Потенциальная энергия тела, поднятого над землей. Работа силы тяжести. Консервативные силы

Главная / Общество

Сила тяжести равна F = mg и направлена по вертикали вниз. Вблизи поверхности Земли ее можно считать постоянной.

При движении тела по вертикали вниз сила тяжести совпадает по направлению с перемещением. При переходе с высоты h1 над каким-то уровнем, от которого мы начинаем отсчет высоты, до высоты h2 над тем же уровнем (рис. 192), тело совершает перемещение, по абсолютной величине равное h1 - h2.

Так как направления перемещения и силы совпадают, то работа силы тяжести положительна и равна:

Высоты h1 и h2 не обязательно отсчитывать от поверхности Земли. Для начала отсчета высот можно выбрать любой уровень. Это может быть пол комнаты, стол или стул, это может быть и дно ямы, вырытой в земле, и т. д. Ведь в формулу для работы входит разность высот, а она не зависит от того, откуда начинать их отсчет. Мы могли бы, например, условиться начинать отсчет высоты с уровня В (см. рис. 192). Тогда высота этого уровня была бы равна нулю, а работа выражалась бы равенством

где h - высота точки A над уровнем В.

Если тело движется вертикально вверх, то сила тяжести направлена против движения тела и ее работа отрицательна. При подъеме тела на высоту h над тем уровнем, с которого оно брошено, сила тяжести совершает работу, равную

Если после подъема вверх тело возвращается в исходную течку, то работа на таком пути, начинающемся и кончающемся в одной и той же точке (на замкнутом пути), на пути «туда и обратно», равна нулю. Это одна из особенностей силы тяжести: работа силы тяжести на замкнутом пути равна нулю.

Теперь выясним, какую работу совершает сила тяжести в случае, когда тело движется не по вертикали.

В качестве примера рассмотрим движение тела по наклонной плоскости (рис. 193).

Допустим, что тело массой m по наклонной плоскости высотой h совершает перемещение s, по абсолютной величине равное длине наклонной плоскости. Работу силы тяжести mg в этом случае надо вычислять по формуле

Но из рисунка видно, что

Мы получили для работы то же самое значение.

Выходит, что работа силы тяжести не зависит от того, движется ли тело по вертикали или проходит более длинный путь по наклонной плоскости. При одной и той же «потере высоты» работа силы тяжести одинакова (рис. 194).

Это справедливо не только при движении по наклонной плоскости, но и по любому другому пути. В самом деле, допустим, что тело движется по какому-то произвольному пути, например по такому, какой изображен на рисунке 195.

Весь этот путь мы можем мысленно разбить на ряд малых участков: AA1, A2A1, A2A3 и т. д. Каждый из них может считаться маленькой наклонной плоскостью, а все движение тела на пути АВ можно представить как движение по множеству наклонных плоскостей, переходящих одна в другую. Работа силы тяжести на каждой такой наклонной плоскости равна произведению mg на изменение высоты тела на ней. Если изменения высот на отдельных участках равны h1, h2, h3 и т. д., то работы силы тяжести на них равны mgh1, mgh2, mgh3 и т. д. Тогда полную работу на всем пути можно найти, сложив все эти работы:


Следовательно,

Таким образом, работа силы тяжести не зависит от траектории движения тела и всегда равна произведению силы тяжести на разность высот в исходном и конечном положениях. При движении вниз работа положительна, при движении вверх - отрицательна.

Почему же в технике и быту при подъеме грузов часто пользуются наклонной плоскостью? Ведь работа перемещения груза по наклонной плоскости такая же, как и при движении по вертикали!

Это объясняется тем, что при равномерном движении груза по наклонной плоскости сила, которая должна быть приложена к грузу в направлении перемещения, меньше силы тяжести. Правда, груз при этом проходит больший путь. Больший путь - это плата за то, что по наклонной плоскости груз можно поднимать с помощью меньшей силы.

Работа, энергия, мощность

Силы служат причиной либо ускорения тела (динамическое действие), либо изменения его формы (статическое действие).

Если сила перемещает тело на некоторое расстояние, то она совершает над телом работу.

Работа = Сила х Перемещение.

При F = const (в случае постоянной силы в процессе перемещения) A = F s, в случае переменной силы – интеграл от силы по перемещению A = .

Мощность – отношение произведенной работы на время, в течение которой она произведена:

Мощность = Работа / Время.

Мгновенная мощность – производная работы по времени: Р = dA /dt . Поскольку dA = Fds (сила на перемещение), то Р = Fds /dt = Fv . Мгновенная мощность равна произведению мгновенной силы на мгновенную скорость.

Энергия – способность тела совершать работу, единая мера различных форм движения. Количественные характеристики зависят от вида энергии (механическая, внутренняя, химическая, ядерная, электромагнитная и др.).

Два способа передачи движения и соответствующей ему энергии от одного тела к другому – в форме работы и в форме теплоты (путем теплообмена). Для микрочастиц (атомы, электроны) эти понятия неприменимы.

Если тело движется в направлении действия силы тяжести, то над телом совершается работа A = G h или A т = mg h .

Чтобы поднять тело (увеличить расстояние от центра Земли), над ним следует совершить работу. Работа, совершаемая силой F при движении против силы тяжести (подъеме тела) на высоту h не зависит от пути – зависит только от того, насколько тело может опуститься до заданного уровня. Эта работа запасается в виде потенциальной энергии тела (энергии положения) A =W п = mgh , равной работе, затраченной на подъем тела.

Это не полная потенциальная энергия – только приращение энергии при подъеме тела на высоту (начало отсчета выбирается произвольно). С учетом изменения гравитационного поля по высоте W п = m .

Потенциальной энергией называется энергия, зависящая только от взаимного расположения материальных точек (или тел).

Силы, действующие на материальную точку (тело), называются потенциальными, если работа этих сил при перемещении точки (тела) зависит только от начального и конечного положения точки (тела) в пространстве и не зависит от пути перемещения.

Во всех физических явлениях важна не сама потенциальная энергия, а ее изменение, которым определяется совершаемая работа. Уровень отсчета изменений заранее оговаривается.

Потенциальная энергия включает энергию положения и энергию упругой деформации.



Потенциальной энергией может обладать не только система взаимодействующих сил, но и отдельно взятое упруго деформируемое тело (сжатая пружина, растянутый стержень). В этом случае потенциальная энергия зависит от взаимного расположения отдельных частей тела (витков пружины).

Кинетическая энергия тела является мерой его механического движения и измеряется той работой, которую может совершить тело при торможении до полной остановки.

Из состояния покоя изменение скорости и пути к моменту t: V=at, S=Vt/2=at 2 /2.

При торможении на тело действует сила, направленная против его движения. До полной остановки тело под действием силы F совершит работу А : А = Fs = F v 2 /2a = mv 2 /2.

Кинетическая энергия тела К = mv 2 /2


При подъеме на высоту накопилась потенциальная энергия W п, при падении с этой высоты эта потенциальная энергия превратилась в кинетическую W к. W п = W к = mgh = mv 2 /2 .

Пример : определение скорости с помощью маятника-груза.

1. Формулировка содержательной модели

Определить скорость пули. Задача решается с помощью маятника-груза, подвешенного на легком жестком и свободно вращающемся стержне. Исходные данные – в соответствии с рисунком.

2. Формулировка концептуальной модели

Пуля, застрявшая в грузе, сообщит системе "пуля-груз" свою кинетическую энергию, которая в момент наибольшего отклонения стержня от вертикали полностью перейдет в потенциальную энергию системы. В основе решения задачи – закон сохранения энергии. Не учитываются потери энергии на разогрев пули и груза, на преодоление сопротивления воздуха, разгон стержня и т.д.

3. Разработка математической модели.

Эта трансформация описывается цепочкой равенств, из которых определяется искомая скорость v .

(M + m)V 2 /2 = (M + m) gl (1 – cosα).

4. Исследования модели и решение задачи.

Процессы, происходящие при проникновении пули в груз, уже не являются чисто механическими. Примененный закон дает только нижнюю границу оценки – сохраняется полная, а не механическая энергия системы – для правильного решения задачи надо воспользоваться законом сохранения импульса.

Полезно ознакомиться в отдельности с работой каждой из механических сил, с которыми мы ознакомились в пятой главе: силы тяжести, силы упругости и силы трения. Начнем с силы тяжести. Сила тяжести равна и направлена по вертикали вниз. Вблизи поверхности Земли ее можно считать постоянной. При движении тела по вертикали вниз сила тяжести совпадает по направлению с перемещением. При переходе с высоты над каким-то уровнем, от которого мы начинаем отсчет высоты, до высоты над тем же уровнем (рис. 192), тело совершает перемещение, по абсолютной величине равное Так как направления перемещения и силы совпадают, то работа силы тяжести положительна и равна:

Высоты не обязательно отсчитывать от поверхности Земли. Для начала отсчета высот можно выбрать любой уровень. Это может быть пол комнаты, стол или стул, это может быть и дно ямы, вырытой в земле, и т. д. Ведь в формулу для работы входит разность высот, а она не зависит от того, откуда начинать их отсчет. Мы могли бы, например, условиться начинать отсчет высоты с уровня В (см. рис. 192). Тогда высота этого уровня была бы равна нулю, а работа выражалась бы равенством

где - высота точки над уровнем В.

Если тело движется вертикально вверх, то сила тяжести направлена против движения тела и ее работа отрицательна. При подъеме тела на высоту над тем уровнем, с которого оно брошено, сила тяжести совершает работу, равную

Если после подъема вверх тело возвращается в исходную течку, то работа на таком пути, начинающемся и кончающемся в одной и той же точке (на замкнутом пути), на пути «туда и обратно», равна нулю. Это одна из особенностей силы тяжести: работа силы тяжести на замкнутом пути равна нулю.

Теперь выясним, какую работу совершает сила тяжести в случае, когда тело движется не по вертикали.

В качестве примера рассмотрим движение тела по наклонной плоскости (рис. 193). Допустим, что тело массой по наклонной плоскости высотой совершает перемещение по абсолютной величине равное длине наклонной плоскости. Работу силы тяжести в этом случае надо вычислять по формуле . Но из рисунка видно, что

Мы получили для работы то же самое значение.

Выходит, что работа силы тяжести не зависит от того, движется ли тело по вертикали или

проходит более длинный путь по наклонной плоскости. При одной и той же «потере высоты» работа силы тяжести одинакова (рис. 194).

Это справедливо не только при движении по наклонной плоскости, но и по любому другому пути. В самом деле, допустим, что тело движется по какому-то произвольному пути, например по такому, какой изображен на рисунке 195. Весь этот путь мы можем мысленно разбить на ряд малых участков: Каждый из них может считаться маленькой наклонной плоскостью, а все движение тела на пути можно представить как движение по множеству наклонных плоскостей, переходящих одна в другую. Работа силы тяжести на каждой такой наклонной плоскости равна произведению на изменение высоты тела на ней. Если изменения высот на отдельных участках равны то работы силы тяжести на них равны и т. д. Тогда полную работу на всем пути можно найти, сложив все эти работы:

Следовательно,

Таким образом, работа силы тяжести не зависит от траектории движения тела и всегда равна произведению силы тяжести на разность высот в исходном и конечном положениях. При движении вниз работа положительна, при движении вверх - отрицательна»

Почему же в технике и быту при подъеме грузов часто пользуются наклонной

плоскостью? Ведь работа перемещения груза по наклонной плоскости такая же, как и при движении по вертикали!

Это объясняется тем, что при равномерном движении груза по наклонной плоскости сила, которая должна быть приложена к грузу в направлении перемещения, меньше силы тяжести. Правда, груз при этом проходит больший путь. Больший путь - это плата а то, что по наклонной плоскости груз можно поднимать с помощью меньшей силы.

Задача, Шарик массой скатывается по рельсам, образующим круговую петлю радиусом (рис. 196). Какую работу совершает сила тяжести к моменту, когда шарик достигает высшей точки петли С, если в начальный момент он находится на высоте Н над нижней точкой петли?

Решение. Работа силы тяжести равна произведению ее значения на разность высот начального и конечного положений шарика. Начальная высота равна Н, а конечная, как это видно из рисунка, равна . Следовательно,

Упражнение 49

1. Зависит ли работа силы тяжести от длины траектории тела, на которое она действует? От массы тела?

2. Чему равна работа силы тяжести, если движущееся тело, на которое она действует, пройдя некоторую траекторию, вернулось к исходной точке?

3. Тело брошено под некоторым углом к горизонту. Описав параболу, тело упало на землю. Чему равна работа силы тяжести, если начальная и конечная точки траектории лежат на одной горизонтали?

4. Какая сила совершает работу при движении тела без трения по наклонной плоскости? Зависит ли эта работа от длины наклонной плоскости?

5. Камень массой брошен так, что он описал траекторию, показанную на рисунке 197, а. Какова работа силы тяжести при таком движении камня? Сравните ее с работой при движении того же камня по траекториям, изображенным на рисунках 197, б и в.

6. Какую работу совершает человек массой 75 кг, когда он поднимается по лестнице с первого этажа до пятого, если высота каждого этажа равна (Движение человека считать равномерным)

7. Тело массой 2 кг брошено вертикально вверх и поднялось на высоту 10 м. Качая по величине и по знаку работа совершена силой тяжести?

8. Лыжник спускается с горы высотой 60 м. Тотчас после спуска он оказывается на склоне соседней горы и поднимается по ней на высоту 40 м (рис. 198), Какую по величине и по знаку работу совершает сила тяжести при этом движении лыжника? Масса лыжника равна 80 кг.

9. Маятник совершает одно полное колебание. Какова работа силы тяжести при этом движении маятника?

Работа силы тяжести. Силу тяжести Р материальной точки массой т вблизи поверхности Земли можно считать постоянной, равной mg

направленной по вертикали вниз.

Работа А силы Р на перемещении от точки М 0 до точки М

где h = z 0 - z x - высота опускания точки.

Работа силы тяжести равна произведению этой силы на высоту опус­кания (работа положительна) или высоту подъема (работа отрицатель­на). Работа силы тяжести не зависит от формы траектории между точками М 0 и М|, и если эти точки совпадают, то ра­бота силы тяжести равна нулю (случай замкнутого пути). Она равна нулю также, если точки М 0 и М лежат в одной и той же горизонтальной плос­кости.

Работа линейной силы упругости. Линейной силой упругости (или линейной восстанавливающей силой) называют силу, действую­щую по закону Гука (рис. 63):

F = - с r ,

где r - расстояние от точки статического равновесия, где сила равна нулю, до рассматриваемой точки М; с - постоянный коэффициент- коэффициент жесткости.

А=--().

По этой формуле и вычисляют работу линейной силы упругости. Если точка М 0 совпадает сточкой статического равновесия О, то тогда r 0 =0 и для работы силы на перемещении от точки О до точки М имеем

Величина r - кратчайшее расстояние между рассматриваемой точ­кой и точкой статического равновесия. Обозначим его λ и назовем де­формацией. Тогда

Работа линейной силы упругости на перемещении из состояния ста­тического равновесия всегда отрицательна и равна половине произве­дения коэффициента жесткости на квадрат деформации. Работа линейной силы упругости не зависит от формы перемещения и работа по любому замкнутому перемещению равна нулю. Она также равна нулю, если точки Мо и М лежат на одной сфере, описанной из точки статического равновесия.

    Работа переменной силы при криволинейном движении.

Работа силы на криволинейном участке

Рассмотрим общий случай нахождения работы переменной силы, точка приложения которой движется по криволинейной траектории. Пусть точка М приложения переменной силы F движется по произвольной непрерывной кривой. Обозначим через вектор бесконечно малого перемещения точки М. Этот вектор направлен по касательной к кривой в ту же сторону, что и вектор скорости.

Элементарной работой переменной силы F на бесконечно малом перемещении

ds называется скалярное произведение векторов F и ds :

где а - угол между векторами F и ds

То есть элементарная работа силы равна произведению модулей векторов силы и бесконечно малого перемещения, умноженному на косинус угла между этими векторами.

Разложим вектор силы F на две составляющие: - направленную по касательной к траектории - и - направленную по нормали. Линия действия силы

перпендикулярна касательной к траектории, по которой движется точка, и ее работа равна нулю. Тогда:

dA = F t ds .

Для того, чтобы вычислить работу переменной силы F на конечном участке кривой от а до Ь, следует вычислить интеграл от элементарной работы:

    Потенциальная и кинетическая энергии.

Потенциальной энергией П мат ериальной точки в рассматривае мой точке силового поля М называют работу , которую совершают силы по ля, действующие на материальную точку при перемещении ее из точки M в начальную точку M 0 , т. е.

П = Амм 0

П = =-U =- U

Постоянная С 0 одна и та же для всех точек поля, зависящая от того, какая точка поля выбрана за начальную. Очевидно, что потенциаль­ную энергию можно ввести только для потенциального силового поля, в котором работа не зависит от формы перемещения между точками М и М 0 . Непотенциальное силовое поле не имеет потенциальной энер­гии, для него не существует и силовой функции.

dA = dU = -dП; А = U - U 0 = П 0 - П

Из приведенных формул следует, что П определяется с точностью до произвольной постоянной, которая зависит от выбора начальной точки, но эта произвольная постоян­ная не влияет на вычисляемые через потенциальную энергию силы и рабо­ту этих сил. Учитывая это:

П = - U + const или П = - U .

Потенциальную энергию в какой- либо точке поля с точностью до произвольной постоянной можно оп­ределить как значение силовой функ­ции в этой же точке, взятое со зна­ком минус.

Кинетической энергией системы называется скалярная величина Т, равная сумме кинетических энергий всех точек системы:

Кинетическая энергия является характеристикой и поступатель­ного, и вращательного движений системы. Кинетическая энергия является величиной скалярной и притом су­щественно положительной. Поэтому она не зависит от направлений движения частей системы и не характеризует изменений этих на­правлений.

Отметим еще следующее важное обстоятельство. Внутренние силы действуют на части системы по взаимно противоположным на­правлениям. На изменения кинетической энергии влияет действие и внешних и внутренних сил

    Равнопеременное движение точки.

Равнопеременное движение точки - движение, при к-ром касат. ускорение ω т точки (в случае прямолинейного движения полное ускорение ω )постоянно. Закон равнопеременного движения точки и закон изменения её скорости υ при этом движении даются равенствами:

где s - измеренное вдоль дуги траектории расстояние точки от выбранного на траектории начала отсчёта, t - время, s 0 - значение s в нач. момент времени t = = 0. - нач. скорость точки. Когда знакиυ и ω одинаковы, равнопеременное движение. является ускоренным, а когда разные - замедленным.

При поступат. равнопеременном движении твёрдого тела всё сказанное относится к каждой точке тела; при равномерном вращении вокруг неподвижной оси угл. ускорение e тела постоянно, а закон вращения и закон изменения угл. скорости ω тела даются равенствами

где φ - угол поворота тела, φ 0 - значение φ в нач. момент времени t = 0, ω 0 - нач. угл. скорость тела. Когда знаки ω и ε совпадают, вращение является ускоренным, а когда не совпадают - замедленным.

    Работа постоянной силы при прямолинейном движени.

Определим работу для случая, когда действующая сила постоянна по величине и направлению, а точка ее приложения перемещается по прямолинейной траектории. Рассмотрим материальную точку С, к которой приложена постоянная по значению и направлению сила(рис. 134, а).

За некоторый промежуток времени t точка С переместилась в положение С1 по прямолинейной траектории на расстояние s.

Работа W постоянной силы при прямолинейном движении точки ее приложения равна произведению модуля силы F на рас­стояние s и на косинус угла между направлением силы и направле­нием перемещения, т. е.

Угол α между направлением силы и направлением движения может меняться в пределах от 0 до 180°. При α < 90° работа положительна, при α > 90° - отрицательна, при α = 90° работа равна нулю.

Если сила составляет с направлением движения острый угол, она называется движущей силой, работа силы всегда положительна. Если угол между направлениями силы и перемещения тупой, сила оказывает сопротивление движению, совершает отрицательную работу и носит название силы сопротивления. Примерами сил сопротивления могут служить силы резания, трения, сопротивле­ния воздуха и другие, которые всегда направлены в сторону, про­тивоположную движению.

Когда α = 0°, т. е. когда направление силы совпадает с направлением скорости, тогда W = F s, так как cos 0° = 1. Произведение F cos α есть проекция силы на направление движения материальной точки. Следовательно, работу силы можно определить как произведение перемещения s и проекции силына направление движения точки.

33. Силы инерции твердого тела

В классической механикепредставления осилахи их свойствах основываются назаконах Ньютонаи неразрывно связаны с понятиеминерциальная система отсчёта.

Действительно, физическая величина, называемая силой, вводится в рассмотрение вторым законом Ньютона, при этом сам закон формулируется только для инерциальных систем отсчёта. Соответственно, понятие силы первоначально оказывается определённым только для таких систем отсчёта.

Уравнение второго закона Ньютона, связывающее ускорениеимассуматериальной точкис действующей на неё силой, записывается в виде

Из уравнения непосредственно следует, что причиной ускорения тел являются только силы, и наоборот: действие на тело не скомпенсированных сил обязательно вызывает его ускорение.

Третий закон Ньютона дополняет и развивает сказанное о силах во втором законе.

    сила есть мера механического действия на данное материальное тело других тел

    в соответствии с третьим законом Ньютона силы способны существовать лишь попарно, при этом природа сил в каждой такой паре одинакова.

    любая сила, действующая на тело, имеет источник происхождения в виде другого тела. Иначе говоря, силы обязательно представляют собой результат взаимодействия тел.

Никакие другие силы в механике в рассмотрение не вводятся и не используются. Возможность существования сил, возникших самостоятельно, без взаимодействующих тел, механикой не допускается.

Хотя в наименованиях эйлеровых и даламберовых сил инерции содержится слово сила , эти физические величины силами в смысле, принятом в механике, не являются.

34. Понятие о плоскопараллельном движении твердого тела

Движение твердого тела называется плоскопараллельным, если все точки тела перемещаются в плоскостях, параллельных некоторой фиксированной плоскости (основной плоскости). Пусть некоторое тело V совершает плоское движение, π - основная плоскость. Из определенияплоскопараллельного движения и свойств абсолютно твердого тела следует, что любой отрезок прямой АВ, перпендикулярный плоскости π, будет совершать поступательное движение. То есть траектории, скорости и ускорения всех точек отрезка АВ будут одинаковы. Таким образом, движение каждой точки сечения s параллельного плоскости π, определяет собой движение всех точек тела V, лежащих на отрезке перпендикулярном сечению в данной точке. Примерами плоскопараллельного движения являются: качение колеса по прямолинейному отрезку, так как все его точки перемещаются в плоскостях, параллельных плоскости, перпендикулярной оси колеса; частным случаем такого движения являетсявращение твердого тела вокруг неподвижной оси, в самом деле, все точки вращающегося тела движутся в плоскостях параллельных некоторой перпендикулярной оси вращения неподвижной плоскости.

35. Силы инерции при прямолинейном и криволинейном движении материальной точки

Сила, с которой точка сопротивляется изменению движения, называется силой инерции материальной точки. Сила инерции направлена противоположно ускорению точки и равна массе, умно­женной на ускорение.

При прямолинейном движении направление ускорения совпадает с траекторией. Сила инерции направлена в сторону, противоположную ускорению, и численное значение ее определяется по формуле:

При ускоренном движении направления ускорения и скорости совпадают и сила инерции направлена в сторону, противоположную движению. При замедленном движении, когда ускорение направлено в сторону, обратную скорости, сила инерции действует по направлению движения.

При криволинейном и неравномерном движении ускорение может быть разложено на нормальную аn и касательную at составляющие. Аналогично сила инерции точки также складывается из двух составляющих: нормальной и касательной.

Нормальная составляющая силы инерции равна произведению массы точки на нормальное ускорение и направлена противоположно этому ускорению:

Касательная составляющая силы инерции равна произведению массы точки на касательное ускорение и направлена противоположно этому ускорению:

Очевидно, что полная сила инерции точки М равна геометрической сумме нормальной и касательной составляющих, т. е.

Учитывая, что касательная и нормальная составляющие взаимно перпендикулярны, полная сила инерции:

36. Теоремы о сложении скоростей и ускорений точки при сложном движении

Теорема о сложении скоростей:

В механикеабсолютная скоростьточки равнавекторнойсумме еёотносительнойипереноснойскоростей:

Скорость движения тела относительно неподвижной системы отсчёта равна векторной сумме скорости этого тела относительно подвижной системы отсчета и скорости (относительно неподвижной системы) той точки подвижной системы отсчета, в которой находится тело.

при сложном движении абсолютная скорость точки равна геометрической сумме переносной и относительной скоростей. Величина абсолютной скорости определяется где α – угол между векторами и.

Теорема о сложении ускорений (ТЕОРЕМА КОРИОЛИСА)

aкор = aпер + aот + aкор

Формула выражает следующую теорему Кориолиса о сложении уско-

рений:1 при сложном движении ускорение точки равно геометрической

сумме трех ускорений: относительного, переносного и поворотного, или

кориолисова.

aкор = 2(ω × vот)

37.Принцип Даламбера

принцип Даламбера для материальной точки: в каждый момент движения материальной точки активные силы, реакции связей и сила инерции образуют уравновешенную систему сил.

Д’Аламбера принцип - в механике: один из основных принципов динамики, согласно которому, если к заданнымсилам, действующим на точки механической системы, и реакциям наложенных связей присоединитьсилы инерции, то получится уравновешенная система сил.

Согласно данному принципу, для каждой i-той точки системы верно равенство

где - действующая на эту точку активная сила,- реакция наложенной на точку связи,- сила инерции, численно равная произведению массыточки на её ускорениеи направленная противоположно этому ускорению ().

Фактически, речь идёт о выполняемом отдельно для каждой из рассматриваемых материальных точек переносе слагаемого ma справа налево во втором законе Ньютона() и нареканию этого слагаемого Д’Аламберовой силой инерции.

Принцип Д’Аламбера позволяет применить к решению задач динамики более простые методы статики, поэтому им широко пользуются в инженерной практике, т. н. метод кинетостатики. Особенно удобно им пользоваться для определения реакций связей в случаях, когда закон происходящего движения известен или найден из решения соответствующих уравнений.


Готовые работы

ДИПЛОМНЫЕ РАБОТЫ

Многое уже позади и теперь ты - выпускник, если, конечно, вовремя напишешь дипломную работу. Но жизнь - такая штука, что только сейчас тебе становится понятно, что, перестав быть студентом, ты потеряешь все студенческие радости, многие из которых, ты так и не попробовал, всё откладывая и откладывая на потом. И теперь, вместо того, чтобы навёрстывать упущенное, ты корпишь над дипломной работой? Есть отличный выход: скачать нужную тебе дипломную работу с нашего сайта - и у тебя мигом появится масса свободного времени!
Дипломные работы успешно защищены в ведущих Университетах РК.
Стоимость работы от 20 000 тенге

КУРСОВЫЕ РАБОТЫ

Курсовой проект - это первая серьезная практическая работа. Именно с написания курсовой начинается подготовка к разработке дипломных проектов. Если студент научиться правильно излагать содержание темы в курсовом проекте и грамотно его оформлять, то в последующем у него не возникнет проблем ни с написанием отчетов, ни с составлением дипломных работ, ни с выполнением других практических заданий. Чтобы оказать помощь студентам в написании этого типа студенческой работы и разъяснить возникающие по ходу ее составления вопросы, собственно говоря, и был создан данный информационный раздел.
Стоимость работы от 2 500 тенге

МАГИСТЕРСКИЕ ДИССЕРТАЦИИ

В настоящее время в высших учебных заведениях Казахстана и стран СНГ очень распространена ступень высшего профессионального образования, которая следует после бакалавриата - магистратура. В магистратуре обучаются с целью получения диплома магистра, признаваемого в большинстве стран мира больше, чем диплом бакалавра, а также признаётся зарубежными работодателями. Итогом обучения в магистратуре является защита магистерской диссертации.
Мы предоставим Вам актуальный аналитический и текстовый материал, в стоимость включены 2 научные статьи и автореферат.
Стоимость работы от 35 000 тенге

ОТЧЕТЫ ПО ПРАКТИКЕ

После прохождения любого типа студенческой практики (учебной, производственной, преддипломной) требуется составить отчёт. Этот документ будет подтверждением практической работы студента и основой формирования оценки за практику. Обычно, чтобы составить отчёт по практике, требуется собрать и проанализировать информацию о предприятии, рассмотреть структуру и распорядок работы организации, в которой проходится практика, составить календарный план и описать свою практическую деятельность.
Мы поможет написать отчёт о прохождении практики с учетом специфики деятельности конкретного предприятия.



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация