольники, образующие многогранник, называются его гранями.

Издавна ученые интересовались "идеальными" или правильными многоугольниками, то есть многоугольниками, имеющими равные стороны и равные углы. Простейшим правильным многоугольником можно считать равносторонний треугольник, поскольку он имеет наименьшее число сторон, которое может ограничить часть плоскости. Общую картину интересующих нас правильных многоугольников наряду с равносторонним треугольником составляют: квадрат (четыре стороны), пентагон (пять сторон), гексагон (шесть сторон), октагон (восемь сторон), декагон (десять сторон) и т.д. Очевидно, что теоретически нет каких-либо ограничений на число сторон правильного многоугольника, то есть число правильных многоугольников бесконечно.

Что же такое правильный многогранник? Правильным называется такой многогранник, все грани которого равны (или конгруэнтны) между собой и при этом являются правильными многоугольниками. Сколько же существует правильных многогранников? На первый взгляд ответ на этот вопрос очень простой - столько же, сколько существует правильных многоугольников. Однако это не так. В "Началах Евклида" мы находим строгое доказательство того, что существует только пять правильных многогранников, а их гранями могут быть только три типа правильных многоугольников: треугольники, квадраты и пентагоны.

Наименование Кол-во граней Стихия
Тетраэдр 4 Огонь
Гексаэдр/Куб 6 Земля
Октаэдр 8 Воздух
Икосаэдр 10 Вода
Додекаэдр 12 Эфир

Мир звездчатых многогранников

Мир наш исполнен симметрии. С древнейших времен с ней связаны наши представления о красоте. Наверное, этим объясняется непреходящий интерес человека к удивительным символам симметрии, привлекавшим внимание множества выдающихся мыслителей, от Платона и Евклида до Эйлера и Коши.

Впрочем, многогранники отнюдь не только объект научных исследований. Их формы – завершенные и причудливые, широко используются в декоративном искусстве.

Звездчатые многогранники очень декоративны, что позволяет широко применять их в ювелирной промышленности при изготовлении всевозможных украшений. Применяются они и в архитектуре. Многие формы звездчатых многогранников подсказывает сама природа. Снежинки - это звездчатые многогранники. С древности люди пытались описать все возможные типы снежинок, составляли специальные атласы. Сейчас известно несколько тысяч различных типов снежинок.

Звездчатый додекаэдр

Большой звездчатый додекаэдр принадлежит к семейству тел Кеплера-Пуансо, то есть правильных невыпуклых многогранников. Грани большого звездчатого додекаэдра – пентаграммы, как и у малого звездчатого додекаэдра. У каждой вершины соединяются три грани. Вершины большого звездчатого додекаэдра совпадают с вершинами описанного додекаэдра.

Большой звездчатый додекаэдр был впервые описан Кеплером в 1619 г. Это последняя звездчатая форма правильного додекаэдра.

Додекаэдр

Древние мудрецы говорили: "Чтобы познать невидимое, смотри внимательно на видимое". В плане сакральных сил додекаэдр самый мощный многогранник. Не зря Сальвадор Дали для своей "Тайной вечере" выбрал эту фигуру. В ней от двенадацати пятиугольников - тоже сильной фигуре, силы концентрируются в одной точке - на Иисусе Христе.

Додекаэдр (от греческого dodeka – двенадцать и hedra – грань) это правильный многогранник, составленный из двенадцати равносторонних пятиугольников.

Додекаэдр имеет 20 вершин и 30 ребер.
Вершина додекаэдра является вершиной трех пятиугольников, таким образом, сумма плоских углов при каждой вершине равна 324°.
Сумма длин всех ребер 30а.
Додекаэдр имеет центр симметрии и 15 осей симметрии.

Каждая из осей проходит через середины противолежащих параллельных ребер. Додекаэдр имеет 15 плоскостей симметрии. Любая из плоскостей симметрии проходит в каждой грани через вершину и середину противоположного ребра.

Правильные многогранники привлекают совершенством своих форм, полной симметричностью. Некоторые из правильных и полуправильных тел встречаются в природе в виде кристаллов, другие - в виде вирусов, простейших микроорганизмов.
Кристаллы - тела, имеющие многогранную форму. Вот один из примеров таких тел: кристалл пирита (сернистый колчедан FeS) - природная модель додекаэдра.
Вирус полиомиелита имеет форму додекаэдра. Он может жить и размножаться только в клетках человека и приматов. Это, в частности, означает, что заразиться полиомиелитом можно только от людей. Кроме того, многие вирусы передаются через переносчиков, роль которых нередко выполняют членистоногие (например, клещи). Такие вирусы могут иметь широкий спектр хозяев, включающий как позвоночных, так и беспозвоночных животных.

Водоросль вольвокс - один из простейших многоклеточных организмов - представляет собой сферическую оболочку, сложенную в основном семиугольными, шестиугольными и пятиугольными клетками (то есть клетками, имеющими семь, шесть или пять соседних; в каждой «вершине» сходятся три клетки).

Бывают экземпляры, у которых есть и четырехугольные, и восьмиугольные клетки, но биологи заметили, что если таких «нестандартных» клеток (менее, чем с пятью и более, чем с семью) сторонами нет, то пятиугольных клеток всегда ровно на двенадцать больше, чем семиугольных (всего клеток может быть несколько сотен и даже тысяч). Это утверждение следует из известной формулы Эйлера.
Фуллерены – одна из форм углерода. Они были открыты при попытке моделировать процессы, происходящие в космосе. Позже ученым в земных лабораториях удалось синтезировать и исследовать многочисленные производные этих шарообразных молекул. Возникла химия фуллеренов. Некоторые соединения включения в кристаллическую решетку фуллерена С60 оказались «горячими сверхпроводниками» с критической температурой до 117 К.
Ведутся попытки создать на основе фуллеренов материалы для зарождающейся молекулярной электроники. Все это интересно и важно. Но фуллерены, как выяснилось, есть и в земных породах. Сейчас с наличием в шунгитах фуллеренов некоторые энтузиасты связывают целебное действие открытых в 1714 г. марциальных вод, которыми лечился Петр Великий. А последние открытия геохимиков заставляют вернуться к проблеме происхождения фуллеренов. Возможно, что новые химические исследования земных фуллеренов приоткроют другие страницы богатой истории планеты Земля!
В алхимии обычно говорится только об этих элементах: огонь, земля, воздух и вода; редко упоминается эфир,потому что это настолько священно. В Пифагорейской школе, стоило бы вам только лишь упомянуть за стенами школы слово «додекаэдр», как вас убили бы на месте. Настолько священной считалась эта фигура. О ней даже не говорили. Спустя двести лет, при жизни Платона, о ней говорили, но только очень осторожно. Почему? Потому, что додекаэдр расположен у внешнего края вашего энергетического поля и является высшей формой сознания. Когда вы достигаете 55-футового предела своего энергетического поля, то оно будет иметь форму сферы. Но самая близкая к сфере внутренняя фигура – это додекаэдр (в действительности, додекаэдро-икосаэдральная взаимосвязь). Вдобавок к этому, мы живём внутри большого додекаэдра, который содержит в себе вселенную. Когда ваш ум достигает предела пространства космоса – а предел тут есть – то он натыкается на додекаэдр, замкнутый в сфере. Додекаэдр есть завершающая фигура геометрии и она очень важна.
На микроскопическом уровне, додекаэдр и икосаэдр являются относительными параметрами ДНК, по которым построена вся жизнь. Можно увидеть также, что молекула ДНК представляет собой вращающийся куб. При повороте куба последовательно на 72 градуса по определённой модели, получается икосаэдр, который, в свою очередь, составляет пару додекаэдру.
Таким образом, двойная нить спирали ДНК построена по принципу двухстороннего соответствия: за икосаэдром следует додекаэдр, затем опять икосаэдр, и так далее. Это вращение через куб создаёт молекулу ДНК.
В основе структуры ДНК лежит священная геометрия, хотя, могут обнаружиться ещё и другие скрытые взаимосвязи.
В книге Дана Уинтера «Математика Сердца» (Dan Winter, Heartmath) показано, что молекула ДНК составлена из взаимоотношений двойственности додекаэдров и икосаэдров.

Правильным многоугольником называется ограниченная прямыми плоская фигура с равными сторонами и равными внутренними углами. Ясно, что таких фигур бесконечно много. Аналогом правильного многоугольника в трехмерном пространстве служит правильный многогранник: пространственная фигура с одинаковыми гранями, имеющими форму правильных многоугольников, и одинаковыми многогранными углами при вершинах. На первый взгляд может показаться, что многогранников также бесконечно много, но на самом деле их, как выразился однажды Льюис Кэррол, "вызывающе мало". Существует лишь пять правильных выпуклых многогранников: правильный тетраэдр, куб, октаэдр, додекаэдр и икосаэдр (рис. 90).

Первое систематическое исследование пяти правильных тел было, по-видимому, предпринято еще в глубокой древности пифагорейцами. Согласно их воззрениям, тетраэдр, куб, октаэдр и икосаэдр лежат в основе традиционных четырех элементов: огня, земли, воздуха и воды. Додекаэр пифагорейцы по непонятным соображениям отождествляли со всей вселенной. Поскольку взгляды пифагорейцев подробно изложены в диалоге Платона "Тимей", правильные многогранники принято называть Платоновыми телами. Красота и удивительные математические свойства пяти правильных тел неоднократно привлекали к себе внимание ученых и после Платона. Анализ Платоновых тел является кульминационным пунктом заключительной книги "Элементов" Евклида. Иоганн Кеплер в юности считал, что расстояния между орбитами шести известных в его время планет можно получить, вписывая в определенном порядке пять правильных тел в орбиту Сатурна. В наши дни математики не приписывают Платоновым телам мистических свойств, а изучают свойства симметрии правильных многогранников методами теории групп. Платоновы тела играют заметную роль и в занимательной математике. Рассмотрим, хотя бы бегло, несколько связанных с ними задач.

Существуют четыре различных способа, как разрезать запечатанный конверт и сложить из него тетраэдр. Вот простейший из них. На обеих сторонах конверта у одного и того же края) начертим равносторонний треугольник (рис. 91) и разрежем конверт по пунктирной прямой. Правая его половина нам не нужна, а левую мы перегнем по сторонам нарисованного треугольника (на обеих сторонах конверта) и совместим точки А и В. Тетраэдр готов!

Головоломка, изображенная на рис. 92, также связана с тетраэдром. Развертку, изображенную на рис. 92 слева, можно вырезать из пластика или плотной бумаги. Сделайте две такие развертки. (На чертеже все пунктирные линии, кроме одной, которая заметно длиннее других, имеют одинаковую длину.) Сложим развертку, перегнув ее по указанным на чертеже линиям. Грани, пересекающиеся между собой вдоль ребер, показанных на чертеже сплошной линией, склеим липкой лентой. В результате у нас получится геометрическое тело, показанное на рис. 92 справа. Из двух таких тел нужно попытаться сложить тетраэдр. Один мой знакомый математик любит приставать к своим друзьям с довольно плоской шуткой. Он собирает из двух разверток две модельки, составляет из них тетраэдр и ставит его на стол, а третью развертку незаметно зажимает в руке. Затем ударом руки он расплющивает тетраэдр и в то же время кладет на стол третью развертку. Вполне очевидно, что его друзьям никак не удается собрать тетраэдр из трех блоков.

Из различных занимательных задач, связанных с кубом, я упомяну лишь головоломку с вычислением полного сопротивления электрической цепи, образованной ребрами проволочного куба, и тот удивительный факт, что куб может проходить через отверстие в меньшем кубе. В самом деле, стоит вам взять куб так, чтобы одна из его вершин была направлена прямо на вас, а ребра образовали правильный шестиугольник, как вы увидите, что в сечении, перпендикулярном лучу зрения, есть достаточно места для квадратного отверстия, которое чуть больше грани самого куба. В электрической головоломке речь идет о цепи, изображенной на рис. 93. Сопротивление каждого ребра куба равно одному ому. Чему равно сопротивление всей цепи, если ток течет от А к В? Инженеры-электрики извели немало бумаги, пытаясь решить эту задачу, хотя при надлежащем подходе найти ее решение совсем несложно.

Все пять Платоновых тел использовались в качестве игральных костей. После куба наибольшую популярность приобрели игральные кости в форме октаэдра. Как сделать такую кость, показано на рис. 94. Начертив и вырезав полоску и перенумеровав грани, ее перегибают вдоль ребер, а "открытые" ребра склеивают прозрачной лентой. Получается миниатюрный октаэдр. Сумма очков на противоположных гранях октаэдрической игральной кости, как и у обычной кубической, равна семи. При желании с помощью новой кости вы можете показать забавный фокус с отгадыванием задуманного числа. Попросите кого-нибудь загадать любое число от 0 до 7. Положите октаэдр на стол так, чтобы загадавший мог видеть только грани с цифрами 1, 3, 5 и 7, и спросите, не видит ли он задуманного им числа. Если он отвечает утвердительно, вы запоминаете про себя число 1. Затем вы переворачиваете октаэдр так, чтобы загадавшему были видны грани с цифрами 2, 3, 6 и 7, и снова задаете тот же вопрос. На этот раз утвердительный ответ означает, что вы должны запомнить число 2. В третий (и последний раз) вы повторяете свой вопрос, повернув октаэдр так, чтобы загадавший мог видеть грани с цифрами 4, 5, 6 и 7. Утвердительный ответ в этом случае оценивается числом 4. Сложив оценки всех трех ответов, вы получите задуманное вашим приятелем число. Этот фокус без труда объяснит всякий, кто знаком с двоичной системой счисления. Чтобы легче было отыскать нужные положения октаэдра, как-нибудь пометьте три вершины, которые должны быть обращены к вам, когда вы стоите лицом к зрителю (задумавшему число).

Существуют и другие не менее интересные способы нумерации граней октаэдрической игральной кости. Например, числа от 1 до 8 можно расположить так, что сумма чисел на четырех гранях, сходящихся в общей вершине, будет постоянна. Эта сумма всегда равна 18, однако существует три различных способа нумерации граней (мы не считаем различными кости, которые переходят друг в друга при поворотах и отражениях), удовлетворяющих заданному выше условию.

Изящный способ построения додекаэдра предложен книге Гуго Штейнгауза "Математический калейдоскоп" * . Из плотного картона нужно вырезать две фигуры, показанные на рис. 95. Стороны пятиугольников должны быть около 2,5-3 см. Лезвием ножа осторожно надрежем картон вдоль сторон внутреннего пятиугольника, с тем чтобы развертка легко сгибалась в одну сторону. Подготовив таким же образом вторую развертку, наложим ее на первую так, чтобы выступы второй развертки пришлись против вырезов первой. Придерживая обе развертки рукой, скрепим их резинкой, пропуская ее попеременно то над выступающим концом одной развертки, то под выступающим концом другой. Ослабив давление руки на развертки, вы увидите, как на ваших глазах, словно по волшебству, возникнет додекаэдр.

* (Эта игрушка была приложена лишь к первому изданию книги Г. Штейнгауза . В дальнейших изданиях, в том числе и в русском (1949), ее нет.- Прим. ред. )

Раскрасим модель додекаэдра таким образом, чтобы каждая грань была выкрашена только одним цветом. Чему равно наименьшее число красок, которыми можно раскрасить додекаэдр, если требуется, чтобы любые две смежные грани были разного цвета? Ответ: наименьшее число красок равно четырем. Нетрудно убедиться, что существуют четыре различных способа наиболее экономной раскраски додекаэдра (при этом два раскрашенных додекаэдра будут зеркальными отражениями двух других). Для раскраски тетраэдра также требуется четыре краски, но существует лишь два варианта раскраски, при этом один тетраэдр переходит в другой при зеркальном отражении. Куб можно раскрасить тремя, а октаэдр - двумя красками. Для каждого из этих тел существует лишь один способ наиболее экономной раскраски. Раскрасить икосаэдр можно всего лишь тремя красками, но сделать это можно не менее чем 144 способами. Лишь в 6 из них раскрашенные икосаэдры совпадают со своими зеркальными отражениями.

Рассмотрим еще одну задачу. Предположим, что муха, разгуливая по 12 ребрам икосаэдра, ползает по каждому из них по крайней мере один раз. Каков наименьший путь, который должна проделать муха, чтобы побывать на всех ребрах иксаэдра? Возвращаться в исходную точку не обязательно; некоторые ребра мухе придется пройти дважды (из всех пяти Платоновых тел только октаэдр обладает тем свойством, что его ребра можно обойти, побывав на каждом из них лишь по одному разу). Решению задачи может помочь проекция икосаэдра на плоскость (рис. 96). Только следует иметь в виду, что длина всех ребер одинакова.

Поскольку и поныне встречаются чудаки, все еще пытающиеся найти решение задач о трисекции угла и квадратуре круга, хотя давно уже доказано, что ни то, ни другое невозможно, кажется странным, что никто не предпринимает попыток найти новые правильные многогранники сверх уже известных пяти Платоновых тел. Одна из причин такого парадоксального положения заключается в том, что понять, почему не существует более пяти правильных тел, крайне несложно. Следующее простое доказательство существования не более пяти правильных тел восходит к Евклиду.

Многогранный угол правильного тела должен быть образован по крайней мере тремя гранями. Рассмотрим простейшую из граней: равносторонний треугольник. Многогранный угол можно построить, приложив друг к другу три, четыре или пять таких треугольников. При числе треугольников свыше пяти сумма плоских углов, примыкающих к вершине многогранника, составляет 360° или даже больше, и, следовательно, такие треугольники не могут образовывать многогранный угол. Итак, существует лишь три способа построения правильного выпуклого многогранника с треугольными гранями. Пытаясь построить многогранный угол из квадратных граней, мы убедимся, что это можно сделать лишь из трех граней. Аналогичными рассуждениями нетрудно показать, что в одной вершине правильного многоугольника могут сходиться три и только три пятиугольные грани. Грани не могут иметь форму многоугольников с числом сторон больше 5, так как, приложив, например, друг к другу три шестиугольника, мы получим в сумме угол в 360 0 .

Приведенное только что рассуждение не доказывает возможности построения пяти правильных тел, оно лишь объясняет, почему таких тел не может быть больше пяти. Более тонкие рассуждения заставляют прийти к выводу, что в четырехмерном пространстве имеется лишь шесть правильных политопов (так называются аналоги трехмерных правильных тел). Любопытно отметить, что?в пространстве любого числа измерений, большем 4, существует лишь три правильных политопа: аналоги тетраэдра, куба и октаэдра.

Невольно напрашивается вывод. Математика в значительной мере ограничивает многообразие структур, которые могут существовать в природе. Обитатели далее самой отдаленной галактики не могут играть в кости, имеющие форму неизвестного нам правильного выпуклого многогранника. Некоторые теологи честно признали, что даже сам господь бог не смог бы построить шестое платоново тело в трехмерном пространстве. Точно так же геометрия ставит непреодолимые границы разнообразию структуры кристаллов. Может быть, наступит день, когда физики откроют математические ограничения, которым должно удовлетворять число фундаментальных частиц и основных законов природы. Разумеется, никто сейчас не имеет ни малейшего представления о том, каким образом математика делает невозможной ту или иную структуру, называемую "живой" (если только математика вообще причастна к этому кругу явлений). Вполне допустимо, например, что наличие углеродных соединений является непременным условием возникновения жизни. Как бы то ни было, человечество заранее готовит себя к мысли о возможности существования жизни на других планетах. Платоновы же тела служат напоминанием о том, что на Марсе и Венере может не оказаться многого из того, о чем думают наши мудрецы.

Ответы

Полное сопротивление цепи, образованной ребрами куба (сопротивление каждого ребра 1 ом ) составляет 5 / 6 ома . Соединим накоротко три ближайшие к А вершины куба и проделаем то же самое с тремя вершинами, ближайшими к В. Мы получим две треугольные цепи. Ни в одной из них тока не будет, так как они соединяют эквипотенциальные точки. Нетрудно заметить, что между вершиной А и ближайшей к ней треугольной цепью параллельно включены три сопротивления по 1 ому (общее сопротивление 1 / 3 ома ), между двумя треугольными цепями в параллель соединено 6 сопротивлений по 1 ому (общее сопротивление этого участка цепи 1 / 6 ома ) и между второй треугольной цепью и точкой В имеется 3 параллельно соединенных проводника по 1 ому (то есть всего 1 / 3 ома ). Таким образом, полное сопротивление цепи между точками А и В равно 5 / 6 ома .

И условие задачи, и метод решения нетрудно обобщить на случай цепи, образованной ребрами четырех остальных Платоновых тел.

Перечислим три способа нумерации граней октаэдра, удовлетворяющих условию: сумма чисел на гранях, примыкающих к любой вершине, должна быть равна 18. Числа, встречаемые при обходе (по часовой стрелке или против нее) одной вершины: 6, 7, 2, 3; при обходе противоположной вершины: 1, 4, 5, 8 (6 рядом с 1, 7 рядом с 4 и т. д.); при обходе остальных вершин: 1, 7, 2, 8 и 4, 6, 3, 5; 4, 7, 2, 5 и 6, 1, 8, 3. Простое доказательство того, что октаэдр - единственное из пяти правильных тел, чьи грани можно пронумеровать так, чтобы сумма чисел на гранях, примыкающих к любой вершине, была постоянна, можно найти в книге У. У. Роуза Болла * .

* (W. W. Rouse Ball, Mathematical recreations and essays, London, MacMillan, New York, St. Martin"s Press, 1956, p. 418. )

Кратчайшее расстояние, которое должна преодолеть муха для того, чтобы побывать на всех ребрах икосаэдра, равно 35 единицам (единица - длина ребра икосаэдра). Стерев пять ребер икосаэдра (например, ребра FM, BE, JA, ID и НС на рис. 96), мы получим граф, на котором нечетное число ребер сходится только в двух точках G и К. Поэтому муха может обойти весь этот граф (начав свой путь к точке G и закончив его в точке К), пройдя по каждому ребру лишь один раз. Пройденное мухой расстояние равно 25 единицам. Это самый длинный путь, все участки которого проходятся по одному разу. Если муха на своем пути встречает стертые ребра, мы просто добавляем их к пути из G в К, считая, что муха проходит их дважды (в противоположных направлениях). Пять стертых ребер, проходимых дважды, составляют добавку в 10 единиц к уже пройденному пути. В сумме это и составляет 35 единиц.

Правильные многогранники называются Платоновыми телами, они занимают видное место в философской картине мира, разработанной великим мыслителем Древней Греции Платоном.

Итак, правильных многогранников Платон знал пять, а число стихий (огонь, воздух, вода и земля) было ровно четыре. Следовательно, из пяти многогранников надо выбрать четыре, которые можно было бы сопоставить со стихиями.

Какими соображениями руководствовался при этом Платон? Прежде всего тем, что некоторые элементы, как он считал, могли перейти друг в друга. Преобразование одних многогранников в другие могли быть осуществлены путем перестройки их внутренней структуры. Но для этого в данных телах нужно было найти такие структурные элементы, которые были бы для них общими. Из внешнего вида правильных многогранников явствует, что грани трех многогранников - тетраэдра, октаэдра, икосаэдра - имеют форму равностороннего треугольника. Два оставшихся многогранника - куб и додекаэдр - построены: первый - из квадратов, а второй - из правильных пятиугольников, поэтому они не могут преобразовываться ни друг в друга, ни в рассмотренные три тела. Это значит, что если мы придадим частицам трех стихий формы тетраэдра, октаэдра и икосаэдра, то частицы четвертой стихии будем считать кубами или додекаэдрами, но эта четвертая стихия не сможет переходить в три других, а всегда будет оставаться сама собой. Платон решил, что такой стихией может быть только земля и что мельчайшие частицы, из которых земля состоит, должны быть кубами. Тетраэдру, октаэдру и икосаэдру были сопоставлены соответственно огонь, воздух и вода.

Что касается пятого многогранника - додекаэдра, то он остается не у дел. По поводу него Платон ограничивается в «Тимее» замечанием, что «его бог определил для Вселенной и прибегнул к нему, когда разрисовывал ее и украшал».

Возникает вопрос «какими соображениями руководствовался Платон, приписывая частицам огня форму тетраэдра, частицам земли - форму куба и т.д.?». Здесь он учитывает чувственно-воспринимаемые свойства соответствующих стихий. Огонь - наиболее подвижная стихия, он обладает разрушительным действием, проникая в другие тела (сжигая или расплавляя, или испаряя их); при соприкосновении с ним мы испытываем чувство боли, как если бы мы укололись или порезались.

Какие частицы могли бы обусловить все эти свойства и действия? Очевидно, наиболее подвижные и легкие частицы, и притом обладающие режущими гранями и колющими углами. Из четырех многогранников, о которых может идти речь, в наибольшей степени удовлетворяет тетраэдр. Поэтому, говорит Платон, образ пирамиды (т.е. тетраэдра) и должен быть в согласии с правильным рассуждением и с правдоподобием, первоначалом и семенем огня, наоборот, земля выступает в нашем опыте как самая неподвижная и устойчивая из всех стихий. Поэтому частицы, из которых она состоит, должны иметь самые устойчивые основания. Из всех четырех тел этим свойством в максимальной мере обладает куб. Поэтому мы не нарушим правдоподобия, если припишем частицам земли кубическую форму. Аналогичным образом с двумя прочими стихиями мы соотнесем частицы, обладающие промежуточными свойствами. Икосаэдр, как самый обтекаемый, представляет частичку воды, октаэдр - частицу воздуха.

Пятый многогранник - додекаэдр - воплощал в себе «все сущее», символизировал весь мир и почитался главнейшим.

Мы видим, каким образом принцип правдоподобия сочетается у Платона с использованием данных повседневного опыта. Любопытно, что Платон почти не касается других, чисто спекулятивных, мотивов (например, связанных с теорией пропорций), которые играли решающую роль в построении его космологической концепции и которые могли оказать влияние и на некоторые аспекты его теории строения вещества.

Правда, сам Тимей, выступающий в данном случае в качестве профессора, читающего лекцию об устройстве мира, является, по всем данным, представителем пифагорейской школы. Однако до сих пор не ясно, существовал ли Тимей как историческая личность или же был фиктивным персонажем, придуманным Платоном для того, чтобы не делать автором космологических и физических теорий его обычного героя - Сократа, ибо это слишком не вязалось бы с образом последнего.

Платон «правдоподобно» систематизировал картину мира. Это была одна из первых попыток ввести в науку саму идею систематизации, которая оказалась очень плодотворной. Она помогла отделить одни области знаний от других, сделав научные исследования более целенаправленными.

Платоновы тела

Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук.

Л. Кэррол

Человек всегда проявлял интерес к многогранникам. Некоторые из правильных и полуправильных тел встречаются в природе в виде кристаллов, другие – в виде вирусов, которые можно рассмотреть с помощью электронного микроскопа. Что же такое многогранник? Многогранником называется часть пространства, ограниченная совокупностью конечного числа плоских многоугольников.

Издавна ученые интересовались «идеальными» или правильными многоугольниками, то есть многоугольниками, имеющими равные стороны и равные углы. Простейшим правильным многоугольником можно считать равносторонний треугольник, поскольку он имеет наименьшее число сторон, которое может ограничить часть плоскости. Общую картину интересующих нас правильных многоугольников наряду с равносторонним треугольником составляют: квадрат (четыре стороны), пентагон (пять сторон), гексагон (шесть сторон), октагон (восемь сторон), декагон (десять сторон) и т. д. Очевидно, что теоретически нет каких-либо ограничений на число сторон правильного многоугольника, то есть число правильных многоугольников бесконечно.

Что же такое правильный многогранник? Правильным называется такой многогранник, все грани которого равны (или конгруэнтны) между собой и при этом являются правильными многоугольниками. Сколько же существует правильных многогранников? В XIII книге «Началах Эвклида», посвященной правильным многогранникам, или платоновым телам (Платон их рассматривает в диалоге «Тимей») мы находим строгое доказательство того, что существует только пять правильных многогранников, а их гранями могут быть только три типа правильных многоугольников: треугольники, квадраты и пентагоны.

Доказательство того, что существует ровно пять правильных выпуклых многогранников, очень простое.

Очевидно, что каждая вершина многогранника может принадлежать трем и более граням. Сначала рассмотрим случай, когда грани многогранника – равносторонние треугольники. Поскольку внутренний угол равностороннего треугольника равен 60°, три таких угла, помещенные на плоскость, дадут в сумме 180°. Если теперь согнуть эти углы по внутренним сторонам и склеить по внешним, получим многогранный угол тетраэдра – правильного многогранника, в каждой вершине которого встречаются три правильные треугольные грани. Три правильных треугольника с общей вершиной называется разверткой вершины тетраэдра. Если добавить к развертке вершины еще один треугольник, в сумме получится 240°. Это развертка вершины октаэдра. Добавление пятого треугольника даст угол 300° – мы получаем развертку вершины икосаэдра. Если же добавить еще один, шестой треугольник, сумма углов станет равной 360° – эта развертка, очевидно, не может соответствовать ни одному выпуклому многограннику.

Теперь перейдем к квадратным граням. Развертка из трех квадратных граней имеет угол 3 x 90° = 270° – получается вершина куба, который также называют гексаэдром. Добавление еще одного квадрата увеличит угол до 360° – этой развертке уже не соответствует никакой выпуклый многогранник.

Три пятиугольные грани дают угол развертки 3 x 108° = 324° – вершина додекаэдра. Если добавить еще один пятиугольник, получим больше 360°.

Для шестиугольников уже три грани дают угол развертки 3 x 120° = 360°, поэтому правильного выпуклого многогранника с шестиугольными гранями не существует. Если же грань имеет еще больше углов, то развертка будет иметь еще больший угол. Значит, правильных выпуклых многогранников с гранями, имеющими шесть и более углов, не существует.

Таким образом, мы убедились, что существует лишь пять выпуклых правильных многогранников – тетраэдр, октаэдр и икосаэдр с треугольными гранями, куб (гексаэдр) с квадратными гранями и додекаэдр с пятиугольными гранями.

Пять правильных многогранников или платоновых тел использовались и были известны задолго до времени Платона. Кейт Кричлоу в своей книге «Время остановилось» дает убедительное свидетельство тому, что они были известны людям неолита Британии, по крайней мере, за 1000 лет до Платона. Это заявление основывается на наличии ряда сферических камней, хранящихся в музее Ашмолина в Оксфорде. Эти камни, размеры которых соответствовали тому, что можно уместить в руке, были покрыты геометрически точными сферическими фигурами куба, тетраэдра, октаэдра, икосаэдра и додекаэдра, также как и некоторые дополнительные сложносоставные и псевдоправильные тела, такие как кубо-октаэдр и ико-додекаэдр. Кричлоу говорит: «То что у нас есть, представляет собой объекты, несомненно указывающие на степень математических способностей, которые до сих пор отрицались в отношении человека неолита некоторыми археологами или историками математики».

Теэтет Афинский (417–369 до н. э.), современник Платона, дал математическое описание правильных многогранников и первое известное доказательство того, что их ровно пять.

В «Тимее», который, по сравнению со всеми остальными работами Платона, носит наиболее ярко выраженный пифагорейский характер, он утверждает, что четырьмя базовыми элементами в мире являются земля, воздух, огонь и вода, и что каждый из этих элементов соотносится с одной из пространственных фигур. Традиция связывает куб с землей, тетраэдр с огнем, октаэдр с воздухом и икосаэдр с водой. Платон упоминает «некое пятое построение», использованное создателем при сотворении вселенной. Так додекаэдр стал ассоциироваться с пятым элементом: эфиром. Устроитель вселенной Платона установил порядок из первобытного хаоса этих элементов с помощью основополагающих форм и чисел. Приведение в порядок в соответствии с числом и формой на более высоком уровне привело к предначертанному расположению пяти элементов в физической вселенной. Основополагающие формы и числа затем стали действовать в качестве границы раздела между высшим и низшим мирами. Сами по себе и в силу своей аналогии с другими элементами, они обладали способностью формировать материальный мир.

Те же пять правильных тел в соответствии с классической традицией рисуются таким образом, что они содержатся в девяти концентрических шарах, и каждое тело соприкасается со сферой, которая описана вокруг следующего тела, расположенного внутри ее. Такая композиция проявляет немало важных взаимоотношений и заимствована из дисциплины, называемой corpo transparente , относящейся к восприятию сфер, изготовленных из прозрачного материала и размещенных одна в другой. Такое наставление давалось Фра Лукой Паччоли многим великим людям Ренессанса, включая Леонардо и Брунуллески.

В своей книге «Тайна мира» (Mysterium Cosmographicum) , которая вышла в свет в 1596 г. Иоганн Кеплер предположил, что существует связь между пятью платоновыми телами и шестью открытыми к тому времени планетами Солнечной системы. Согласно этому предположению, в сферу орбиты Сатурна можно вписать куб, в который вписывается сфера орбиты Юпитера. В нее, в свою очередь, вписывается тетраэдр, описанный около сферы орбиты Марса. В сферу орбиты Марса вписывается додекаэдр, в который вписывается сфера орбиты Земли. А она описана около икосаэдра, в который вписана сфера орбиты Венеры. Сфера этой планеты описана около октаэдра, в который вписывается сфера Меркурия. Такая модель Солнечной системы получила название «Космического кубка» Кеплера. Расхождение между моделью Кеплера и реальными размерами орбит (порядка нескольких процентов) И. Кеплер объяснял «влиянием материи».

В XX веке платоновы тела были использованы в теории electron shell model Роберта Муна, которая также известна как «теория Муна». Мун заметил, что геометрическое расположение протонов и нейтронов в атомном ядре связано с положением вершин вложенных платоновых тел. Эта концепция была вдохновлена работой И. Кеплера «Mysterium Cosmographicum».

Существует формула Эйлера для многогранников:

F + V = E + 2

В этой формуле F – число граней, V – число вершин, E – число ребер. Эти числовые характеристики для платоновых тел приведены в таблице.

Количественные особенности платоновых тел

Важные соотношения между ребрами, диаметрами вписанных и описанных сфер, площадями и объемами правильных многогранников выражаются через иррациональные числа. В таблице ниже представлено отношение длины ребра к диаметру описанной сферы для каждого из пяти платоновых тел.

Каждый полученный результат есть иррациональное число, которое можно найти только через извлечение квадратного корня. Мы видим, что здесь фигурируют числа, которые являются важными и особенными в сакральной математике.

Геометрия додекаэдра и икосаэдра связана с золотой пропорцией. Действительно, гранями додекаэдра являются пентагоны, т. е. правильные пятиугольники, основанные на золотой пропорции. Если внимательно посмотреть на икосаэдр, то можно увидеть, что в каждой вершине икосаэдра сходится пять треугольников, внешние стороны которых образуют пентагон. Уже этих фактов достаточно, чтобы убедиться в том, что золотая пропорция играет существенную роль в конструкции этих двух платоновых тел. Эти две фигуры являются обратными друг другу: обе состоят из 30 ребер, но, несмотря на это, икосаэдр имеет 20 граней и 12 вершин, а додекаэдр – 12 граней и 20 вершин. Также обратными друг другу являются октаэдр и гексаэдр, и театраэдр сам к себе.

Существуют удивительные геометрические связи между всеми правильными многогранниками . Так, например, куб и октаэдр дуальны, т. е. получаются друг из друга, если центры тяжести граней одного принять за вершины другого и обратно. Аналогично дуальны икосаэдр и додекаэдр. Тетраэдр дуален сам себе. Додекаэдр получается из куба построением «крыш» на его гранях (способ Евклида), вершинами тетраэдра являются любые четыре вершины куба, попарно не смежные по ребру, то есть из куба могут быть получены все остальные правильные многогранники.

Роберт Лолор в своей работе показывает, что платоновы тела можно построить исходя из икосаэдра. Он пишет: «Если мы соединим все внутренние вершины икосаэдра, нарисовав три линии из каждой из них, соединяющих каждую вершину с ей противолежащей, и затем из двух верхних вершин проведем четыре линии к двум противоположным, так чтобы эти линии сошлись в центре, мы, действуя в соответствии со сказанным, естественным образом построим ребра додекаэдра. Такое построение происходит автоматически при пересечении внутренних линий икосаэдра. После создания додекаэдра мы можем, просто используя шесть из его вершин и центр, построить куб. Используя диагонали куба, мы можем построить звездообразный или переплетенный тетраэдр. Пересечения звездообразного тетраэдра с кубом дают нам точное местоположение для построения вписанного октаэдра. Затем в самом октаэдре с использованием внутренних линий икосаэдра и вершин октаэдра получается второй икосаэдр. Мы прошли через весь полный цикл, пять этапов от семени к семени. И такие действия представляют собой бесконечную последовательность.

Тетраэдр

Простейшим среди правильных многогранников является тетраэдр. У Платона он соответствует стихии Огня. В физике «огонь» можно соотнести с состоянием плазмы. Тетраэдр имеет наименьшее число граней среди Платоновых тел и является трехмерным аналогом плоского правильного треугольника, который имеет наименьшее число сторон среди правильных многоугольников. Его четыре грани – равносторонние треугольники. Четыре – это наименьшее число граней, отделяющих часть трехмерного пространства. Каждая его вершина является вершиной трех треугольников. Все многогранные углы тетраэдра равны между собой. Сумма плоских углов при каждой вершине равна 180°. Таким образом, тетраэдр имеет 4 грани, 4 вершины и 6 ребер.

Октаэдр

Октаэдр составлен из восьми равносторонних треугольников. У Платона он соответствует стихии Воздуха. В физике «воздух» можно соотнести с газообразным состоянием вещества. Каждая его вершина является вершиной четырех треугольников. Противоположные грани лежат в параллельных плоскостях. Сумма плоских углов при каждой вершине равна 240°. Таким образом, октаэдр имеет 8 граней, 6 вершин и 12 ребер.

Икосаэдр

Икосаэдр – одно из пяти платоновых тел, по простоте следующее за тетраэдром и октаэдром. У Платона он соответствует стихии Воды. В физике «воду» можно соотнести с жидким состоянием вещества. Икосаэдр составлен из двадцати равносторонних треугольников. Каждая его вершина является вершиной пяти треугольников. Сумма плоских углов при каждой вершине равна 300°. Таким образом, икосаэдр имеет 20 граней, 12 вершин и 30 ребер.

Гексаэдр

Гексаэдр или куб составлен из шести квадратов. У Платона он соответствует стихии Земли. В физике «землю» можно соотнести с твёрдым состоянием вещества. Каждая его вершина является вершиной трех квадратов. Сумма плоских углов при каждой вершине равна 270°. Таким образом, куб имеет 6 граней, 8 вершин и 12 ребер.

Додекаэдр

Додекаэдр составлен из двенадцати равносторонних пятиугольников. У Платона он соответствует пятому элементу – Эфиру. Каждая его вершина является вершиной трех пятиугольников. Сумма плоских углов при каждой вершине равна 324°. Таким образом, додекаэдр имеет 12 граней, 20 вершин и 30 ребер.

Правильные многогранники встречаются в живой природе. В начале XX века Эрнст Геккель (Ernst Haeckel ) описал ряд организмов, формы скелета которых подобны различным правильным многогранникам. Например: Circoporus octahedrus, Circogonia icosahedra, Lithocubus geometricus и Circorrhegma dodecahedra . Формы скелета этих организмов запечатлены в их названиях.

Скелет одноклеточного организма феодарии (Circogoniaicosahedra ) по форме напоминает икосаэдр. Большинство феодарий живут на морской глубине и служат добычей коралловых рыбок. Но простейшее животное пытается себя защитить: из 12 вершин скелета выходят 12 полых игл. На концах игл находятся зубцы, делающие иглу еще более эффективной при защите.

Многие вирусы, например вирус herpes , имеют форму правильного икосаэдра. Вирусные структуры строятся из повторяемых протеиновых субъединиц, и икосаэдр – самая подходящая форма для воспроизведения этих структур.

Кристаллические решётки многих минералов имеет форму платоновых тел.

Получение серной кислоты, железа, особых сортов цемента не обходится без сернистого колчедана (FeS ). Кристаллы этого химического вещества имеют форму додекаэдра. Минерал сильвин имеет кристаллическую решетку в форме куба. Кристаллы пирита имеют форму додекаэдра, а куприт образует кристаллы в форме октаэдров.

Платоновы тела – очень важный объект для изучения, как с точки зрения сакральной математики, так и с точки зрения естественных наук. Платоновы тела проявляются повсюду, начиная от вирусов, многие из которых имеют икосаэдрическую форму и заканчивая сложными макроструктурами, такими, например, как Солнечная система.

Антон Мухин

Из книги Записные книжки автора Чехов Антон Павлович

частью тела. 2 [Арх(иерей) плачет, как в детстве больной, когда его жалела мать; плакал просто от общей душев- ной прострации, толпа плакала. Он веровал, достиг всего, что было [дано (?}] доступно ч(ело- ве)ку в его положении, но все же душа болела: не все было ясно, чего-то еще

Из книги Все под контролем: Кто и как следит за тобой автора Гарфинкель Симеон

Из книги Невообразимое будущее автора Кригер Борис

Заложники собственного тела В состоянии здоровья и благополучия человек напрочь забывает о существовании собственного тела. Его не беспокоят боли и прочие проявления дискомфорта, такие как чувство холода, жары, голода и другие. Однако чувство реальности жизни как раз

Из книги «Матрица» как философия автора Ирвин Уильям

ТЕЛА, УМЫ, ПОЛ «Звезды» «Матрицы» выглядят в соответствии с определенным стандартом. В виртуальном мире их плоть скрыта под похожими друг на друга костюмами из блестящей черной кожи или латекса. «эКзистенЦия» же наполнена плотью, запекшейся и свежей кровью wetware. Такие

Из книги Япония Лики времени. Менталитет и традиции в современном интерьере. автора Прасол Александр Федорович

Глава 17 ВОКРУГ ТЕЛА ДИНАМИКА - ОСОБЕННОСТИ ЯПОНСКИХ ДВИЖЕНИЙ Отличный от европейского климат, рацион питания и образ жизни веками формировали у японцев особенности телосложения и характер движений. В этой области ещё много неизученного, поэтому попробуем разобраться

Из книги Чужие уроки - 2008 автора Голубицкий Сергей Михайлович

ЭСТЕТИКА ОБНАЖЁННОГО ТЕЛА В историческом плане отношение японцев ко многим аспектам внешнего облика человека тоже сильно отличалось от европейского. Это особенно заметно в отношении к обнажённому телу. В европейской культуре обнажение допускается в двух случаях: по

Из книги Литературная Газета 6300 (№ 45 2010) автора Литературная Газета

Язык расслабленного тела Опубликовано в журнале "Бизнес-журнал" №15 от 08 августа 2008 года. Associated Press, 4 июля 2008 года: «Филип Беннет, бывший глава Refco Inc., приговорен к 16 годам тюремного заключения за финансовые махинации, которые привели к крушению одной из крупнейших в мире

Из книги Как победить китайцев автора Маслов Алексей Александрович

Загадки тела Библиоман. Книжная дюжина Загадки тела ЧИТАЮЩАЯ МОСКВА А.А. Каменский, М.В. Маслова, А.В. Граф. Гормоны правят миром: Популярная эндокринология. – М.: АСТ-ПРЕСС, 2010. – 192 с.: ил. – (Наука и мир). – 5000 экз. Сейчас издаётся не так много научно-популярной литературы,

Из книги Критика нечистого разума автора Силаев Александр Юрьевич

Из книги В предвкушении себя. От имиджа к стилю автора Хакамада Ирина Мицуовна

Истинные тела Если лаконично: мало истину знать, надо проживать ее в своем теле. Чтобы тело вело себя истинно. И этому надо учить отдельно, специальные такие предметы-дисциплины. Все же знают, никто не

Из книги Пятое измерение. На границе времени и пространства [сборник] автора Битов Андрей

Глава 4. Одухотворение тела К телу можно относиться по?разному. Его можно обожествить и посвятить ему свою жизнь. Об этом писала в своих воспоминаниях Джейн Фонда. Создав аэробику, она замучила себя диетами и фитнесом, доведя психику до разрушительного состояния. Можно на

Из книги Картины Парижа. Том II автора Мерсье Луи-Себастьен

Тонкие тела (воочию) В 1964 ГОДУ, сразу после снятия, ленинградскому художнику Гаге Ковенчуку приснился Никита Сергеевич. Они встретились в метро. Гага очень обрадовался. «Как же так? – выразил он тут же сочувствие. – Ведь так все хорошо шло!» Никита Сергеевич был краток:

Из книги Масонерия и машинерия (сборник) автора Байков Эдуард Артурович

226. Праздник Тела господня{57} День Тела господня самый торжественный изо всех католических праздников. В этот день Париж чист, весел, безопасен, великолепен. В этот день, видно как много в церквах серебряных вещей, не говоря о золоте и бриллиантах, как роскошны церковные

Из книги Россия. Еще не вечер автора Мухин Юрий Игнатьевич

Культ тела Бодибилдинг (от англ. body – тело и building – строительство, т. е. Body-Building – телостроительство, построение тела), или культуризм (от франц. culturisme – взращивание, наращивание) – это не просто система физических упражнений, способствующих наращиванию мышечной массы и,

Из книги Доктрина шока [Становление капитализма катастроф] автора Кляйн Наоми

Исход Души из тела Думаю, вас уже не удивит, что когда человек находится в состоянии смерти, то организм делает все, чтобы спасти мозг. То есть если тело теряет кровь, то организм (Дух) будет отключать от кровоснабжения все органы и остатки крови гонять только по кругу:

Из книги автора

Шок для тела Сопротивление нарастало, а оккупанты в ответ все больше применяли шок в новой форме. Поздно ночью или ранним утром солдаты вламывались в двери, освещая фонарями темные комнаты, и наполняли дом криками, из которых местные жители могли разобрать лишь несколько



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация