Метод Гаусса (последовательного исключения неизвестных). Примеры решений для чайников. Метод Гаусса: описание алгоритма решения системы линейных уравнений, примеры, решения

Главная / Налоги

Метод Гаусса прекрасно подходит для решения систем линейных алгебраических уравнений (СЛАУ). Он обладает рядом преимуществ по сравнению с другими методами:

  • во-первых, нет необходимости предварительно исследовать систему уравнений на совместность;
  • во-вторых, методом Гаусса можно решать не только СЛАУ, в которых число уравнений совпадает с количеством неизвестных переменных и основная матрица системы невырожденная, но и системы уравнений, в которых число уравнений не совпадает с количеством неизвестных переменных или определитель основной матрицы равен нулю;
  • в-третьих, метод Гаусса приводит к результату при сравнительно небольшом количестве вычислительных операций.

Краткий обзор статьи.

Сначала дадим необходимые определения и введем обозначения.

Далее опишем алгоритм метода Гаусса для простейшего случая, то есть, для систем линейных алгебраических уравнений, количество уравнений в которых совпадает с количеством неизвестных переменных и определитель основной матрицы системы не равен нулю. При решении таких систем уравнений наиболее отчетливо видна суть метода Гаусса, которая заключается в последовательном исключении неизвестных переменных. Поэтому метод Гаусса также называют методом последовательного исключения неизвестных. Покажем подробные решения нескольких примеров.

В заключении рассмотрим решение методом Гаусса систем линейных алгебраических уравнений, основная матрица которых либо прямоугольная, либо вырожденная. Решение таких систем имеет некоторые особенности, которые мы подробно разберем на примерах.

Навигация по странице.

Основные определения и обозначения.

Рассмотрим систему из p линейных уравнений с n неизвестными (p может быть равно n ):

Где - неизвестные переменные, - числа (действительные или комплексные), - свободные члены.

Если , то система линейных алгебраических уравнений называется однородной , в противном случае – неоднородной .

Совокупность значения неизвестных переменных , при которых все уравнения системы обращаются в тождества, называется решением СЛАУ .

Если существует хотя бы одно решение системы линейных алгебраических уравнений, то она называется совместной , в противном случае – несовместной .

Если СЛАУ имеет единственное решение, то она называется определенной . Если решений больше одного, то система называется неопределенной .

Говорят, что система записана в координатной форме , если она имеет вид
.

Эта система в матричной форме записи имеет вид , где - основная матрица СЛАУ, - матрица столбец неизвестных переменных, - матрица свободных членов.

Если к матрице А добавить в качестве (n+1)-ого столбца матрицу-столбец свободных членов, то получим так называемую расширенную матрицу системы линейных уравнений. Обычно расширенную матрицу обозначают буквой Т , а столбец свободных членов отделяют вертикальной линией от остальных столбцов, то есть,

Квадратная матрица А называется вырожденной , если ее определитель равен нулю. Если , то матрица А называется невырожденной .

Следует оговорить следующий момент.

Если с системой линейных алгебраических уравнений произвести следующие действия

  • поменять местами два уравнения,
  • умножить обе части какого-либо уравнения на произвольное и отличное от нуля действительное (или комплексное) число k ,
  • к обеим частям какого-либо уравнения прибавить соответствующие части другого уравнения, умноженные на произвольное число k ,

то получится эквивалентная система, которая имеет такие же решения (или также как и исходная не имеет решений).

Для расширенной матрицы системы линейных алгебраических уравнений эти действия будут означать проведение элементарных преобразований со строками:

  • перестановку двух строк местами,
  • умножение всех элементов какой-либо строки матрицы T на отличное от нуля число k ,
  • прибавление к элементам какой-либо строки матрицы соответствующих элементов другой строки, умноженных на произвольное число k .

Теперь можно переходить к описанию метода Гаусса.

Решение систем линейных алгебраических уравнений, в которых число уравнений равно числу неизвестных и основная матрица системы невырожденная, методом Гаусса.

Как бы мы поступили в школе, если бы получили задание найти решение системы уравнений .

Некоторые сделали бы так.

Заметим, что прибавив к левой части второго уравнения левую часть первого, а к правой части - правую, можно избавиться от неизвестных переменных x 2 и x 3 и сразу найти x 1 :

Подставляем найденное значение x 1 =1 в первое и третье уравнение системы:

Если умножить обе части третьего уравнения системы на -1 и прибавить их к соответствующим частям первого уравнения, то мы избавимся от неизвестной переменной x 3 и сможем найти x 2 :

Подставляем полученное значение x 2 =2 в третье уравнение и находим оставшуюся неизвестную переменную x 3 :

Другие поступили бы иначе.

Разрешим первое уравнение системы относительно неизвестной переменной x 1 и подставим полученное выражение во второе и третье уравнение системы, чтобы исключить из них эту переменную:

Теперь разрешим второе уравнение системы относительно x 2 и подставим полученный результат в третье уравнение, чтобы исключить из него неизвестную переменную x 2 :

Из третьего уравнения системы видно, что x 3 =3 . Из второго уравнения находим , а из первого уравнения получаем .

Знакомые способы решения, не правда ли?

Самое интересное здесь то, что второй способ решения по сути и есть метод последовательного исключения неизвестных, то есть, метод Гаусса. Когда мы выражали неизвестные переменные (сначала x 1 , на следующем этапе x 2 ) и подставляли их в остальные уравнения системы, мы тем самым исключали их. Исключение мы проводили до того момента, пока в последнем уравнении не осталась одна единственная неизвестная переменная. Процесс последовательного исключения неизвестных называется прямым ходом метода Гаусса . После завершения прямого хода у нас появляется возможность вычислить неизвестную переменную, находящуюся в последнем уравнении. С ее помощью из предпоследнего уравнения находим следующую неизвестную переменную и так далее. Процесс последовательного нахождения неизвестных переменных при движении от последнего уравнения к первому называется обратным ходом метода Гаусса .

Следует заметить, что когда мы выражаем x 1 через x 2 и x 3 в первом уравнении, а затем подставляем полученное выражение во второе и третье уравнения, то к такому же результату приводят следующие действия:

Действительно, такая процедура также позволяет исключить неизвестную переменную x 1 из второго и третьего уравнений системы:

Нюансы с исключением неизвестных переменных по методу Гаусса возникают тогда, когда уравнения системы не содержат некоторых переменных.

Например, в СЛАУ в первом уравнении отсутствует неизвестная переменная x 1 (иными словами, коэффициент перед ней равен нулю). Поэтому мы не можем разрешить первое уравнение системы относительно x 1 , чтобы исключить эту неизвестную переменную из остальных уравнений. Выходом из этой ситуации является перестановка местами уравнений системы. Так как мы рассматриваем системы линейных уравнений, определители основных матриц которых отличны от нуля, то всегда существует уравнение, в котором присутствует нужная нам переменная, и мы это уравнение можем переставить на нужную нам позицию. Для нашего примера достаточно поменять местами первое и второе уравнения системы , дальше можно разрешить первое уравнение относительно x 1 и исключить ее из остальных уравнений системы (хотя во втором уравнении x 1 уже отсутствует).

Надеемся, что суть Вы уловили.

Опишем алгоритм метода Гаусса.

Пусть нам требуется решить систему из n линейных алгебраических уравнений с n неизвестными переменными вида , и пусть определитель ее основной матрицы отличен от нуля.

Будем считать, что , так как мы всегда можем этого добиться перестановкой местами уравнений системы. Исключим неизвестную переменную x 1 из всех уравнений системы, начиная со второго. Для этого ко второму уравнению системы прибавим первое, умноженное на , к третьему уравнению прибавим первое, умноженное на , и так далее, к n-ому уравнению прибавим первое, умноженное на . Система уравнений после таких преобразований примет вид

где , а .

К такому же результату мы бы пришли, если бы выразили x 1 через другие неизвестные переменные в первом уравнении системы и полученное выражение подставили во все остальные уравнения. Таким образом, переменная x 1 исключена из всех уравнений, начиная со второго.

Далее действуем аналогично, но лишь с частью полученной системы, которая отмечена на рисунке

Для этого к третьему уравнению системы прибавим второе, умноженное на , к четвертому уравнению прибавим второе, умноженное на , и так далее, к n-ому уравнению прибавим второе, умноженное на . Система уравнений после таких преобразований примет вид

где , а . Таким образом, переменная x 2 исключена из всех уравнений, начиная с третьего.

Далее приступаем к исключению неизвестной x 3 , при этом действуем аналогично с отмеченной на рисунке частью системы

Так продолжаем прямой ход метода Гаусса пока система не примет вид

С этого момента начинаем обратный ход метода Гаусса: вычисляем x n из последнего уравнения как , с помощью полученного значения x n находим x n-1 из предпоследнего уравнения, и так далее, находим x 1 из первого уравнения.

Разберем алгоритм на примере.

Пример.

методом Гаусса.

Решение.

Коэффициент a 11 отличен от нуля, так что приступим к прямому ходу метода Гаусса, то есть, к исключению неизвестной переменной x 1 из всех уравнений системы, кроме первого. Для этого к левой и правой частям второго, третьего и четвертого уравнения прибавим левую и правую части первого уравнения, умноженные соответственно на , и :

Неизвестную переменную x 1 исключили, переходим к исключению x 2 . К левым и правым частям третьего и четвертого уравнений системы прибавляем левую и правую части второго уравнения, умноженные соответственно на и :

Для завершения прямого хода метода Гаусса нам осталось исключить неизвестную переменную x 3 из последнего уравнения системы. Прибавим к левой и правой частям четвертого уравнения соответственно левую и правую часть третьего уравнения, умноженную на :

Можно начинать обратный ход метода Гаусса.

Из последнего уравнения имеем ,
из третьего уравнения получаем ,
из второго ,
из первого .

Для проверки можно подставить полученные значения неизвестных переменных в исходную систему уравнений. Все уравнения обращаются в тождества, что говорит о том, что решение по методу Гаусса найдено верно.

Ответ:

А сейчас приведем решение этого же примера методом Гаусса в матричной форме записи.

Пример.

Найдите решение системы уравнений методом Гаусса.

Решение.

Расширенная матрица системы имеет вид . Сверху над каждым столбцом записаны неизвестные переменные, которым соответствуют элементы матрицы.

Прямой ход метода Гаусса здесь предполагает приведение расширенной матрицы системы к трапецеидальному виду с помощью элементарных преобразований. Этот процесс схож с исключением неизвестных переменных, которое мы проводили с системой в координатной форме. Сейчас Вы в этом убедитесь.

Преобразуем матрицу так, чтобы все элементы в первом столбце, начиная со второго, стали нулевыми. Для этого к элементам второй, третьей и четвертой строк прибавим соответствующие элементы первой строки умноженные на , и на соответственно:

Далее полученную матрицу преобразуем так, чтобы во втором столбце все элементы, начиная с третьего стали нулевыми. Это будет соответствовать исключению неизвестной переменной x 2 . Для этого к элементам третьей и четвертой строк прибавим соответствующие элементы первой строки матрицы, умноженные соответственно на и :

Осталось исключить неизвестную переменную x 3 из последнего уравнения системы. Для этого к элементам последней строки полученной матрицы прибавим соответствующие элементы предпоследней строки, умноженные на :

Следует отметить, что эта матрица соответствует системе линейных уравнений

которая была получена ранее после прямого хода.

Пришло время обратного хода. В матричной форме записи обратный ход метода Гаусса предполагает такое преобразование полученной матрицы, чтобы матрица, отмеченная на рисунке

стала диагональной, то есть, приняла вид

где - некоторые числа.

Эти преобразования аналогичны преобразованиям прямого хода метода Гаусса, но выполняются не от первой строки к последней, а от последней к первой.

Прибавим к элементам третьей, второй и первой строк соответствующие элементы последней строки, умноженные на , на и на соответственно:

Теперь прибавим к элементам второй и первой строк соответствующие элементы третьей строки, умноженные на и на соответственно:

На последнем шаге обратного хода метода Гаусса к элементам первой строки прибавляем соответствующие элементы второй строки, умноженные на :

Полученная матрица соответствует системе уравнений , откуда находим неизвестные переменные.

Ответ:

ОБРАТИТЕ ВНИМАНИЕ.

При использовании метода Гаусса для решения систем линейных алгебраических уравнений следует избегать приближенных вычислений, так как это может привести к абсолютно неверным результатам. Рекомендуем не округлять десятичные дроби. Лучше от десятичных дробей переходить к обыкновенным дробям.

Пример.

Решите систему из трех уравнений методом Гаусса .

Решение.

Отметим, что в этом примере неизвестные переменные имеют другое обозначение (не x 1 , x 2 , x 3 , а x, y, z ). Перейдем к обыкновенным дробям:

Исключим неизвестную x из второго и третьего уравнений системы:

В полученной системе во втором уравнении отсутствует неизвестная переменная y , а в третьем уравнении y присутствует, поэтому, переставим местами второе и третье уравнения:

На этом прямой ход метода Гаусса закончен (из третьего уравнения не нужно исключать y , так как этой неизвестной переменной уже нет).

Приступаем к обратному ходу.

Из последнего уравнения находим ,
из предпоследнего


из первого уравнения имеем

Ответ:

X = 10, y = 5, z = -20 .

Решение систем линейных алгебраических уравнений, в которых число уравнений не совпадает с числом неизвестных или основная матрица системы вырожденная, методом Гаусса.

Системы уравнений, основная матрица которых прямоугольная или квадратная вырожденная, могут не иметь решений, могут иметь единственное решение, а могут иметь бесконечное множество решений.

Сейчас мы разберемся, как метод Гаусса позволяет установить совместность или несовместность системы линейных уравнений, а в случае ее совместности определить все решения (или одно единственное решение).

В принципе процесс исключения неизвестных переменных в случае таких СЛАУ остается таким же. Однако следует подробно остановиться на некоторых ситуациях, которые могут возникнуть.

Переходим к самому важному этапу.

Итак, допустим, что система линейных алгебраических уравнений после завершения прямого хода метода Гаусса приняла вид и ни одно уравнение не свелось к (в этом случае мы бы сделали вывод о несовместности системы). Возникает логичный вопрос: «Что делать дальше»?

Выпишем неизвестные переменные, которые стоят на первом месте всех уравнений полученной системы:

В нашем примере это x 1 , x 4 и x 5 . В левых частях уравнений системы оставляем только те слагаемые, которые содержат выписанные неизвестные переменные x 1 , x 4 и x 5 , остальные слагаемые переносим в правую часть уравнений с противоположным знаком:

Придадим неизвестным переменным, которые находятся в правых частях уравнений, произвольные значения , где - произвольные числа:

После этого в правых частях всех уравнений нашей СЛАУ находятся числа и можно преступать к обратному ходу метода Гаусса.

Из последнего уравнений системы имеем , из предпоследнего уравнения находим , из первого уравнения получаем

Решением системы уравнений является совокупность значений неизвестных переменных

Придавая числам различные значения, мы будем получать различные решения системы уравнений. То есть, наша система уравнений имеет бесконечно много решений.

Ответ:

где - произвольные числа.

Для закрепления материала подробно разберем решения еще нескольких примеров.

Пример.

Решите однородную систему линейных алгебраических уравнений методом Гаусса.

Решение.

Исключим неизвестную переменную x из второго и третьего уравнений системы. Для этого к левой и правой части второго уравнения прибавим соответственно левую и правую части первого уравнения, умноженные на , а к левой и правой части третьего уравнения - левую и правую части первого уравнения, умноженные на :

Теперь исключим y из третьего уравнения полученной системы уравнений:

Полученная СЛАУ равносильна системе .

Оставляем в левой части уравнений системы только слагаемые, содержащие неизвестные переменные x и y , а слагаемые с неизвестной переменной z переносим в правую часть:

В данном случае помимо соблюдения требования a kk 0 при реализации формул (6) накладываются дополнительные требования, чтобы ведущий (главный) элемент в текущем столбце в процессе преобразований исходной матрицы имел максимальное по модулю значение. Это также достигается перестановкой строк матрицы.

Пример . В качестве иллюстрации преимущества модифицированного метода Гаусса, рассмотрим систему третьего порядка:

Прямой ход метода Гаусса

Исключаем х 1 из второго и третьего уравнений. Для этого первое уравнение умножаем на 0,3 и складываем со вторым, а затем умножаем первое уравнение на (–0,5) и складываем с третьим. В результате получаем

(б )

Замена второго уравнения третьим не производится, т.к. вычисления выполняются в рамках точной арифметики.

Умножая второе уравнение на 25, и складывая с третьим, получим

(в )

Обратный ход метода Гаусса

Выполняем вычисления, начиная с последнего уравнения в полученной системе:

Подставляя полученное решение в исходную систему, убеждаемся в его истинности.

Теперь изменим коэффициенты системы таким образом, чтобы сохранить прежнее решение, но при вычислении будем использовать округления в рамках арифметики с плавающей точкой сохраняя пять разрядов. Этому будет соответствовать следующая система

(г )

Прямой ход метода для системы (г ) повторим по аналогичной технологии с исходной системой (а ).

(д )

После исключения х 2 третье уравнение примет вид (остальные – без изменения)

15005 х 3 = 15004. (е )

Выполняя обратный ход, получим

Очевидно, что полученные решения и [–0,35; –1,4; 0,99993] различны. Причиной этого является малая величина ведущего элемента во втором уравнении преобразования в (д ). Чтобы это исключить, переставим в (д ) вторую и третью строки


(ж )

Для данной системы после исключения х 2 из третьего уравнения, оно примет следующий вид

6,002 х 3 = 6,002. (з )

В данном случае, выполняя обратный ход

мы получим решение системы (г ) , которое в точности совпадает с решением исходной системы.

Решая систему (г ) мы использовали модифицированный метод Гаусса, в котором на диагонали должен был находиться максимальный в текущем столбце элемент.

Рассмотрим блок-схему модифицированного метода Гаусса (рис. 2.1).

Рис. 2.1. Блок-схема модифицированного метода Гаусса

Проведем анализ предложенной схемы на примере системы n =3 (=0,001)

(8)

;. (*)

Блок 1. Ввод исходных данных:n – порядок системы,A – матрица коэффициентов при неизвестных,b – вектор свободных членов.

Блок 2.I-й цикл прямого хода (дляk , изменяющегося от 1 до предпоследнего значения, т.е. доn –1) обеспечивает исключение из главной диагонали матрицыА элементаa kk =0 благодаря поиску максимального элементаa kk в текущем столбце, осуществляемому в блоках 36 с помощью циклаII.

Затем реализуются расчеты по формулам (6) прямого хода Гаусса в блоках циклов IVиV.

Проведем поблочный анализ в среде рассмотренных циклов IVна примере (8).

Блок 3p =k = 1

Вход в цикл II

Блок 4m =k +1 = 2 доn = 3

Блок 5a 11 = 2 <a 21 = 4 из (*)

Блок 6p = 2

Блок 4m = 2+1 = 3

Блок 5a 21 = 4 <a 31 = 6 из (*)

Блок 6p = 3

Выход из цикла IIи вход в циклIII, блоки 710 выполняют перестановку строк матрицыА поэлементно

Блок 7j = 1 (j от 1 до 3)

Блок 8 r = a 11 = 2 из (*)

Блок 9 a 11 = a 31 = 6

Блок 10 a 31 = r

Блок 7 j = 2

Блок 8 r = a 12 = 1

Блок 9 a 12 = a 32 = 5

Блок 10 a 32 = r = 1

Блок 7j = 3 и по аналогииr =a 13 ;a 13 =a 33 ;a 33 =r = −1.

Выход из цикла IIIи вход вБлок 11 и далее 1213 выполняют аналогичную перестановку значений свободных членов

r =b 1 = 1;b 1 = b 3 = 14;b 3 =r= 1.

Вход в цикл IVс измененной системой

;; (**)

для пересчета b 2 вектора

m =k +1 = 1+1 = 2 доn = 3

c = a mk / a kk = a 21 / a 11 = 4/6 из (**)

b 2 =b 2 –c b 1 = 6 – 4/614 = −20/6 из (**)

Вход во вложенный цикл Vдля пересчета второй строки

i = 1 (i от 1 до 3); a 21 = a 21 – с a 11 = 4 – 4/6  6 = 0;

i = 2; a 22 = a 22 – с a 12 = 6 – 4/6  5 = 16/6;

i = 3; a 23 = a 23 – с a 13 = 2 – 4/6  8 = −20/6.

Выход из цикла Vи вход в циклIV

m = 3;c =a 31 /a 11 = 2/6.

Вход в Блок 16

b 3 =b 3 –c b 1 = 1 – 2/614 = −22/6.

Выход из цикла IVи вход в циклVи вход вБлок 17

i = 1 (i от 1 до 3); a 31 = a 31 – с a 11 = 2 – 2/6  6 = 0;

i = 2; a 32 = a 32 – с a 12 = 1 – 2/6  5 = −4/6;

i = 3; a 33 = a 33 – с a 13 = −1 – 2/6  8 = −22/6.

Выход из цикла Vс преобразованной системой

;
; (***)

и вход по линии А в циклI

k = 2;p =k = 2;m =k +1 = 3; вход вБлок 5

| a 22 | < |a 32 | = | 16/6 | > | 4/6 | из (***).

Выход из цикла IIи вход в циклIII

j = 2 (j от 2 до 3);

r = a kj = a 22 = 16/6; a 22 = a 22 ; a 22 = r = 16/6; из (***)

r =a 23 = −20/6;a 23 =a 23 ;a 23 =r = −20/6; из (***)

В данном случае на диагонали оказался максимальный элемент, поэтому перестановка 2-ой и 3-ей строк не выполняется.

Выход из цикла IIIи вход в циклIвБлок 11

r =b 2 ;b 2 = b 2 ;b 2 =r= −20/6.

Свободный член b 2 остается на своем месте.

Вход в цикл IV

m =k +1 = 2+1 = 3;

c = a mk / a kk = a 32 / a 22 = (–4/6) / (16/6); из (***)

b 3 =b 3 –c b 2 = −22/6 – (–1/4)(–20/6) = −27/6 из (***)

Выход из цикла IVи вход в циклV

i = 2 (i от 2 до 3); a 32 = a 32 – с a 22 = −4/6 – (–1/4)  16/6 = 0;

i = 3;a 33 =a 33 –с a 23 = −22/6 – (–1/4)(–20/6) = −27/6.

Выход из цикла Vи выход из циклаI.

Обратный ход метода Гаусса

В Блоках 1924 реализуются формулы (7).

В Блоке 19 из последнего уравнения находится значениеx n (n = 3)

x 3 =b n / a nn =b 3 / a 33 = (–27/6) / (–27/6) = 1.

Вход в цикл VI(Блок 20), в котором значение переменной циклаk изменяется отn –1 до 1 с шагом (–1)

Блок 21s= 0

Вход в цикл VII(Блок 22)

i = k +1 = 2+1 = 3; n = 3; s = s + a ki x i = 0 + a 23 x 3 = −20/6 1 = −20/6.

Выход из цикла VIIнаБлок 24 в циклVI:

k = 2; x 2 = (b k – s)/ a nn = (b 2 – s)/ a 22 = (–20/6 +20/6)/ a 22 = 0.

k =k –1 = 2–1 = 1;

i = k + 1 = 2; s = 0 + a 12 x 2 = 5  0 = 0;

i = k + 1 = 3; s = 0 + a 13 x 3 = 8  1 = 8;

x 1 = (b 1 –s)/ a 11 = (14 – 8) / 6 = 1.

Выход из последнего цикла VII.

В Блоке 25 (цикл опущен) выполняется вывод на экран полученного решения СЛАУ – векторат.е.x i ,i =1, ...,n . В нашем случае (1; 0; 1).

Сегодня разбираемся с методом Гаусса для решения систем линейных алгебраических уравнений. О том, что это за системы, можно почитать в предыдущей статье, посвященной решению тех же СЛАУ методом Крамера. Метод Гаусса не требует каких-то специфических знаний, нужна лишь внимательность и последовательность. Несмотря на то что с точки зрения математики для его применения хватит и школьной подготовки, у студентов освоение этого метода часто вызывает сложности. В этой статье попробуем свести их на нет!

Метод Гаусса

Метод Гаусса – наиболее универсальный метод решения СЛАУ (за исключением ну уж очень больших систем). В отличие от рассмотренного ранее , он подходит не только для систем, имеющих единственное решение, но и для систем, у которых решений бесконечное множество. Здесь возможны три варианта.

  1. Система имеет единственное решение (определитель главной матрицы системы не равен нулю);
  2. Система имеет бесконечное множество решений;
  3. Решений нет, система несовместна.

Итак, у нас есть система (пусть у нее будет одно решение), и мы собираемся решать ее методом Гаусса. Как это работает?

Метод Гаусса состоит из двух этапов – прямого и обратного.

Прямой ход метода Гаусса

Сначала запишем расширенную матрицу системы. Для этого в главную матрицу добавляем столбец свободных членов.

Вся суть метода Гаусса заключается в том, чтобы путем элементарных преобразований привести данную матрицу к ступенчатому (или как еще говорят треугольному) виду. В таком виде под (или над) главной диагональю матрицы должны быть одни нули.

Что можно делать:

  1. Можно переставлять строки матрицы местами;
  2. Если в матрице есть одинаковые (или пропорциональные) строки, можно удалить их все, кроме одной;
  3. Можно умножать или делить строку на любое число (кроме нуля);
  4. Нулевые строки удаляются;
  5. Можно прибавлять к строке строку, умноженную на число, отличное от нуля.

Обратный ход метода Гаусса

После того как мы преобразуем систему таким образом, одна неизвестная Xn становится известна, и можно в обратном порядке найти все оставшиеся неизвестные, подставляя уже известные иксы в уравнения системы, вплоть до первого.

Когда интернет всегда под рукой, можно решить систему уравнений методом Гаусса онлайн . Достаточно лишь вбить в онлайн-калькулятор коэффициенты. Но согласитесь, гораздо приятнее осознавать, что пример решен не компьютерной программой, а Вашим собственным мозгом.

Пример решения системы уравнений методом Гаусс

А теперь - пример, чтобы все стало наглядно и понятно. Пусть дана система линейных уравнений, и нужно решить ее методом Гаусса:

Сначала запишем расширенную матрицу:

Теперь займемся преобразованиями. Помним, что нам нужно добиться треугольного вида матрицы. Умножим 1-ую строку на (3). Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой и получим:

Затем умножим 3-ую строку на (-1). Добавим 3-ую строку к 2-ой:

Умножим 1-ую строку на (6). Умножим 2-ую строку на (13). Добавим 2-ую строку к 1-ой:

Вуаля - система приведена к соответствующему виду. Осталось найти неизвестные:

Система в данном примере имеет единственное решение. Решение систем с бесконечным множеством решений мы рассмотрим в отдельной статье. Возможно, сначала Вы не будете знать, с чего начать преобразования матрицы, но после соответствующей практики набъете руку и будете щелкать СЛАУ методом Гаусса как орешки. А если Вы вдруг столкнетесь со СЛАУ, которая окажется слишком крепким орешком, обращайтесь к нашим авторам! вы можете, оставив заявку в Заочнике. Вместе мы решим любую задачу!

Пусть требуется решить линейную систему уравнений вида:

или в другой форме

В курсе линейной алгебры решения системы уравнений (5.2) представляются по правилу Крамера в виде отношений соответствующих определителей. Если использовать наиболее оптимальный способ расчета определителя, то по правилу Крамера требуется примерно -|п! арифметических операций. Однако существует более оптимальный способ решения системы уравнений (5.2) - метод исключения Гаусса, в рамках которого требуется -|п 3 арифметических действий.

Начнем исследование системы уравнений (5.2) с частного случая, когда матрица системы является верхней треугольной, т. е. все ее элементы ниже главной диагонали равны нулю. Выполняя в командном окне MATLAB oneрацию spy(triu(randn(25))) сгенерируем верхнюю треугольную матрицу и ее графический образ. На рис. 5.1 приведен соответствующий пример верхней треугольной матрицы.

Из последнего уравнения системы с верхней треугольной матрицей находим Х л, подставляя его в предпоследнее уравнение, находим Х„ _i и т. д. - находим все решение. Общая формула для определения Xj-ro имеет вид:

Метод Гаусса выражается в процедуре приведения матрицы системы уравнений к треугольному виду (например, к верхнему треугольному виду на рис. 5.1). Это можно сделать следующим образом. Вычтем из второго уравнения первое, умноженное на такое число, чтобы коэффициент при X] обратился в нуль, аналогично вычтем первое уравнение из второго, третьего и т. д. вплоть до П-го. В результате должна получиться новая система уравнений, в которой в первом столбце везде нули, кроме диагонального элемента а ц. Затем с помощью второго уравнения путем такой же процедуры обнуляем элементы второго столбца, лежащие ниже главной диагонали. Продолжая эту процедуру для третьего и всех последующих уравнений, преобразуем матрицу системы к верхнему треугольному виду.

Рис. 5.1.

Пусть проведено исключение элементов из k- 1 столбца. Остальные уравнения с не обнуленными столбцами можно записать в виде:

Умножим к-к) строку на число С тк = / оIf 1 , т > к, и вычтем из ш-й

строки. Первый ненулевой элемент этой строки обратиться в нуль, а другие элементы можно пересчитать по формулам:

Проведение алгоритма (5.4), (5.5) обнуления каждого столбца матрицы ниже главной диагонали заканчивается (п - 1)-м столбцом, при этом вся процедура называется прямым ходом исключения.

Собрав (5.4), (5.5) вместе, будем иметь

или в развернутой форме

Система уравнений (5.6) легко решается обратным ходом по формулам (5.3).

Возможное нарушение в работе алгоритма (5.4), (5.5) может быть связано с тем, что на главной диагонали оказался нулевой элемент а кк " = 0. В этом случае необходимо среди строк матрицы ниже к -й найти такую, у которой на к- м месте находится отличный от нуля элемент. Такая строка обязательно должна найтись, если она не находится, то это значит, что в к- м столбце, начиная с к-го номера все элементы нулевые, а значит, и детерминант матрицы А равен нулю. Перестановкой строк можно переместить подходящую строку в нужное положение.

Если оказывается, что элемент на главной диагонали мал, то коэффициенты С т к становятся большими числами, и при пересчете элементов матрицы согласно (5.5) может быть значительная потеря точности на ошибках округления при вычитании больших чисел. Чтобы этого не происходило, среди элементов столбца а^ к, т>к, находят главный или максимальный и перестановкой строк переводят его на главную диагональ. Этот метод называется методом Гаусса с выбором главного элемента. С выбором главного элемента ошибки округления в методе Гаусса обычно невелики.

Метод Гаусса с выбором главного элемента наиболее прост, надежен и выгоден и по этой причине наиболее востребован при решении линейных систем уравнений с плотно заполненной матрицей порядка п

Рассмотрим процедуру решения линейной системы уравнений в среде MATLAB. Покажем экспериментально, что в среднем количество операций, осуществляемое центральным процессором при решении линейной системы уравнений, пропорционально кубу порядка матрицы. Покажем, что асимптотически отношение time(n)/n 3 стремится к некоторой предстепенной константе при п -> оо, где time(n) - время работы центрального процессора при данном порядке матрицы п.

В листинге 5.1 приведен код соответствующей программы.

Листинг 5.1

“/«Программа изучения затрат времени “/«центрального процессора при решении %систем линейных уравнений %очищаем рабочее пространство clear all

“/«определяем максимальный порядок “/«обращаемых матриц

птах =1 0 0 0; к =0;

“/«организуем цикл решений систем “/«уравнений вида А X = Ь for п = 1: 10: птах k =к +1; order) к) =п;

“/оформируем случайну матрицу А %и правую часть Ь A=r andn(n); b=randn(n, 1) ;

“/«запоминаем начальный момент времени “/оработы центрального процессора 10 =с рut i me;

“/орешаем линейную систему уравнений %А X = Ь по формуле: X =А Ь А Ь;

“/онаходим последующий момент времени,

“/овычитаем из него предыдущий и “/оделим на куб порядка матрицы

t (к) =(с put i me-10) / n л3; end

“/«строим график зависимости предстепенной “/оконстанты от порядка матрицы А semilogy(order,t);

Рис. 5.2.

На рис. 5.2 приведен график зависимости предстепенной константы отношения времени работы центрального процессора к кубу порядка матрицы от порядка матрицы. Видно, что при П -> оо действительно отношение time(n)/n 3 стремится к некоторой константе, что и подтверждает кубическую зависимость числа операций в методе Гаусса от порядка матрицы.

Определитель и обратная матрица также могут быть найдены методом исключения Гаусса. В процессе исключения вычитание строк не меняет определитель, но может измениться сто знак при перестановке строк. После приведения матрицы к треугольному виду, можем найти детерминант матрицы в виде произведения ее диагональных элементов:

где выбор "+" или зависит от того, четной или нечетной была суммарная перестановка строк.

Процедуру поиска детерминанта матрицы (5.7) изучим на примере стандартной функции MATLAB - det(A), где А - произвольная матрица пхп. Изучим зависимость величины детерминанта матрицы со случайными элементами, распределенными по нормальному закону со средним 0 и стандартным отклонением 1, в зависимости от порядка матрицы.

В листинге 5.2 приведен код соответствующей программы.

Листинг 52

%Программа изучения процедуры поиска детерминанта %матрицы, элементы которой случайные величины,

“/«распределенные по нормальному закону со средним О %и стандартным отклонением 1 %очищаем рабочее пространство clear all

“/«определяем максимальный порядок %анализируемых матриц

птах =3 0 0;

%организуем цикл поиска детерминанта %матрицы А - det(A) for n=l: 5: nmax k =k +1; order) k) =n;

%формируем случайную матрицу A A=r a n d n (n) ;

%вычисляем детерминант матрицы A

%переходим в логарифмическую шкалу %при фиксации значений детерминанта d(k) =si gn(d(к)) *1 оg 10(d(к)); end

%строим график зависимости значений %детерминанта матрицы от порядка матрицы

plot (order, d);

На рис. 5.3 приведен график зависимости логарифма детерминанта случайной матрицы от порядка матрицы. Видно, что детерминант случайной матрицы экспоненциально растет с ростом порядка матрицы.


Рис. 5.3.

Для вычисления обратной матрицы обозначим ее элементы через а 1т, 1,т = 1 , и будем исходить из соотношения АА 1 = Е, тогда верна следующая запись:

Согласно (5.8) /-й столбец обратной матрицы можно рассматривать в качестве неизвестного вектора линейной системы уравнений с матрицей А со специальной правой частью. Таким образом, обращение матрицы сводится к решению линейной системы уравнений п раз с одной и той же матрицей, но с разными правыми частями. Приведение системы к треугольному виду осуществляется только 1 раз, поэтому количество арифметических операций при обращении матрицы лишь в три раза больше, чем при решении системы линейных уравнений, т. е. порядка * 2П 3 .

Рассмотрим теперь функцию inv(A) в среде MATLAB, которая возвращает обратную к А матрицу. В листинге 5.3 приведен код соответствующей программы.

Листинг 53

%Программа изучения процедуры поиска обратной матрицы, Роэлементы которой - случайные величины, распределенные %по нормальному закону со средним 0 и стандартным %отклонением 1

Роочищаем рабочее пространство

%определяем максимальный порядок %анализируемых матриц

пшах=1 0 00; к =0;

Реорганизуем цикл поиска обратной Роматрицы к А - i ПV(А) for п=1: 5: птах k =к +1; о г d е г (к) =п;

Реформируем случайну матрицу А

Ровычисляем обратную к А матрицу Ai nv=i nv(А);

Ренаходим ошибку обращения Е =еуе(п);

е г (к) =п о г ш(A* Ai nv- Е) ; end

Состроим график зависимости значений ошибок

%обращения матриц от порядка матриц

semilogy(order.er);

На рис. 5.4 приведена зависимость ошибки обращения матрицы от ее порядка. Видно, что по мере роста порядка матрицы от 1 до 800 ошибка обращения, выраженная в определенной норме, выросла на пять порядков.


В данной статье метод рассматривается как способ решения систем линейных уравнений (СЛАУ). Метод является аналитическим, то есть позволяет написать алгоритм решения в общем виде, а потом уже подставлять туда значения из конкретных примеров. В отличие от матричного метода или формул Крамера, при решении системы линейных уравнений методом Гаусса можно работать и с теми, что имеют решений бесконечно много. Или не имеют его вовсе.

Что значит решить методом Гаусса?

Для начала необходимо нашу систему уравнений записать в Выглядит это следующим образом. Берется система:

Коэффициенты записываются в виде таблицы, а справа отдельным столбиком - свободные члены. Столбец со свободными членами отделяется для удобства Матрица, включающая в себя этот столбец, называется расширенной.

Далее основную матрицу с коэффициентами нужно привести к верхней треугольной форме. Это основной момент решения системы методом Гаусса. Проще говоря, после определенных манипуляций матрица должна выглядеть так, чтобы в ее левой нижней части стояли одни нули:

Тогда, если записать новую матрицу опять как систему уравнений, можно заметить, что в последней строке уже содержится значение одного из корней, которое затем подставляется в уравнение выше, находится еще один корень, и так далее.

Это описание решения методом Гаусса в самых общих чертах. А что получится, если вдруг у системы нет решения? Или их бесконечно много? Чтобы ответить на эти и еще множество вопросов, необходимо рассмотреть отдельно все элементы, использующиеся при решении методом Гаусса.

Матрицы, их свойства

Никакого скрытого смысла в матрице нет. Это просто удобный способ записи данных для последующих операций с ними. Бояться их не надо даже школьникам.

Матрица всегда прямоугольная, потому что так удобнее. Даже в методе Гаусса, где все сводится к построению матрицы треугольного вида, в записи фигурирует прямоугольник, только с нулями на том месте, где нет чисел. Нули можно не записывать, но они подразумеваются.

Матрица имеет размер. Ее "ширина" - число строк (m), "длина" - число столбцов (n). Тогда размер матрицы A (для их обозначения обычно используются заглавные латинские буквы) будет обозначаться как A m×n . Если m=n, то эта матрица квадратная, и m=n - ее порядок. Соответственно, любой элемент матрицы A можно обозначить через номер его строки и столбца: a xy ; x - номер строки, изменяется , y - номер столбца, изменяется .

В - это не основной момент решения. В принципе, все операции можно выполнять непосредственно с самими уравнениями, однако запись получится куда более громоздкая, и в ней будет гораздо легче запутаться.

Определитель

Еще у матрицы есть определитель. Это очень важная характеристика. Выяснять его смысл сейчас не стоит, можно просто показать, как он вычисляется, а потом рассказать, какие свойства матрицы он определяет. Наиболее простой способ нахождения определителя - через диагонали. В матрице проводятся воображаемые диагонали; элементы, находящиеся на каждой из них, перемножаются, а затем полученные произведения складываются: диагонали с наклоном вправо - со знаком "плюс", с наклоном влево - со знаком "минус".

Крайне важно отметить, что вычислять определитель можно только у квадратной матрицы. Для прямоугольной матрицы можно сделать следующее: из количества строк и количества столбцов выбрать наименьшее (пусть это будет k), а затем в матрице произвольным образом отметить k столбцов и k строк. Элементы, находящиеся на пересечении выбранных столбцов и строк, составят новую квадратную матрицу. Если определитель такой матрицы будет числом, отличным от нуля, то назовется базисным минором первоначальной прямоугольной матрицы.

Перед тем как приступить к решению системы уравнений методом Гаусса, не мешает посчитать определитель. Если он окажется нулевым, то сразу можно говорить, что у матрицы количество решений либо бесконечно, либо их вообще нет. В таком печальном случае надо идти дальше и узнавать про ранг матрицы.

Классификация систем

Существует такое понятие, как ранг матрицы. Это максимальный порядок ее определителя, отличного от нуля (если вспомнить про базисный минор, можно сказать, что ранг матрицы - порядок базисного минора).

По тому, как обстоят дела с рангом, СЛАУ можно разделить на:

  • Совместные. У совместных систем ранг основной матрицы (состоящей только из коэффициентов) совпадает с рангом расширенной (со столбцом свободных членов). Такие системы имеют решение, но необязательно одно, поэтому дополнительно совместные системы делят на:
  • - определенные - имеющие единственное решение. В определенных системах равны ранг матрицы и количество неизвестных (или число столбцов, что есть одно и то же);
  • - неопределенные - с бесконечным количеством решений. Ранг матриц у таких систем меньше количества неизвестных.
  • Несовместные. У таких систем ранги основной и расширенной матриц не совпадают. Несовместные системы решения не имеют.

Метод Гаусса хорош тем, что позволяет в ходе решения получить либо однозначное доказательство несовместности системы (без вычисления определителей больших матриц), либо решение в общем виде для системы с бесконечным числом решений.

Элементарные преобразования

До того как приступить непосредственно к решению системы, можно сделать ее менее громоздкой и более удобной для вычислений. Это достигается за счет элементарных преобразований - таких, что их выполнение никак не меняет конечный ответ. Следует отметить, что некоторые из приведенных элементарных преобразований действительны только для матриц, исходниками которых послужили именно СЛАУ. Вот список этих преобразований:

  1. Перестановка строк. Очевидно, что если в записи системы поменять порядок уравнений, то на решение это никак не повлияет. Следовательно, в матрице этой системы также можно менять местами строки, не забывая, конечно, про столбец свободных членов.
  2. Умножение всех элементов строки на некоторый коэффициент. Очень полезно! С помощью него можно сократить большие числа в матрице или убрать нули. Множество решений, как обычно, не изменится, а выполнять дальнейшие операции станет удобнее. Главное, чтобы коэффициент не был равен нулю.
  3. Удаление строк с пропорциональными коэффициентами. Это отчасти следует из предыдущего пункта. Если две или более строки в матрице имеют пропорциональные коэффициенты, то при умножении/делении одной из строк на коэффициент пропорциональности получаются две (или, опять же, более) абсолютно одинаковые строки, и можно убрать лишние, оставив только одну.
  4. Удаление нулевой строки. Если в ходе преобразований где-то получилась строка, в которой все элементы, включая свободный член, - ноль, то такую строку можно назвать нулевой и выкинуть из матрицы.
  5. Прибавление к элементам одной строки элементов другой (по соответствующим столбцам), умноженных на некоторый коэффициент. Самое неочевидное и самое важное преобразование из всех. На нем стоит остановиться поподробнее.

Прибавление строки, умноженной на коэффициент

Для простоты понимания стоит разобрать этот процесс по шагам. Берутся две строки из матрицы:

a 11 a 12 ... a 1n | b1

a 21 a 22 ... a 2n | b 2

Допустим, необходимо ко второй прибавить первую, умноженную на коэффициент "-2".

a" 21 = a 21 + -2×a 11

a" 22 = a 22 + -2×a 12

a" 2n = a 2n + -2×a 1n

Затем в матрице вторая строка заменяется на новую, а первая остается без изменений.

a 11 a 12 ... a 1n | b1

a" 21 a" 22 ... a" 2n | b 2

Необходимо заметить, что коэффициент умножения можно подобрать таким образом, чтобы в результате сложения двух строк один из элементов новой строки был равен нулю. Следовательно, можно получить уравнение в системе, где на одну неизвестную будет меньше. А если получить два таких уравнения, то операцию можно проделать еще раз и получить уравнение, которое будет содержать уже на две неизвестных меньше. А если каждый раз превращать в ноль один коэффициент у всех строк, что стоят ниже исходной, то можно, как по ступенькам, спуститься до самого низа матрицы и получить уравнение с одной неизвестной. Это и называется решить систему методом Гаусса.

В общем виде

Пусть существует система. Она имеет m уравнений и n корней-неизвестных. Записать ее можно следующим образом:

Из коэффициентов системы составляется основная матрица. В расширенную матрицу добавляется столбец свободных членов и для удобства отделяется чертой.

  • первая строка матрицы умножается на коэффициент k = (-a 21 /a 11);
  • первая измененная строка и вторая строка матрицы складываются;
  • вместо второй строки в матрицу вставляется результат сложения из предыдущего пункта;
  • теперь первый коэффициент в новой второй строке равен a 11 × (-a 21 /a 11) + a 21 = -a 21 + a 21 = 0.

Теперь выполняется та же серия преобразований, только участвуют первая и третья строки. Соответственно, в каждом шаге алгоритма элемент a 21 заменяется на a 31 . Потом все повторяется для a 41 , ... a m1 . В итоге получается матрица, где в строках первый элемент равен нулю. Теперь нужно забыть о строке номер один и выполнить тот же алгоритм, начиная со второй строки:

  • коэффициент k = (-a 32 /a 22);
  • с "текущей" строкой складывается вторая измененная строка;
  • результат сложения подставляется в третью, четвертую и так далее строки, а первая и вторая остаются неизменными;
  • в строках матрицы уже два первых элемента равны нулю.

Алгоритм надо повторять, пока не появится коэффициент k = (-a m,m-1 /a mm). Это значит, что в последний раз алгоритм выполнялся только для нижнего уравнения. Теперь матрица похожа на треугольник, или имеет ступенчатую форму. В нижней строчке имеется равенство a mn × x n = b m . Коэффициент и свободный член известны, и корень выражается через них: x n = b m /a mn . Полученный корень подставляется в верхнюю строку, чтобы найти x n-1 = (b m-1 - a m-1,n ×(b m /a mn))÷a m-1,n-1 . И так далее по аналогии: в каждой следующей строке находится новый корень, и, добравшись до "верха" системы, можно отыскать множество решений . Оно будет единственным.

Когда нет решений

Если в одной из матричных строк все элементы, кроме свободного члена, равны нулю, то уравнение, соответствующее этой строке, выглядит как 0 = b. Оно не имеет решения. И поскольку такое уравнение заключено в систему, то и множество решений всей системы - пустое, то есть она является вырожденной.

Когда решений бесконечное количество

Может получиться так, что в приведенной треугольной матрице нет строк с одним элементом-коэффициентом уравнения, и одним - свободным членом. Есть только такие строки, которые при переписывании имели бы вид уравнения с двумя или более переменными. Значит, у системы имеется бесконечное число решений. В таком случае ответ можно дать в виде общего решения. Как это сделать?

Все переменные в матрице делятся на базисные и свободные. Базисные - это те, которые стоят "с краю" строк в ступенчатой матрице. Остальные - свободные. В общем решении базисные переменные записываются через свободные.

Для удобства матрица сначала переписывается обратно в систему уравнений. Потом в последнем из них, там, где точно осталась только одна базисная переменная, она остается с одной стороны, а все остальное переносится в другую. Так делается для каждого уравнения с одной базисной переменной. Потом в остальные уравнения, там, где это возможно, вместо базисной переменной подставляется полученное для нее выражение. Если в результате опять появилось выражение, содержащее только одну базисную переменную, она оттуда опять выражается, и так далее, пока каждая базисная переменная не будет записана в виде выражения со свободными переменными. Это и есть общее решение СЛАУ.

Можно также найти базисное решение системы - дать свободным переменным любые значения, а потом для этого конкретного случая посчитать значения базисных переменных. Частных решений можно привести бесконечно много.

Решение на конкретных примерах

Вот система уравнений.

Для удобства лучше сразу составить ее матрицу

Известно, что при решении методом Гаусса уравнение, соответствующее первой строке, в конце преобразований останется неизменным. Поэтому выгодней будет, если левый верхний элемент матрицы будет наименьшим - тогда первые элементы остальных строк после операций обратятся в ноль. Значит, в составленной матрице выгодно будет на место первой строки поставить вторую.

вторая строка: k = (-a 21 /a 11) = (-3/1) = -3

a" 21 = a 21 + k×a 11 = 3 + (-3)×1 = 0

a" 22 = a 22 + k×a 12 = -1 + (-3)×2 = -7

a" 23 = a 23 + k×a 13 = 1 + (-3)×4 = -11

b" 2 = b 2 + k×b 1 = 12 + (-3)×12 = -24

третья строка: k = (-a 3 1 /a 11) = (-5/1) = -5

a" 3 1 = a 3 1 + k×a 11 = 5 + (-5)×1 = 0

a" 3 2 = a 3 2 + k×a 12 = 1 + (-5)×2 = -9

a" 3 3 = a 33 + k×a 13 = 2 + (-5)×4 = -18

b" 3 = b 3 + k×b 1 = 3 + (-5)×12 = -57

Теперь, чтобы не запутаться, необходимо записать матрицу с промежуточными результатами преобразований.

Очевидно, что такую матрицу можно сделать более удобной для восприятия с помощью некоторых операций. Например, из второй строки можно убрать все "минусы", умножая каждый элемент на "-1".

Стоит также заметить, что в третьей строке все элементы кратны трем. Тогда можно сократить строку на это число, умножая каждый элемент на "-1/3" (минус - заодно, чтобы убрать отрицательные значения).

Выглядит гораздо приятнее. Теперь надо оставить в покое первую строку и поработать со второй и третьей. Задача - прибавить к третьей строке вторую, умноженную на такой коэффициент, чтобы элемент a 32 стал равен нулю.

k = (-a 32 /a 22) = (-3/7) = -3/7 (если в ходе некоторых преобразований в ответе получилось не целое число, рекомендуется для соблюдения точности вычислений оставить его "как есть", в виде обыкновенной дроби, а уже потом, когда получены ответы, решать, стоит ли округлять и переводить в другую форму записи)

a" 32 = a 32 + k×a 22 = 3 + (-3/7)×7 = 3 + (-3) = 0

a" 33 = a 33 + k×a 23 = 6 + (-3/7)×11 = -9/7

b" 3 = b 3 + k×b 2 = 19 + (-3/7)×24 = -61/7

Снова записывается матрица с новыми значениями.

1 2 4 12
0 7 11 24
0 0 -9/7 -61/7

Как видно, полученная матрица уже имеет ступенчатый вид. Поэтому дальнейшие преобразования системы по методу Гаусса не требуются. Что здесь можно сделать, так это убрать из третьей строки общий коэффициент "-1/7".

Теперь все красиво. Дело за малым - записать матрицу опять в виде системы уравнений и вычислить корни

x + 2y + 4z = 12 (1)

7y + 11z = 24 (2)

Тот алгоритм, по которому сейчас будут находиться корни, называется обратным ходом в методе Гаусса. В уравнении (3) содержится значение z:

y = (24 - 11×(61/9))/7 = -65/9

И первое уравнение позволяет найти x:

x = (12 - 4z - 2y)/1 = 12 - 4×(61/9) - 2×(-65/9) = -6/9 = -2/3

Такую систему мы имеем право назвать совместной, да еще и определенной, то есть имеющей единственное решение. Ответ записывается в следующей форме:

x 1 = -2/3, y = -65/9, z = 61/9.

Пример неопределенной системы

Вариант решения определенной системы методом Гаусса разобран, теперь необходимо рассмотреть случай, если система неопределенная, то есть для нее можно найти бесконечно много решений.

х 1 + х 2 + х 3 + х 4 + х 5 = 7 (1)

3х 1 + 2х 2 + х 3 + х 4 - 3х 5 = -2 (2)

х 2 + 2х 3 + 2х 4 + 6х 5 = 23 (3)

5х 1 + 4х 2 + 3х 3 + 3х 4 - х 5 = 12 (4)

Сам вид системы уже настораживает, потому что количество неизвестных n = 5, а ранг матрицы системы уже точно меньше этого числа, потому что количество строк m = 4, то есть наибольший порядок определителя-квадрата - 4. Значит, решений существует бесконечное множество, и надо искать его общий вид. Метод Гаусса для линейных уравнений позволяет это сделать.

Сначала, как обычно, составляется расширенная матрица.

Вторая строка: коэффициент k = (-a 21 /a 11) = -3. В третьей строке первый элемент - еще до преобразований, поэтому не надо ничего трогать, надо оставить как есть. Четвертая строка: k = (-а 4 1 /а 11) = -5

Умножив элементы первой строки на каждый их коэффициентов по очереди и сложив их с нужными строками, получаем матрицу следующего вида:

Как можно видеть, вторая, третья и четвертая строки состоят из элементов, пропорциональных друг другу. Вторая и четвертая вообще одинаковые, поэтому одну из них можно убрать сразу, а оставшуюся умножить на коэффициент "-1" и получить строку номер 3. И опять из двух одинаковых строк оставить одну.

Получилась такая матрица. Пока еще не записана система, нужно здесь определить базисные переменные - стоящие при коэффициентах a 11 = 1 и a 22 = 1, и свободные - все остальные.

Во втором уравнении есть только одна базисная переменная - x 2 . Значит, ее можно выразить оттуда, записав через переменные x 3 , x 4 , x 5 , являющиеся свободными.

Подставляем полученное выражение в первое уравнение.

Получилось уравнение, в котором единственная базисная переменная - x 1 . Проделаем с ней то же, что и с x 2 .

Все базисные переменные, которых две, выражены через три свободные, теперь можно записывать ответ в общем виде.

Также можно указать одно из частных решений системы. Для таких случаев в качестве значений для свободных переменных выбирают, как правило, нули. Тогда ответом будет:

16, 23, 0, 0, 0.

Пример несовместной системы

Решение несовместных систем уравнений методом Гаусса - самое быстрое. Оно заканчивается сразу же, как только на одном из этапов получается уравнение, не имеющее решения. То есть этап с вычислением корней, достаточно долгий и муторный, отпадает. Рассматривается следующая система:

x + y - z = 0 (1)

2x - y - z = -2 (2)

4x + y - 3z = 5 (3)

Как обычно, составляется матрица:

1 1 -1 0
2 -1 -1 -2
4 1 -3 5

И приводится к ступенчатому виду:

k 1 = -2k 2 = -4

1 1 -1 0
0 -3 1 -2
0 0 0 7

После первого же преобразования в третьей строке содержится уравнение вида

не имеющее решения. Следовательно, система несовместна, и ответом будет пустое множество.

Преимущества и недостатки метода

Если выбирать, каким методом решать СЛАУ на бумаге ручкой, то метод, который был рассмотрен в этой статье, выглядит наиболее привлекательно. В элементарных преобразованиях гораздо труднее запутаться, чем в том случается, если приходится искать вручную определитель или какую-нибудь хитрую обратную матрицу. Однако, если использовать программы для работы с данными такого типа, например, электронные таблицы, то оказывается, что в таких программах уже заложены алгоритмы вычисления основных параметров матриц - определитель, миноры, обратная и и так далее. А если быть уверенным в том, что машина посчитает эти значения сама и не ошибется, целесообразней использовать уже матричный метод или формул Крамера, потому что их применение начинается и заканчивается вычислением определителей и обратными матрицами.

Применение

Поскольку решение методом Гаусса представляет из себя алгоритм, а матрица - это, фактически, двумерный массив, его можно использовать при программировании. Но поскольку статья позиционирует себя, как руководство "для чайников", следует сказать, что самое простое, куда метод можно запихнуть - это электронные таблицы, например, Excel. Опять же, всякие СЛАУ, занесенные в таблицу в виде матрицы, Excel будет рассматривать как двумерный массив. А для операций с ними существует множество приятных команд: сложение (складывать можно только матрицы одинаковых размеров!), умножение на число, перемножение матриц (также с определенными ограничениями), нахождение обратной и транспонированной матриц и, самое главное, вычисление определителя. Если это трудоемкое занятие заменить одной командой, можно гораздо быстрее определять ранг матрицы и, следовательно, устанавливать ее совместность или несовместность.



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация