На события вероятность которых в. Решение примера. Вероятность суммы событий. Каталог формул по теории вероятности онлайн

Главная / Общество

Необходимость в действиях над вероятностями наступает тогда, когда известны вероятности некоторых событий, а вычислить нужно вероятности других событий, которые связаны с данными событиями.

Сложение вероятностей используется тогда, когда нужно вычислить вероятность объединения или логической суммы случайных событий.

Сумму событий A и B обозначают A + B или A B . Суммой двух событий называется событие, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий. Это означает, что A + B – событие, которое наступает тогда и только тогда, когда при наблюдении произошло событие A или событие B , или одновременно A и B .

Если события A и B взаимно несовместны и их вероятности даны, то вероятность того, что в результате одного испытания произойдёт одно из этих событий, рассчитывают, используя сложение вероятностей.

Теорема сложения вероятностей. Вероятность того, что произойдёт одно из двух взаимно несовместных событий, равна сумме вероятностей этих событий:

Например, на охоте произведены два выстрела. Событие А – попадание в утку с первого выстрела, событие В – попадание со второго выстрела, событие (А + В ) – попадание с первого или второго выстрела или с двух выстрелов. Итак, если два события А и В – несовместные события, то А + В – наступление хотя бы одного из этих событий или двух событий.

Пример 1. В ящике 30 мячиков одинаковых размеров: 10 красных, 5 синих и 15 белых. Вычислить вероятность того, что не глядя будет взят цветной (не белый) мячик.

Решение. Примем, что событие А – «взят красный мячик», а событие В – «взят синий мячик». Тогда событие - «взят цветной (не белый) мячик». Найдём вероятность события А :

и события В :

События А и В – взаимно несовместные, так как если взят один мячик, то нельзя взять мячики разных цветов. Поэтому используем сложение вероятностей:

Теорема сложения вероятностей для нескольких несовместных событий. Если события составляют полное множество событий, то сумма их вероятностей равна 1:

Сумма вероятностей противоположных событий также равна 1:

Противоположные события образуют полное множество событий, а вероятность полного множества событий равна 1.

Вероятности противоположных событий обычно обозначают малыми буквами p и q . В частности,

из чего следуют следующие формулы вероятности противоположных событий:

Пример 2. Цель в тире разделена на 3 зоны. Вероятность того что некий стрелок выстрелит в цель в первой зоне равна 0,15, во второй зоне – 0,23, в третьей зоне – 0,17. Найти вероятность того, что стрелок попадет в цель и вероятность того, что стрелок попадёт мимо цели.

Решение: Найдём вероятность того, что стрелок попадёт в цель:

Найдём вероятность того, что стрелок попадёт мимо цели:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей" .

Сложение вероятностей взаимно совместных событий

Два случайных события называются совместными, если наступление одного события не исключает наступления второго события в том же самом наблюдении. Например, при бросании игральной кости событием А считается выпадение числа 4, а событием В – выпадение чётного числа. Поскольку число 4 является чётным числом, эти два события совместимы. В практике встречаются задачи по расчёту вероятностей наступления одного из взаимно совместных событий.

Теорема сложения вероятностей для совместных событий. Вероятность того, что наступит одно из совместных событий, равна сумме вероятностей этих событий, из которой вычтена вероятность общего наступления обоих событий, то есть произведение вероятностей. Формула вероятностей совместных событий имеет следующий вид:

Поскольку события А и В совместимы, событие А + В наступает, если наступает одно из трёх возможных событий: или АВ . Согласно теореме сложения несовместных событий, вычисляем так:

Событие А наступит, если наступит одно из двух несовместных событий: или АВ . Однако вероятность наступления одного события из нескольких несовместных событий равна сумме вероятностей всех этих событий:

Аналогично:

Подставляя выражения (6) и (7) в выражение (5), получаем формулу вероятности для совместных событий:

При использовании формулы (8) следует учитывать, что события А и В могут быть:

  • взаимно независимыми;
  • взаимно зависимыми.

Формула вероятности для взаимно независимых событий:

Формула вероятности для взаимно зависимых событий:

Если события А и В несовместны, то их совпадение является невозможным случаем и, таким образом, P (AB ) = 0. Четвёртая формула вероятности для несовместных событий такова:

Пример 3. На автогонках при заезде на первой автомашине вероятность победить , при заезде на второй автомашине . Найти:

  • вероятность того, что победят обе автомашины;
  • вероятность того, что победит хотя бы одна автомашина;

1) Вероятность того, что победит первая автомашина, не зависит от результата второй автомашины, поэтому события А (победит первая автомашина) и В (победит вторая автомашина) – независимые события. Найдём вероятность того, что победят обе машины:

2) Найдём вероятность того, что победит одна из двух автомашин:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей" .

Решить задачу на сложение вероятностей самостоятельно, а затем посмотреть решение

Пример 4. Бросаются две монеты. Событие A - выпадение герба на первой монете. Событие B - выпадение герба на второй монете. Найти вероятность события C = A + B .

Умножение вероятностей

Умножение вероятностей используют, когда следует вычислить вероятность логического произведения событий.

При этом случайные события должны быть независимыми. Два события называются взаимно независимыми, если наступление одного события не влияет на вероятность наступления второго события.

Теорема умножения вероятностей для независимых событий. Вероятность одновременного наступления двух независимых событий А и В равна произведению вероятностей этих событий и вычисляется по формуле:

Пример 5. Монету бросают три раза подряд. Найти вероятность того, что все три раза выпадет герб.

Решение. Вероятность того, что при первом бросании монеты выпадет герб , во второй раз , в третий раз . Найдём вероятность того, что все три раза выпадет герб:

Решить задачи на умножение вероятностей самостоятельно, а затем посмотреть решение

Пример 6. Имеется коробка с девятью новыми теннисными мячами. Для игры берут три мяча, после игры их кладут обратно. При выборе мячей игранные от неигранных не отличают. Какова вероятность того, что после трёх игр в коробке не останется неигранных мячей?

Пример 7. 32 буквы русского алфавита написаны на карточках разрезной азбуки. Пять карточек вынимаются наугад одна за другой и укладываются на стол в порядке появления. Найти вероятность того, что из букв получится слово "конец".

Пример 8. Из полной колоды карт (52 листа) вынимаются сразу четыре карты. Найти вероятность того, что все эти четыре карты будут разных мастей.

Пример 9. Та же задача, что в примере 8, но каждая карта после вынимания возвращается в колоду.

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей, а также вычислять произведение нескольких событий - на странице "Различные задачи на сложение и умножение вероятностей" .

Вероятность того, что произойдёт хотя бы одно из взаимно независимых событий , можно вычислить путём вычитания из 1 произведения вероятностей противоположных событий , то есть по формуле:

Пример 10. Грузы доставляют тремя видами транспорта: речным, железнодорожным и автотранспортом. Вероятность того, что груз будет доставлен речным транспортом, составляет 0,82, железнодорожным транспортом 0,87, автотранспортом 0,90. Найти вероятность того, что груз будет доставлен хотя бы одним из трёх видов транспорта.

Случайные события и их вероятности

Событие – любое явление, в отношении которого имеет смысл говорить, наступило оно или не наступило в результате определенного комплекса условий или случайного эксперимента. Отсюда следует, что событие можно рассматривать, как величину, которая может принимать только два значения.

Можно выделить виды событий.

Событие называется достоверным, если оно обязательно происходит при каждом осуществлении определенной совокупности условий. Например, если брошена игральная кость, то выпадение не менее одного и не более шести очков является достоверным событием.

Событие называется невозможным, если оно заведомо не произойдет ни при одном осуществлении данной совокупности условий. Например, если брошена игральная кость, то выпадение более шести очков является невозможным событием.

Событие называется случайным, если оно может произойти, а может и не произойти при осуществлении данной совокупности условий. Например, если брошена игральная кость, то выпадение любого из шести очков является случайным событием.

События называются несовместимыми, если их одновременное появление при осуществлении данной совокупности условий невозможно, т. е. появление события А в данном испытании исключает появление события В в этом же испытании. Например, если из урны с черными и белыми шарами случайным образом извлекается белый шар, то его появление исключает извлечение черного шара в той же попытке.

События называются единственно возможными, если появление в результате испытания одного и только одного из них является достоверным событием. Например, если стрелок произвел выстрел, то обязательно происходит одно из двух событий – попадание или промах. Эти события единственно возможные.

Совокупность единственно возможных событий испытания называется полной группой событий.

События называются равновозможными, если есть основания считать, что ни одно из этих событий не является более возможным, чем другие. Например, появление герба или решетки при бросании монеты есть события равновозможные.

Если – какое либо событие, то событие, состоящее в том, что событие не наступило, называется событием противоположным событию или отрицанием события и обозначается .

Суммой событий и называется такое событие, обозначаемое , которое происходит только тогда, когда происходит хотя бы одно из событий или или оба вместе.

Произведением событий и называется такое событие, обозначаемое , которое происходит только тогда, когда происходят оба события и одновременно. Если и несовместимые события, то событие является невозможным.

События, происходящие при реализации определенного комплекса условий или в результате случайного эксперимента, называются элементарными исходами. Считается, что при проведении случайного эксперимента реализуется только один из возможных элементарных исходов. Множество всех элементарных исходов случайного эксперимента называется пространством элементарных исходов.

Те элементарные исходы, при которых наступает интересующее нас событие, называются исходами, благоприятствующимиэтому событию.

Вероятностьсобытия – это отношение числа благоприятствующих этому событию элементарных исходов к общему числу всех возможных и равновозможных элементарных исходов эксперимента , где – число элементарных исходов, благоприятствующих событию ; – число всех возможных элементарных исходов эксперимента.

Можно определить следующие свойства вероятности:

– вероятность достоверного события равна 1;

– вероятность невозможного события равна 0;

– вероятность случайного события есть положительное число, заключенное между 0 и 1: .

Математическое понятие вероятности случайного события является абстрактной характеристикой, присущей не самим интересующим нас объектам материального мира, а их теоретико-множественным моделям. Требуется некоторое дополнительное соглашение для того, чтобы можно было извлекать сведения о вероятностях из экспериментальных данных. В соответствии с классическим определением принято оценивать вероятность события относительной частотой благоприятных исходов опыта. Если проведено N независимых испытаний и в n из них наблюдалось событие , то эмпирическая (выборочная) оценка вероятности , которую можно получить из этой серии, равна: . При этом полагают, что , если число испытаний .

Основные теоремы теории вероятностей

1. Теорема сложения вероятностей . Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий за вычетом вероятности их одновременного наступления

Если и несовместимые события, то событие является невозможным. Следовательно, . Обобщая на несколько попарно несовместимых событий, можно записать .

Если события образуют полную группу, то сумма вероятностей этих событий равна единице: . Сумма вероятностей противоположных событий равна единице: .

2. Теорема умножения вероятностей. Предположим, что из общего числа исходов испытания событию благоприятствуют элементарных исходов, событию благоприятствуют элементарных исходов, а одновременному наступлению событий и благоприятствуют элементарных исходов. Если событие наступило, то это означает, что осуществился один из благоприятствующих ему исходов, причем из этих исходов благоприятствовать событию будут и те исходов, при которых события и наступают одновременно. В связи с этим вводится понятие условной вероятности. Условной вероятностью называют вероятность события , вычисленную в предположении, что событие уже наступило. Независимыми событиями называются события, если вероятность одного из них не зависит от наступления или ненаступления другого. Если событие независимо от события , то . События называются независимыми в совокупности, если каждое из этих событий независимо в паре с любым произведением остальных событий, содержащим как все остальные события, так и любую их часть. Независимость событий в совокупности влечет за собой попарную независимость этих событий. Для двух случайных зависимых событий вероятность произведения этих событий (т. е. одновременного появления в одном испытании) равна произведению вероятностей одного из них на условную вероятность другого, рассчитанную при условии, что первое событие уже произошло: . Если событие независимо от события , то . Вероятность одновременного появления нескольких попарно независимых событий равна произведению их вероятностей: .

3. Теорема полной вероятности. Пусть имеется группа событий , обладающих следующими свойствами: а) все события попарно несовместимы; б) их объединение образует пространство элементарных исходов; в) они образуют полную группу событий. Такие события называют гипотезами, поскольку заранее неизвестно, какое из этих событий наступит. Пусть – некоторое событие, которое может произойти при наступлении одного и только одного из событий . Это означает, что . Вероятность события , которое может наступить лишь при условии появления одного из несовместимых событий , образующих полную группу, равна сумме произведений вероятностей каждого из этих событий на соответствующую условную вероятность события : . Приведенная формула называется формулой полной вероятности.

4. Формула Байеса. Пусть, как и в предыдущем случае имеем совокупность события и группы событий , обладающих теми же свойствами. Допустим, что событие произошло и требуется определить, как в связи с этим изменились вероятности гипотез, т. е. . Эта задача решается с помощью формулы Байеса . Формула Байеса позволяет переоценить вероятности гипотез после того, как становится известным результат испытания, в итоге которого появилось событие , т. е. найти апостериорные вероятности. Используя понятие условной вероятности формулу Байеса можно интерпретировать как вероятность того, что причиной появления события является событие .

5. Формула Бернулли. Пусть производится независимых испытаний, в каждом из которых событие может появиться, либо не появиться. Будем считать, что вероятность события в каждом испытании одна и та же и равна . Следовательно, вероятность ненаступления события в каждом испытании также постоянна и равна . Вероятность того, что при этих условиях при n испытаниях событие произойдет ровно k раз и, следовательно, не произойдет раз определяется по формуле Бернулли , где . Формулу Бернулли называют также формулой биномиального распределения вероятностей, поскольку в правой ее части стоит -й член бинома Ньютона.

6. Локальная теорема Лапласа. При больших формулой Бернулли пользоваться затруднительно из-за громоздкости вычислений. Для этого случая доказана так называемая локальная теорема Лапласа, дающая асимптотическую формулу, которая позволяет приближенной найти вероятность появления события раз в испытаниях, если число испытаний достаточно велико , где и . Для функции составлены таблицы, соответствующие положительным значениям аргумента , поскольку . Формула Лапласа дает тем большую точность, чем больше .

1.1. Некоторые сведения из комбинаторики

1.1.1. Размещения

Рассмотрим простейшие понятия, связанные с выбором и расположением некоторого множества объектов.
Подсчет числа способов, которыми можно совершить эти действия, часто производится при решении вероятностных задач.
Определение . Размещением из n элементов по k (k n ) называется любое упорядоченное подмножество из k элементов множества, состоящего из n различных элементов.
Пример. Следующие последовательности цифр являются размещениями по 2 элемента из 3 элементов множества {1;2;3}: 12, 13, 23, 21, 31, 32.
Заметим, что размещения отличаются порядком входящих в них элементов и их составом. Размещения 12 и 21 содержат одинаковые цифры, но порядок их расположения различен. Поэтому эти размещения считаются разными.
Число различных размещений из n элементов по k обозначается и вычисляется по формуле:
,
где n ! = 1∙2∙...∙(n - 1)∙ n (читается «n – факториал»).
Число двузначных чисел, которые можно составить из цифр 1, 2, 3 при условии, что ни одна цифра не повторяется равно: .

1.1.2. Перестановки

Определение . Перестановками из n элементов называются такие размещения из n элементов, которые различаются только расположением элементов.
Число перестановок из n элементов P n вычисляется по формуле: P n =n !
Пример. Сколькими способами могут встать в очередь 5 человек? Количество способов равно числу перестановок из 5 элементов, т.е.
P 5 =5!=1∙2∙3∙4∙5=120.
Определение . Если среди n элементов k одинаковых, то перестановка этих n элементов называется перестановкой с повторениями.
Пример. Пусть среди 6 книг 2 одинаковые. Любое расположение всех книг на полке - перестановка с повторениями.
Число различных перестановок с повторениями (из n элементов, среди которых k одинаковых) вычисляется по формуле: .
В нашем примере число способов, которыми можно расставить книги на полке, равно: .

1.1.3. Сочетания

Определение . Сочетаниями из n элементов по k называются такие размещения из n элементов по k , которые одно от другого отличаются хотя бы одним элементом.
Число различных сочетаний из n элементов по k обозначается и вычисляется по формуле: .
По определению 0!=1.
Для сочетаний справедливы следующие свойства:
1.
2.
3.
4.
Пример. Имеются 5 цветков разного цвета. Для букета выбирается 3 цветка. Число различных букетов по 3 цветка из 5 равно: .

1.2. Случайные события

1.2.1. События

Познание действительности в естественных науках происходит в результате испытаний (эксперимента, наблюдений, опыта).
Испытанием или опытом называется осуществление какого-нибудь определенного комплекса условий, который может быть воспроизведен сколь угодно большое число раз.
Случайным называется событие, которое может произойти или не произойти в результате некоторого испытания (опыта).
Таким образом, событие рассматривается как результат испытания.
Пример. Бросание монеты – это испытание. Появление орла при бросании – событие.
Наблюдаемые нами события различаются по степени возможности их появления и по характеру их взаимосвязи.
Событие называется достоверным , если оно обязательно произойдет в результате данного испытания.
Пример. Получение студентом положительной или отрицательной оценки на экзамене есть событие достоверное, если экзамен протекает согласно обычным правилам.
Событие называется невозможным , если оно не может произойти в результате данного испытания.
Пример. Извлечение из урны белого шара, в которой находятся лишь цветные (небелые) шары, есть событие невозможное. Отметим, что при других условиях опыта появления белого шара не исключается; таким образом, это событие невозможно лишь в условиях нашего опыта.
Далее случайные события будем обозначать большими латинскими буквами A,B,C... Достоверное событие обозначим буквой Ω, невозможное – Ø.
Два или несколько событий называются равновозможными в данном испытании, если имеются основания считать, что ни одно из этих событий не является более возможным или менее возможным, чем другие.
Пример. При одном бросании игральной кости появление 1, 2, 3, 4, 5 и 6 очков - все это события равновозможные. Предполагается, конечно, что игральная кость изготовлена из однородного материала и имеет правильную форму.
Два события называются несовместными в данном испытании, если появление одного из них исключает появление другого, и совместными в противном случае.
Пример. В ящике имеются стандартные и нестандартные детали. Берем на удачу одну деталь. Появление стандартной детали исключает появление нестандартной детали. Эти события несовместные.
Несколько событий образуют полную группу событий в данном испытании, если в результате этого испытания обязательно наступит хотя бы одно из них.
Пример. События из примера образуют полную группу равновозможных и попарно несовместных событий.
Два несовместных события, образующих полную группу событий в данном испытании, называютсяпротивоположными событиями .
Если одно из них обозначено через A , то другое принято обозначать через (читается «не A »).
Пример. Попадание и промах при одном выстреле по цели - события противоположные.

1.2.2. Классическое определение вероятности

Вероятность события – численная мера возможности его наступления.
Событие А называется благоприятствующим событию В , если всякий раз, когда наступает событие А , наступает и событие В .
События А 1 , А 2 , ..., А n образуют схему случаев , если они:
1) равновозможны;
2) попарно несовместны;
3) образуют полную группу.
В схеме случаев (и только в этой схеме) имеет место классическое определение вероятности P (A ) события А . Здесь случаем называют каждое из событий, принадлежащих выделенной полной группе равновозможных и попарно несовместных событий.
Если n – число всех случаев в схеме, а m – число случаев, благоприятствующих событию А , то вероятность события А определяется равенством:

Из определения вероятности вытекают следующие ее свойства:
1. Вероятность достоверного события равна единице.
Действительно, если событие достоверно, то каждый случай в схеме случаев благоприятствует событию. В этом случае m = n и, следовательно,

2. Вероятность невозможного события равна нулю.
Действительно, если событие невозможно, то ни один случай из схемы случаев не благоприятствует событию. Поэтому m =0 и, следовательно,

Вероятность случайного события есть положительное число, заключенное между нулем и единицей.
Действительно, случайному событию благоприятствует лишь часть из общего числа случаев в схеме случаев. Поэтому 0<m <n , а, значит, 0<m /n <1 и, следовательно, 0 < P(A) < 1.
Итак, вероятность любого события удовлетворяет неравенствам
0 ≤ P(A) ≤ 1.
В настоящее время свойства вероятности определяются в виде аксиом, сформулированных А.Н. Колмогоровым.
Одним из основных достоинств классического определения вероятности является возможность вычислить вероятность события непосредственно, т.е. не прибегая к опытам, которые заменяют логическими рассуждениями.

Задачи непосредственного вычисления вероятностей

Задача 1.1 . Какова вероятность появления четного числа очков (событие А) при одном бросании игрального кубика?
Решение . Рассмотрим события А i – выпало i очков, i = 1, 2, …,6. Очевидно, что эти события образуют схему случаев. Тогда число всех случаев n = 6. Выпадению четного числа очков благоприятствуют случаи А 2 , А 4 , А 6 , т.е. m = 3. Тогда .
Задача 1.2 . В урне 5 белых и 10 черных шаров. Шары тщательно перемешивают и затем наугад вынимают 1 шар. Какова вероятность того, что вынутый шар окажется белым?
Решение . Всего имеется 15 случаев, которые образуют схему случаев. Причем ожидаемому событию А – появлению белого шара, благоприятствуют 5 из них, поэтому .
Задача 1.3 . Ребенок играет с шестью буквами азбуки: А, А, Е, К, Р, Т. Найти вероятность того, что он сможет сложить случайно слово КАРЕТА (событие А).
Решение . Решение осложняется тем, что среди букв есть одинаковые – две буквы «А». Поэтому число всех возможных случаев в данном испытании равно числу перестановок с повторениями из 6 букв:
.
Эти случаи равновозможны, попарно несовместны и образуют полную группу событий, т.е. образуют схему случаев. Лишь один случай благоприятствует событию А . Поэтому
.
Задача 1.4 . Таня и Ваня договорились встречать Новый год в компании из 10 человек. Они оба очень хотели сидеть рядом. Какова вероятность исполнения их желания, если среди их друзей принято места распределять путем жребия?
Решение . Обозначим через А событие «исполнение желания Тани и Вани». 10 человек могут усесться за стол 10! разными способами. Сколько же из этих n = 10! равновозможных способов благоприятны для Тани и Вани? Таня и Ваня, сидя рядом, могут занять 20 разных позиций. В то же время восьмерка их друзей может сесть за стол 8! разными способами, поэтому m = 20∙8!. Следовательно,
.
Задача 1.5 . Группа из 5 женщин и 20 мужчин выбирает трех делегатов. Считая, что каждый из присутствующих с одинаковой вероятностью может быть выбран, найти вероятность того, что выберут двух женщин и одного мужчину.
Решение . Общее число равновозможных исходов испытания равно числу способов, которыми можно выбрать трех делегатов из 25 человек, т.е. . Подсчитаем теперь число благоприятствующих случаев, т.е. число случаев, при которых имеет место интересующее нас событие. Мужчина-делегат может быть выбран двадцатью способами. При этом остальные два делегата должны быть женщинами, а выбрать двух женщин из пяти можно . Следовательно, . Поэтому
.
Задача 1.6. Четыре шарика случайным образом разбрасываются по четырем лункам, каждый шарик попадает в ту или другую лунку с одинаковой вероятностью и независимо от других (препятствий к попаданию в одну и ту же лунку нескольких шариков нет). Найти вероятность того, что в одной из лунок окажется три шарика, в другой - один, а в двух остальных лунках шариков не будет.
Решение. Общее число случаев n =4 4 . Число способов, которыми можно выбрать одну лунку, где будут три шарика, . Число способов, которыми можно выбрать лунку, где будет один шарик, . Число способов, которыми можно выбрать из четырех шариков три, чтобы положить их в первую лунку, . Общее число благоприятных случаев . Вероятность события:
Задача 1.7. В ящике 10 одинаковых шаров, помеченных номерами 1, 2, …, 10. На удачу извлечены шесть шаров. Найти вероятность того, что среди извлечённых шаров окажутся: а) шар №1; б) шары №1 и №2.
Решение . а) Общее число возможных элементарных исходов испытания равно числу способов, которыми можно извлечь шесть шаров из десяти, т.е.
Найдём число исходов, благоприятствующих интересующему нас событию: среди отобранных шести шаров есть шар №1 и, следовательно, остальные пять шаров имеют другие номера. Число таких исходов, очевидно, равно числу способов, которыми можно отобрать пять шаров из оставшихся девяти, т.е.
Искомая вероятность равна отношению числа исходов, благоприятствующих рассматриваемому событию, к общему числу возможных элементарных исходов:
б) Число исходов, благоприятствующих интересующему нас событию (среди отобранных шаров есть шары №1 и №2, следовательно, четыре шара имеют другие номера), равно числу способов, которыми можно извлечь четыре шаров из оставшихся восьми, т.е. Искомая вероятность

1.2.3. Статистическая вероятность

Статистическое определение вероятности используется в случае, когда исходы опыта не являются равновозможными.
Относительная частота события А определяется равенством:
,
где m – число испытаний, в которых событие А наступило, n – общее число произведенных испытаний.
Я. Бернулли доказал, что при неограниченном увеличении числа опытов относительная частота появления события будет практически сколь угодно мало отличаться от некоторого постоянного числа. Оказалось, что это постоянное число есть вероятность появления события. Поэтому, естественно, относительную частоту появления события при достаточно большом числе испытаний называть статистической вероятностью в отличие от ранее введенной вероятности.
Пример 1.8 . Как приближенно установить число рыб в озере?
Пусть в озере х рыб. Забрасываем сеть и, допустим, находим в ней n рыб. Каждую из них метим и выпускаем обратно. Через несколько дней в такую же погоду и в том же месте забрасываем ту же самую сеть. Допустим, что находим в ней m рыб, среди которых k меченных. Пусть событие А – «пойманная рыба мечена». Тогда по определению относительной частоты .
Но если в озере х рыб и мы в него выпустили n меченых, то .
Так как Р * (А ) » Р (А ), то .

1.2.4. Операции над событиями. Теорема сложения вероятностей

Суммой , или объединением, нескольких событий называется событие, состоящее в наступлении хотя бы одного из этих событий (в одном и том же испытании).
Сумма А 1 + А 2 + … + А n обозначается так:
или .
Пример . Бросаются две игральные кости. Пусть событие А состоит в выпадении 4 очков на 1 кости, а событие В – в выпадении 5 очков на другой кости. События А и В совместны. Поэтому событие А +В состоит в выпадении 4 очков на первой кости, или 5 очков на второй кости, или 4 очков на первой кости и 5 очков на второй одновременно.
Пример. СобытиеА – выигрыш по 1 займу, событие В – выигрыш по 2 займу. Тогда событие А+В – выигрыш хотя бы по одному займу (возможно по двум сразу).
Произведением или пересечением нескольких событий называется событие, состоящее в совместном появлении всех этих событий (в одном и том же испытании).
Произведение В событий А 1 , А 2 , …, А n обозначается так:
.
Пример. События А и В состоят в успешном прохождении I и II туров соответственно при поступлении в институт. Тогда событие А ×В состоит в успешном прохождении обоих туров.
Понятия суммы и произведения событий имеют наглядную геометрическую интерпретацию. Пусть событие А есть попадание точки в область А , а событие В – попадание точки в область В . Тогда событие А+В есть попадание точки в объединение этих областей (рис. 2.1), а событие А В есть попадание точки в пересечение этих областей (рис. 2.2).

Рис. 2.1 Рис. 2.2
Теорема . Если события A i (i = 1, 2, …, n ) попарно несовместны, то вероятность суммы событий равна сумме вероятностей этих событий:
.
Пусть А и Ā – противоположные события, т.е. А + Ā = Ω, где Ω – достоверное событие. Из теоремы сложения вытекает, что
Р(Ω) = Р (А ) + Р (Ā ) = 1, поэтому
Р (Ā ) = 1 – Р (А ).
Если события А 1 и А 2 совместны, то вероятность суммы двух совместных событий равна:
Р (А 1 + А 2) = Р (А 1) + Р (А 2) – Р(А 1 ×А 2).
Теоремы сложения вероятностей позволяют перейти от непосредственного подсчета вероятностей к определению вероятностей наступления сложных событий.
Задача 1.8 . Стрелок производит один выстрел по мишени. Вероятность выбить 10 очков (событие А ), 9 очков (событие В ) и 8 очков (событие С ) равны соответственно 0,11; 0,23; 0,17. Найти вероятность того, что при одном выстреле стрелок выбьет менее 8 очков (событие D ).
Решение . Перейдем к противоположному событию – при одном выстреле стрелок выбьет не менее 8 очков. Событие наступает, если произойдет А или В , или С , т.е. . Так как события А, В , С попарно несовместны, то, по теореме сложения,
, откуда .
Задача 1.9 . От коллектива бригады, которая состоит из 6 мужчин и 4 женщин, на профсоюзную конференцию выбирается два человека. Какова вероятность, что среди выбранных хотя бы одна женщина (событие А ).
Решение . Если произойдет событие А , то обязательно произойдет одно из следующих несовместных событий: В – «выбраны мужчина и женщина»; С – «выбраны две женщины». Поэтому можно записать: А=В+С . Найдем вероятность событий В и С . Два человека из 10 можно выбрать способами. Двух женщин из 4 можно выбрать способами. Мужчину и женщину можно выбрать 6 ×4 способами. Тогда . Так как события В и С несовместны, то, по теореме сложения,
Р(А) = Р(В + С) = Р(В) + Р(С ) = 8/15 + 2/15 = 2/3.
Задача 1.10. На стеллаже в библиотеке в случайном порядке расставлено 15 учебников, причем пять из них в переплете. Библиотекарь берет наудачу три учебника. Найти вероятность того, что хотя бы один из взятых учебников окажется в переплете (событие А ).
Решение . Первый способ. Требование – хотя бы один из трех взятых учебников в переплете – будет осуществлено, если произойдет любое из следующих трех несовместных событий: В – один учебник в переплете, С – два учебника в переплете, D – три учебника в переплете.
Интересующее нас событие А можно представить в виде суммы событий: A=B+C+D . По теореме сложения,
P(A) = P(B) + P(C) + P(D). (2.1)
Найдем вероятность событий B, C и D (см комбинаторные схемы):

Представив эти вероятности в равенство (2.1), окончательно получим
P(A) = 45/91 + 20/91 + 2/91 = 67/91.
Второй способ. Событие А (хотя бы один из взятых трех учебников имеет переплет) и Ā (ни один из взятых учебников не имеет переплета) – противоположные, поэтому P(A) + P(Ā ) = 1 (сумма вероятностей двух противоположных событий равна 1). Отсюда P(A ) = 1 – P(Ā). Вероятность появления события Ā (ни один из взятых учебников не имеет переплета)
Искомая вероятность
P(A ) = 1 – P(Ā ) = 1 – 24/91 = 67/91.

1.2.5. Условная вероятность. Теорема умножения вероятностей

Условной вероятностью Р(В /А ) называется вероятность события В, вычисленная в предположении, что событие А уже наступило.
Теорема . Вероятность совместного появления двух событий равна произведению вероятностей одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило:
Р(А В) = Р(А )∙Р(В /А ). (2.2)
Два события называются независимыми, если появление любого из них не изменяет вероятность появления другого, т.е.
Р(А) = Р(А/В ) или Р(В ) = Р(В /А ). (2.3)
Если события А и В независимы, то из формул (2.2) и (2.3) следует
Р(А В) = Р(А )∙Р(В ). (2.4)
Справедливо и обратное утверждение, т.е. если для двух событий выполняется равенство (2.4), то эти события независимы. В самом деле, из формул (2.4) и (2.2) вытекает
Р(А В) = Р(А )∙Р(В ) = Р(А ) ×Р(В /А ), откуда Р(А ) = Р(В /А ).
Формула (2.2) допускает обобщение на случай конечного числа событий А 1 , А 2 ,…,А n :
Р(А 1 ∙А 2 ∙…∙А n )=Р(А 1)∙Р(А 2 /А 1)∙Р(А 3 /А 1 А 2)∙…∙Р(А n /А 1 А 2 …А n -1).
Задача 1.11 . Из урны, в которой 5 белых и 10 черных шаров, вынимают подряд два шара. Найти вероятность того, что оба шара белые (событие А ).
Решение . Рассмотрим события: В – первый вынутый шар белый; С – второй вынутый шар белый. Тогда А = ВС .
Опыт можно провести двумя способами:
1) с возвращением: вынутый шар после фиксации цвета возвращается в урну. В этом случае события В и С независимы:
Р(А) = Р(В )∙Р(С ) = 5/15 ×5/15 = 1/9;
2) без возвращения: вынутый шар откладывается в сторону. В этом случае события В и С зависимы:
Р(А) = Р(В )∙Р(С /В ).
Для события В условия прежние, , а для С ситуация изменилась. Произошло В , следовательно в урне осталось 14 шаров, среди которых 4 белых .
Итак, .
Задача 1.12 . Среди 50 электрических лампочек 3 нестандартные. Найти вероятность того, что две взятые одновременно лампочки нестандартные.
Решение . Рассмотрим события: А – первая лампочка нестандартная, В – вторая лампочка нестандартная, С – обе лампочки нестандартные. Ясно, что С = А В . Событию А благоприятствуют 3 случая из 50 возможных, т.е. Р(А ) = 3/50. Если событие А уже наступило, то событию В благоприятствуют два случая из 49 возможных, т.е. Р(В /А ) = 2/49. Следовательно,
.
Задача 1.13 . Два спортсмена независимо друг от друга стреляют по одной мишени. Вероятность попадания в мишень первого спортсмена равна 0,7, а второго – 0,8. Какова вероятность того, что мишень будет поражена?
Решение . Мишень будет поражена, если в нее попадет либо первый стрелок, либо второй, либо оба вместе, т.е. произойдет событие А+В , где событие А заключается в попадании в мишень первым спортсменом, а событие В – вторым. Тогда
Р(А +В )=Р(А )+Р(В )–Р(А В )=0, 7+0, 8–0, 7∙0,8=0,94.
Задача 1.14. В читальном зале имеется шесть учебников по теории вероятностей, из которых три в переплете. Библиотекарь наудачу взял два учебника. Найти вероятность того, что два учебника окажутся в переплете.
Решение . Введем обозначения событий: A – первый взятый учебник имеет переплет, В – второй учебник имеет переплет. Вероятность того, что первый учебник имеет переплет,
P(A ) = 3/6 = 1/2.
Вероятность того, что второй учебник имеет переплет, при условии, что первый взятый учебник был в переплете, т.е. условная вероятность события В , такова: P(B /А) = 2/5.
Искомая вероятность того, что оба учебника имеют переплет, по теореме умножения вероятностей событий равна
P(AB ) = P(A ) ∙ P(B /А) = 1/2·∙ 2/5 = 0,2.
Задача 1.15. В цехе работают 7 мужчин и 3 женщины. По табельным номерам наудачу отобраны три человека. Найти вероятность того, что все отобранные лица окажутся мужчинами.
Решение . Введем обозначения событий: A – первым отобран мужчина, В – вторым отобран мужчина, С – третьим отобран мужчина. Вероятность того, что первым будет отобран мужчина, P(A ) = 7/10.
Вероятность того, что вторым отобран мужчина, при условии, что первым уже был отобран мужчина, т.е. условная вероятность события В следующая: P(B/А ) = 6/9 = 2/3.
Вероятность того, что третьим будет отобран мужчина, при условии, что уже отобраны двое мужчин, т.е. условная вероятность события С такова: P(C /АВ ) = 5/8.
Искомая вероятность того, что все три отобранных лица окажутся мужчинами, P(ABC) = P(A ) P(B /А ) P(C /АВ ) = 7/10 · 2/3 · 5/8 = 7/24.

1.2.6. Формула полной вероятности и формула Байеса

Пусть B 1 , B 2 ,…, B n – попарно несовместные события (гипотезы) и А – событие, которое может произойти только совместно с одним из них.
Пусть, кроме того, нам известны Р(B i ) и Р(А /B i ) (i = 1, 2, …, n ).
В этих условиях справедливы формулы:
(2.5)
(2.6)
Формула (2.5) называется формулой полной вероятности . По ней вычисляется вероятность события А (полная вероятность).
Формула (2.6) называется формулой Байеса . Она позволяет произвести пересчет вероятностей гипотез, если событие А произошло.
При составлении примеров удобно считать, что гипотезы образуют полную группу.
Задача 1.16 . В корзине яблоки с четырех деревьев одного сорта. С первого – 15% всех яблок, со второго – 35%, с третьего – 20%, с четвертого – 30%. Созревшие яблоки составляют соответственно 99%, 97%, 98%, 95%.
а) Какова вероятность того, что наугад взятое яблоко окажется спелым (событие А ).
б) При условии, что наугад взятое яблоко оказалось спелым, вычислить вероятность того, что оно с первого дерева.
Решение . а) Имеем 4 гипотезы:
B 1 – наугад взятое яблоко снято с 1-го дерева;
B 2 – наугад взятое яблоко снято с 2-го дерева;
B 3 – наугад взятое яблоко снято с 3-го дерева;
B 4 – наугад взятое яблоко снято с 4-го дерева.
Их вероятности по условию: Р(B 1) = 0,15; Р(B 2) = 0,35; Р(B 3) = 0,2; Р(B 4) = 0,3.
Условные вероятности события А :
Р(А /B 1) = 0,99; Р(А /B 2) = 0,97; Р(А /B 3) = 0,98; Р(А /B 4) = 0,95.
Вероятность того, что наудачу взятое яблоко окажется спелым, находится по формуле полной вероятности:
Р(А )=Р(B 1)∙Р(А /B 1)+Р(B 2)∙Р(А /B 2)+Р(B 3)∙Р(А /B 3)+Р(B 4)∙Р(А /B 4)=0,969.
б) Формула Байеса для нашего случая имеет вид:
.
Задача 1.17. В урну, содержащую два шара, опущен белый шар, после чего из нее наудачу извлечен один шар. Найти вероятность того, что извлеченный шар окажется белым, если равновозможны все возможные предположения о первоначальном составе шаров (по цвету).
Решение . Обозначим через А событие – извлечен белый шар. Возможны следующие предположения (гипотезы) о первоначальном составе шаров: B 1 – белых шаров нет, В 2 – один белый шар, В 3 – два белых шара.
Поскольку всего имеется три гипотезы, и сумма вероятностей гипотез равна 1 (так как они образуют полную группу событий), то вероятность каждой из гипотез равна 1/3,т.е.
P(B 1) = P(B 2) = P(B 3) = 1/3.
Условная вероятность того, что будет извлечен белый шар, при условии, что первоначально в урне не было белых шаров, Р(А /B 1)=1/3. Условная вероятность того, что будет извлечен белый шар, при условии, что первоначально в урне был один белый шар, Р(А /B 2)=2/3. Условная вероятность того, что будет извлечен белый шар, при условии, что первоначально в урне было два белых шара Р(А /B 3)=3/ 3=1.
Искомую вероятность того, что будет извлечен белый шар, находим по формуле полной вероятности:
Р (А )=Р(B 1)∙Р(А /B 1)+Р(B 2)∙Р(А /B 2)+Р(B 3)∙Р(А /B 3)=1/3·1/3+1/3·2/3+1/3·1=2/3.
Задача 1.18 . Два автомата производят одинаковые детали, которые поступают на общий конвейер. Производительность первого автомата вдвое больше производительности второго. Первый автомат производит в среднем 60% деталей отличного качества, а второй – 84%. Наудачу взятая с конвейера деталь оказалась отличного качества. Найти вероятность того, что эта деталь произведена первым автоматом.
Решение . Обозначим через А событие – деталь отличного качества. Можно сделать два предположения: B 1 – деталь произведена первым автоматом, причем (поскольку первый автомат производит вдвое больше деталей, чем второй) Р(А /B 1) = 2/3; B 2 – деталь произведена вторым автоматом, причем P(B 2) = 1/3.
Условная вероятность того, что деталь будет отличного качества, если она произведена первым автоматом,Р(А /B 1)=0,6.
Условная вероятность того, что деталь будет отличного качества, если она произведена вторым автоматом,Р(А /B 1)=0,84.
Вероятность того, что наудачу взятая деталь окажется отличного качества, по формуле полной вероятности равна
Р(А )=Р(B 1) ∙Р(А /B 1)+Р(B 2) ∙Р(А /B 2)=2/3·0,6+1/3·0,84 = 0,68.
Искомая вероятность того, что взятая отличная деталь произведена первым автоматом, по формуле Бейеса равна

Задача 1.19 . Имеются три партии деталей по 20 деталей в каждой. Число стандартных деталей в первой, второй и третьей партиях соответственно равны 20, 15, 10. Из выбранной партии наудачу извлечена деталь, оказавшаяся стандартной. Детали возвращают в партию и вторично из этой же партии наудачу извлекают деталь, которая также оказывается стандартной. Найти вероятность того, что детали были извлечены из третьей партии.
Решение . Обозначим через А событие – в каждом из двух испытаний (с возвращением) была извлечена стандартная деталь. Можно сделать три предположения (гипотезы): B 1 – детали извлекаются из первой партии, В 2 – детали извлекаются из второй партии, В 3 – детали извлекаются из третьей партии.
Детали извлекались наудачу из взятой партии, поэтому вероятности гипотез одинаковы:  P(B 1) = P(B 2) = P(B 3) = 1/3.
Найдем условную вероятность Р(А /B 1), т.е. вероятность того, что из первой партии будут последовательно извлечены две стандартные детали. Это событие достоверно, т.к. в первой партии все детали стандартны, поэтому Р(А /B 1) = 1.
Найдем условную вероятность Р(А /B 2), т.е. вероятность того, что из второй партии будут последовательно извлечены (с возвращением) две стандартные детали: Р(А /B 2)= 15/20 ∙ 15/20 = 9/16.
Найдем условную вероятность Р(А /B 3), т.е. вероятность того, что из третьей партии будут последовательно извлечены (с возвращением) две стандартные детали: Р(А /B 3) = 10/20 · 10/20 = 1/4.
Искомая вероятность того, что обе извлеченные стандартные детали взяты из третьей партии, по формуле Бейеса равна

1.2.7. Повторные испытания

Если производится несколько испытаний, причем вероятность события А в каждом испытании не зависит от исходов других испытаний, то такие испытания называют независимыми относительно события А. В разных независимых испытаниях событие А может иметь либо различные вероятности, либо одну и ту же вероятность. Будем далее рассматривать лишь такие независимые испытания, в которых событие А имеет одну ту же вероятность.
Пусть производится п независимых испытаний, в каждом из которых событие А может появиться либо не появиться. Условимся считать, что вероятность события А в каждом испытании одна и та же, а именно равна р. Следовательно, вероятность ненаступления события А в каждом испытании также постоянна и равна 1–р. Такая вероятностная схема называется схемой Бернулли . Поставим перед собой задачу вычислить вероятность того, что при п испытаниях по схеме Бернулли событие А осуществится ровно k раз (k – число успехов) и, следовательно, не осуществится п– раз. Важно подчеркнуть, что не требуется, чтобы событие А повторилось ровно k раз в определенной последовательности. Искомую вероятность обозначим Р п (k ). Например, символ Р 5 (3) означает вероятность того, что в пяти испытаниях событие появится ровно 3 раза и, следовательно, не наступит 2 раза.
Поставленную задачу можно решить с помощью так называемой формулы Бернулли, которая имеет вид:
.
Задача 1.20. Вероятность того, что расход электроэнергии в продолжение одних суток не превысит установленной нормы, равна р =0,75. Найти вероятность того, что в ближайшие 6 суток расход электроэнергии в течение 4 суток не превысит нормы.
Решение. Вероятность нормального расхода электроэнергии в продолжение каждых из 6 суток постоянна и равнар =0,75. Следовательно, вероятность перерасхода электроэнергии в каждые сутки также постоянна и равна q= 1–р =1–0,75=0,25.
Искомая вероятность по формуле Бернулли равна
.
Задача 1.21 . Два равносильных шахматиста играют в шахматы. Что вероятнее: выиграть две партии из четырех или три партии из шести (ничьи во внимание не принимаются)?
Решение . Играют равносильные шахматисты, поэтому вероятность выигрыша р = 1/2, следовательно, вероятность проигрыша q также равна 1/2. Т.к. во всех партиях вероятность выигрыша постоянна и безразлична, в какой последовательности будут выиграны партии, то применима формула Бернулли.
Найдем вероятность того, что две партии из четырех будут выиграны:

Найдем вероятность того, что будут выиграны три партии из шести:

Т.к. P 4 (2) > P 6 (3), то вероятнее выиграть две партии из четырех, чем три из шести.
Однакоможно видеть, что пользоваться формулой Бернулли при больших значениях n достаточно трудно, так как формула требует выполнения действий над громадными числами и поэтому в процессе вычислений накапливаются погрешности; в итоге окончательный результат может значительно отличаться от истинного.
Для решения этой проблемы существуют несколько предельных теорем, которые используются для случая большого числа испытаний.
1. Теорема Пуассона
При проведении большого числа испытаний по схеме Бернулли (при n => ∞) и при малом числе благоприятных исходов k (при этом предполагается, что вероятность успеха p мала), формула Бернулли приближается к формуле Пуассона
.
Пример 1.22. Вероятность брака при выпуске предприятием единицы продукции равна p =0,001. Какая вероятность, что при выпуске 5000 единиц продукции из них будет менее 4 бракованных (событие А Решение . Т.к. n велико, воспользуемся локальной теоремой Лапласа:

Вычислим x :
Функция – четная, поэтому φ(–1,67) = φ(1,67).
По таблице приложения П.1 найдем φ(1,67) = 0,0989.
Искомая вероятность P 2400 (1400) = 0,0989.
3. Интегральная теорема Лапласа
Если вероятность р появления события A в каждом испытании по схеме Бернулли постоянна и отлична от нуля и единицы, то при большом числе испытаний n , вероятность Р п (k 1 , k 2) появления события A в этих испытаниях от k 1 доk 2 раз приближенно равна
Р п (k 1 , k 2) = Φ (x"" ) – Φ (x" ), где
– функция Лапласа,

Определенный интеграл, стоящий в функции Лапласа не вычисляется на классе аналитических функций, поэтому для его вычисления используется табл. П.2, приведенная в приложении.
Пример 1.24. Вероятность появления события в каждом из ста независимых испытаний постоянна и равна p = 0,8. Найти вероятность того, что событие появится: a) не менее 75 раз и не более 90 раз; б) не менее 75 раз; в) не более 74 раз.
Решение . Воспользуемся интегральной теоремой Лапласа:
Р п (k 1 , k 2) = Φ (x"" ) – Φ(x" ), где Ф(x ) – функция Лапласа,

а) По условию, n = 100, p = 0,8, q = 0,2, k 1 = 75, k 2 = 90. Вычислим x"" и x" :


Учитывая, что функция Лапласа нечетна, т.е. Ф(-x ) = – Ф( x ), получим
P 100 (75;90) = Ф (2,5) – Ф(–1,25) = Ф(2,5) + Ф(1,25).
По табл. П.2. приложения найдем:
Ф(2,5) = 0,4938; Ф(1,25) = 0,3944.
Искомая вероятность
P 100 (75; 90) = 0,4938 + 0,3944 = 0,8882.
б) Требование, чтобы событие появилось не менее 75 раз, означает, что число появлений события может быть равно 75, либо 76, …, либо 100. Т.о., в рассматриваемом случае следует принять k 1 = 75, k 2 = 100. Тогда

.
По табл. П.2. приложения найдем Ф(1,25) = 0,3944; Ф(5) = 0,5.
Искомая вероятность
P 100 (75;100) = (5) – (–1,25) = (5) + (1,25) = 0,5 + 0,3944 = 0,8944.
в) Событие – «А появилось не менее 75 раз» и «А появилось не более 74 раз» противоположны, поэтому сумма вероятностей этих событий равна 1. Следовательно, искомая вероятность
P 100 (0;74) = 1 – P 100 (75; 100) = 1 – 0,8944 = 0,1056.

Изначально, будучи всего лишь собранием сведений и эмпирических наблюдений за игрой в кости, теория вероятности стала основательной наукой. Первыми, кто придал ей математический каркас, были Ферма и Паскаль.

От размышлений о вечном до теории вероятностей

Две личности, которым теория вероятностей обязана многими фундаментальными формулами, Блез Паскаль и Томас Байес, известны как глубоко верующие люди, последний был пресвитерианским священником. Видимо, стремление этих двух ученых доказать ошибочность мнения о некой Фортуне, дарующей удачу своим любимчикам, дало толчок к исследованиям в этой области. Ведь на самом деле любая азартная игра с ее выигрышами и проигрышами — это всего лишь симфония математических принципов.

Благодаря азарту кавалера де Мере, который в равной степени был игроком и человеком небезразличным к науке, Паскаль вынужден был найти способ расчета вероятности. Де Мере интересовал такой вопрос: "Сколько раз нужно выбрасывать попарно две кости, чтобы вероятность получить 12 очков превышала 50%?". Второй вопрос, крайне интересовавший кавалера: "Как разделить ставку между участниками незаконченной игры?" Разумеется, Паскаль успешно ответил на оба вопроса де Мере, который стал невольным зачинателем развития теории вероятностей. Интересно, что персона де Мере так и осталась известна в данной области, а не в литературе.

Ранее ни один математик еще не делал попыток вычислять вероятности событий, поскольку считалось, что это лишь гадательное решение. Блез Паскаль дал первое определение вероятности события и показал, что это конкретная цифра, которую можно обосновать математическим путем. Теория вероятностей стала основой для статистики и широко применяется в современной науке.

Что такое случайность

Если рассматривать испытание, которое можно повторить бесконечное число раз, тогда можно дать определение случайному событию. Это один из вероятных исходов опыта.

Опытом является осуществление конкретных действий в неизменных условиях.

Чтобы можно было работать с результатами опыта, события обычно обозначают буквами А, B, C, D, Е…

Вероятность случайного события

Чтобы можно было приступить к математической части вероятности, нужно дать определения всем ее составляющим.

Вероятность события - это выраженная в числовой форме мера возможности появления некоторого события (А или B) в результате опыта. Обозначается вероятность как P(A) или P(B).

В теории вероятностей отличают:

  • достоверное событие гарантированно происходит в результате опыта Р(Ω) = 1;
  • невозможное событие никогда не может произойти Р(Ø) = 0;
  • случайное событие лежит между достоверным и невозможным, то есть вероятность его появления возможна, но не гарантирована (вероятность случайного события всегда в пределах 0≤Р(А)≤ 1).

Отношения между событиями

Рассматривают как одно, так и сумму событий А+В, когда событие засчитывается при осуществлении хотя бы одного из составляющих, А или В, или обоих - А и В.

По отношению друг к другу события могут быть:

  • Равновозможными.
  • Совместимыми.
  • Несовместимыми.
  • Противоположными (взаимоисключающими).
  • Зависимыми.

Если два события могут произойти с равной вероятностью, то они равновозможные .

Если появление события А не сводит к нулю вероятность появление события B, то они совместимые.

Если события А и В никогда не происходят одновременно в одном и том же опыте, то их называют несовместимыми . Бросание монеты - хороший пример: появление решки - это автоматически непоявление орла.

Вероятность для суммы таких несовместимых событий состоит из суммы вероятностей каждого из событий:

Р(А+В)=Р(А)+Р(В)

Если наступление одного события делает невозможным наступление другого, то их называют противоположными. Тогда одно из них обозначают как А, а другое - Ā (читается как «не А»). Появление события А означает, что Ā не произошло. Эти два события формируют полную группу с суммой вероятностей, равной 1.

Зависящие события имеют взаимное влияние, уменьшая или увеличивая вероятность друг друга.

Отношения между событиями. Примеры

На примерах гораздо проще понять принципы теории вероятностей и комбинации событий.

Опыт, который будет проводиться, заключается в вытаскивании шариков из ящика, а результата каждого опыта - элементарный исход.

Событие - это один из возможных исходов опыта - красный шар, синий шар, шар с номером шесть и т. д.

Испытание №1. Участвуют 6 шаров, три из которых окрашены в синий цвет, на них нанесены нечетные цифры, а три других - красные с четными цифрами.

Испытание №2. Участвуют 6 шаров синего цвета с цифрами от одного до шести.

Исходя из этого примера, можно назвать комбинации:

  • Достоверное событие. В исп. №2 событие «достать синий шар» достоверное, поскольку вероятность его появления равна 1, так как все шары синие и промаха быть не может. Тогда как событие «достать шар с цифрой 1» - случайное.
  • Невозможное событие. В исп. №1 с синими и красными шарами событие «достать фиолетовый шар» невозможное, поскольку вероятность его появления равна 0.
  • Равновозможные события. В исп. №1 события «достать шар с цифрой 2» и «достать шар с цифрой 3» равновозможные, а события «достать шар с четным числом» и «достать шар с цифрой 2» имеют разную вероятность.
  • Совместимые события. Два раза подряд получить шестерку в процессе бросания игральной кости - это совместимые события.
  • Несовместимые события. В том же исп. №1 события «достать красный шар» и «достать шар с нечетным числом» не могут быть совмещены в одном и том же опыте.
  • Противоположные события. Наиболее яркий пример этого - подбрасывание монет, когда вытягивание орла равносильно невытягиванию решки, а сумма их вероятностей - это всегда 1 (полная группа).
  • Зависимые события . Так, в исп. №1 можно задаться целью извлечь два раза подряд красный шар. Его извлечение или неизвлечение в первый раз влияет на вероятность извлечения во второй раз.

Видно, что первое событие существенно влияет на вероятность второго (40% и 60%).

Формула вероятности события

Переход от гадательных размышлений к точным данным происходит посредством перевода темы в математическую плоскость. То есть суждения о случайном событии вроде "большая вероятность" или "минимальная вероятность" можно перевести к конкретным числовым данным. Такой материал уже допустимо оценивать, сравнивать и вводить в более сложные расчеты.

С точки зрения расчета, определение вероятности события - это отношение количества элементарных положительных исходов к количеству всех возможных исходов опыта относительно определенного события. Обозначается вероятность через Р(А), где Р означает слово «probabilite», что с французского переводится как «вероятность».

Итак, формула вероятности события:

Где m - количество благоприятных исходов для события А, n - сумма всех исходов, возможных для этого опыта. При этом вероятность события всегда лежит между 0 и 1:

0 ≤ Р(А)≤ 1.

Расчет вероятности события. Пример

Возьмем исп. №1 с шарами, которое описано ранее: 3 синих шара с цифрами 1/3/5 и 3 красных с цифрами 2/4/6.

На основании этого испытания можно рассматривать несколько разных задач:

  • A - выпадение красного шара. Красных шаров 3, а всего вариантов 6. Это простейший пример, в котором вероятность события равна Р(А)=3/6=0,5.
  • B - выпадение четного числа. Всего четных чисел 3 (2,4,6), а общее количество возможных числовых вариантов - 6. Вероятность этого события равна Р(B)=3/6=0,5.
  • C - выпадение числа, большего, чем 2. Всего таких вариантов 4 (3,4,5,6) из общего количества возможных исходов 6. Вероятность события С равна Р(С)=4/6=0,67.

Как видно из расчетов, событие С имеет большую вероятность, поскольку количество вероятных положительных исходов выше, чем в А и В.

Несовместные события

Такие события не могут одновременно появиться в одном и том же опыте. Как в исп. №1 невозможно одновременно достать синий и красный шар. То есть можно достать либо синий, либо красный шар. Точно так же в игральной кости не могут одновременно появиться четное и нечетное число.

Вероятность двух событий рассматривается как вероятность их суммы или произведения. Суммой таких событий А+В считается такое событие, которое состоит в появлении события А или В, а произведение их АВ - в появлении обоих. Например, появление двух шестерок сразу на гранях двух кубиков в одном броске.

Сумма нескольких событий являет собой событие, предполагающее появление, по крайней мере, одного из них. Произведение нескольких событий - это совместное появление их всех.

В теории вероятности, как правило, употребление союза "и" обозначает сумму, союза "или" - умножение. Формулы с примерами помогут понять логику сложения и умножения в теории вероятностей.

Вероятность суммы несовместных событий

Если рассматривается вероятность несовместных событий, то вероятность суммы событий равна сложению их вероятностей:

Р(А+В)=Р(А)+Р(В)

Например: вычислим вероятность того, что в исп. №1 с синими и красными шарами выпадет число между 1 и 4. Рассчитаем не в одно действие, а суммой вероятностей элементарных составляющих. Итак, в таком опыте всего 6 шаров или 6 всех возможных исходов. Цифры, которые удовлетворяют условие, - 2 и 3. Вероятность выпадения цифры 2 составляет 1/6, вероятность цифра 3 также 1/6. Вероятность того, что выпадет цифра между 1 и 4 равна:

Вероятность суммы несовместимых событий полной группы равна 1.

Так, если в опыте с кубиком сложить вероятности выпадения всех цифр, то в результате получим единицу.

Также это справедливо для противоположных событий, например в опыте с монетой, где одна ее сторона - это событие А, а другая - противоположное событие Ā, как известно,

Р(А) + Р(Ā) = 1

Вероятность произведения несовместных событий

Умножение вероятностей применяют, когда рассматривают появление двух и более несовместных событий в одном наблюдении. Вероятность того, что в нем появятся события A и B одновременно, равна произведению их вероятностей, или:

Р(А*В)=Р(А)*Р(В)

Например, вероятность того, что в исп. №1 в результате двух попыток два раза появится синий шар, равна

То есть вероятность наступления события, когда в результате двух попыток с извлечением шаров будет извлечены только синие шары, равна 25%. Очень легко проделать практические эксперименты этой задачи и увидеть, так ли это на самом деле.

Совместные события

События считаются совместными, когда появление одного из них может совпасть с появлением другого. Несмотря на то что они совместные, рассматривается вероятность независимых событий. К примеру, бросание двух игральных костей может дать результат, когда на обеих из них выпадает цифра 6. Хотя события совпали и появились одновременно, они независимы друг от друга - могла выпасть всего одна шестерка, вторая кость на нее влияния не имеет.

Вероятность совместных событий рассматривают как вероятность их суммы.

Вероятность суммы совместных событий. Пример

Вероятность суммы событий А и В, которые по отношению к друг другу совместные, равняется сумме вероятностей события за вычетом вероятности их произведения (то есть их совместного осуществления):

Р совместн. (А+В)=Р(А)+Р(В)- Р(АВ)

Допустим, что вероятность попадания в мишень одним выстрелом равна 0,4. Тогда событие А - попадание в мишень в первой попытке, В - во второй. Эти события совместные, поскольку не исключено, что можно поразить мишень и с первого, и со второго выстрела. Но события не являются зависимыми. Какова вероятность наступления события поражения мишени с двух выстрелов (хотя бы с одного)? Согласно формуле:

0,4+0,4-0,4*0,4=0,64

Ответ на вопрос следующий: "Вероятность попасть в цель с двух выстрелов равна 64%".

Эта формула вероятности события может быть применима и к несовместным событиям, где вероятность совместно появления события Р(АВ) = 0. Это значит, что вероятность суммы несовместных событий можно считать частным случаем предложенной формулы.

Геометрия вероятности для наглядности

Интересно, что вероятность суммы совместных событий может быть представлена в виде двух областей А и В, которые пересекаются между собой. Как видно из картинки, площадь их объединения равна общей площади за минусом области их пересечения. Это геометрическое пояснения делают более понятной нелогичную на первый взгляд формулу. Отметим, что геометрические решения - не редкость в теории вероятностей.

Определение вероятности суммы множества (больше двух) совместных событий довольно громоздкое. Чтобы вычислить ее, нужно воспользоваться формулами, которые предусмотрены для этих случаев.

Зависимые события

Зависимыми события называются в случае, если наступление одного (А) из них влияет на вероятность наступления другого (В). Причем учитывается влияние как появления события А, так и его непоявление. Хотя события и называются зависимыми по определению, но зависимо лишь одно из них (В). Обычная вероятность обозначалась как Р(В) или вероятность независимых событий. В случае с зависимыми вводится новое понятие - условная вероятность Р A (В) , которая является вероятностью зависимого события В при условии произошедшего события А (гипотезы), от которого оно зависит.

Но ведь событие А тоже случайно, поэтому у него также есть вероятность, которую нужно и можно учитывать в осуществляемых расчетах. Далее на примере будет показано, как работать с зависимыми событиями и гипотезой.

Пример расчета вероятности зависимых событий

Хорошим примером для расчета зависимых событий может стать стандартная колода карт.

На примере колоды в 36 карт рассмотрим зависимые события. Нужно определить вероятность того, что вторая карта, извлеченная из колоды, будет бубновой масти, если первая извлеченная:

  1. Бубновая.
  2. Другой масти.

Очевидно, что вероятность второго события В зависит от первого А. Так, если справедлив первый вариант, что в колоде стало на 1 карту (35) и на 1 бубну (8) меньше, вероятность события В:

Р A (В) =8/35=0,23

Если же справедлив второй вариант, то в колоде стало 35 карт, и по-прежнему сохранилось полное число бубен (9), тогда вероятность следующего события В:

Р A (В) =9/35=0,26.

Видно, что если событие А условлено в том, что первая карта - бубна, то вероятность события В уменьшается, и наоборот.

Умножение зависимых событий

Руководствуясь предыдущей главой, мы принимаем первое событие (А) как факт, но если говорить по сути, оно имеет случайный характер. Вероятность этого события, а именно извлечение бубны из колоды карт, равна:

Р(А) = 9/36=1/4

Поскольку теория не существует сама по себе, а призвана служить в практических целях, то справедливо отметить, что чаще всего нужна вероятность произведения зависимых событий.

Согласно теореме о произведении вероятностей зависимых событий, вероятность появления совместно зависимых событий А и В равна вероятности одного события А, умноженная на условную вероятность события В (зависимого от А):

Р(АВ) = Р (А) *Р A (В)

Тогда в примере с колодой вероятность извлечения двух карт с мастью бубны равна:

9/36*8/35=0,0571, или 5,7%

И вероятность извлечения вначале не бубны, а потом бубны, равна:

27/36*9/35=0,19, или 19%

Видно, что вероятность появления события В больше при условии, что первой извлекается карта масти, отличной от бубны. Такой результат вполне логичный и понятный.

Полная вероятность события

Когда задача с условными вероятностями становится многогранной, то обычными методами ее вычислить нельзя. Когда гипотез больше двух, а именно А1,А2,…,А n , ..образует полную группу событий при условии:

  • P(A i)>0, i=1,2,…
  • A i ∩ A j =Ø,i≠j.
  • Σ k A k =Ω.

Итак, формула полной вероятности для события В при полной группе случайных событий А1,А2,…,А n равна:

Взгляд в будущее

Вероятность случайного события крайне необходима во многих сферах науки: эконометрике, статистике, в физике и т. д. Поскольку некоторые процессы невозможно описать детерминировано, так как они сами имеют вероятностный характер, необходимы особые методы работы. Теория вероятности события может быть использована в любой технологичной сфере как способ определить возможность ошибки или неисправности.

Можно сказать, что, узнавая вероятность, мы некоторым образом делаем теоретический шаг в будущее, разглядывая его через призму формул.

Каждая наука, развивающая общую теорию какого-либо круга явлений, содержит ряд основных понятий, на которых она базируется. Таковы, например, в геометрии понятия точки, прямой, линии; в механике – понятия силы, массы, скорости, ускорения и т.д. Естественно, что не все основные понятия могут быть строго определены, так как определить понятие – это значит свести его к другим, более известным. Очевидно, процесс определения одних понятий через другие должен где-то заканчиваться, дойдя до самых первичных понятий, к которым сводятся все остальные и которые сами строго не определяются, а только поясняются.

Такие основные понятия существуют и в теории вероятностей. В качестве первого из них введем понятие события.

Под «событием» в теории вероятностей понимается всякий факт, который в результате опыта может произойти или не произойти.

Приведем несколько примеров событий:

А – появление герба при бросании монеты;

В – появление трех гербов при трехкратном бросании монеты;

С – попадание в цель при выстреле;

D – появление туза при вынимании карты из колоды;

Е – обнаружение объекта при одном цикле обзора радиолокационной станции;

F – обрыв нити в течение часа работы ткацкого станка.

Рассматривая вышеперечисленные события, мы видим, что каждое из них обладает какой-то степенью возможности: одни – большей, другие – меньшей, причем для некоторых из этих событий мы сразу же можем решить, какое из них более, а какое менее возможно. Например, сразу видно, что событие А более возможно, чем В и D. Относительно событий С, Е и F аналогичных выводов сразу сделать нельзя; для этого следовало бы уточнить условия опыта. Так или иначе, ясно, что каждое из таких событий обладает той или иной степенью возможности. Чтобы количественно сравнивать между собой события по степени их возможности, очевидно, нужно с каждым событием связать определенное число, которое тем больше, чем более возможно событие. Такое число мы назовем вероятностью события.

Таким образом, мы ввели в рассмотрение второе основное понятие теории вероятностей – понятие вероятности события. Вероятность события есть численная мера степени объективной возможности этого события.

Заметим, что уже при самом введении понятия вероятности события мы связываем с этим понятием определенный практический смысл, а именно: на основании опыта мы считаем более вероятными те события, которые происходят чаще; мало вероятными - те, которые почти никогда не происходят. Таким образом, понятие вероятности события в самой своей основе связано с опытным, практическим понятием частоты события.

Сравнивая между собой различные события по степени их возможности, мы должны установить какую-то единицу измерения. В качестве такой единицы измерения естественно принять вероятность достоверного события, т.е. такого события, которое в результате опыта непременно должно произойти. Пример достоверного события – выпадение не более 6 очков при бросании одной игральной кости.

Если приписать достоверному событию вероятность, равную единице, то все другие события – возможные, но не достоверные – будут характеризоваться вероятностями, меньшими единицы, составляющими какую-то долю единицы.

Противоположностью по отношению к достоверному событию является невозможное событие, т.е. такое событие, которое в данном опыте не может произойти. Пример невозможного события – появление 12 очков при бросании одной игральной кости. Естественно приписать невозможному событию вероятность, равную нулю.

Таким образом, установлены единица измерения вероятностей – вероятность достоверного события – и диапазон изменения вероятностей любых событий – числа от 0 до 1.



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация