Детерминированная модель: определение. Основные типы факторных детерминированных моделей. Детерминированные и стохастические системы

Главная / Общество

Технические системы. Параметрами технических объектов являются движущие объекты, объекты энергетики, объекты химической промышленности, объекты машиностроения, бытовая техника и многие другие. Объекты технических систем хорошо изучены в теории управления.

Экономические объекты. Экономическими объектами являются: цех, завод, предприятия различных отраслей. В качестве одной из переменных в них выступают экономические показатели - например - прибыль.

Биологические системы. Живые системы поддерживают свою жизнедеятельность благодаря заложенным в них механизмам управления.

Детерминированные и стохастические системы

Если внешние воздействия, приложенные к системе (управляющие и возмущающие) являются определенными известными функциями времени u=f(t). В этом случае состоянии системы описываемой обыкновенными дифференциальными уравнениями, в любой момент времени t может быть однозначно описано по состоянию системы в предшествующий момент времени. Системы для которых состояние системы однозначно определяется начальными значениями и может быть предсказано для любого момента времени называются детерминированными.

Стохастические системы - системы изменения в которых носят случайный характер. Например воздействие на энергосистему различных пользователей. При случайных воздействиях данных о состоянии системы недостаточно для предсказания в последующий момент времени.

Случайные воздействия могут прикладываться к системе из вне, или возникать внутри некоторых элементов (внутренние шумы). Исследование систем при наличии случайных воздействий можно проводить обычными методами, минимизировав шаг моделирования чтобы не пропустить влияния случайных параметров. При этом так как максимальное значение случайной величины встречается редко (в основном в технике преобладает нормальное распределение), то выбор минимального шага в большинстве моментов времени не будет обоснован.

В подавляющем большинстве случаев при проектировании систем закладываются не максимальным а наиболее вероятным значением случайного параметра. В этом случае поучается более рациональная система, заранее предполагая ухудшение работы системы в отдельные промежутки времени. Например установка катодной защиты.

Расчет систем при случайных воздействиях производится с помощью специальных статистических методов. Вводятся оценки случайных параметров, выполненные на основании множества испытаний. Например карта поверхности уровня грунтовых вод СПб.

Статистические свойства случайной величины определяют по ее функции распределения или плотности вероятности.

Открытые и закрытые системы

Понятие открытой системы ввел Л. фон Берталанфи. Основные отличительные черты открытых систем - способность обмениваться с внешней средой энергией и информацией. Закрытые (замкнутые) системы изолированны от внешней среды (с точностью принятой в модели).

Хорошо и плохо организованные системы

Хорошо организованные системы. Представить анализируемый объект или процесс в виде «хорошо организованной системы» означает определить элементы системы, их взаимосвязь, правила объединения в более крупные компоненты, т. е. определить связи между всеми компонентами и целями системы, с точки зрения которых рассматривается объект или ради достижения которых создается система. Проблемная ситуация может быть описана в виде математического выражения, связывающего цель со средствами, т. е. в виде критерия эффективности, критерия функционирования системы, который может быть представлен сложным уравнением или системой уравнений. Решение задачи при представлении ее в виде хорошо организованной системы осуществляется аналитическими методами формализованного представления системы.

Примеры хорошо организованных систем: солнечная система, описывающая наиболее существенные закономерности движения планет вокруг Солнца; отображение атома в виде планетарной системы, состоящей из ядра и электронов; описание работы сложного электронного устройства с помощью системы уравнений, учитывающей особенности условий его работы (наличие шумов, нестабильности источников питания и т. п.).

Для отображения объекта в виде хорошо организованной системы необходимо выделять существенные и не учитывать относительно несущественные для данной цели рассмотрения компоненты: например, при рассмотрении солнечной системы не учитывать метеориты, астероиды и другие мелкие по сравнению с планетами элементы межпланетного пространства.

Описание объекта в виде хорошо организованной системы применяется в тех случаях, когда можно предложить детерминированное описание и экспериментально доказать правомерность его применения, адекватность модели реальному процессу. Попытки применить класс хорошо организованных систем для представления сложных многокомпонентных объектов или многокритериальных задач плохо удаются: они требуют недопустимо больших затрат времени, практически нереализуемы и неадекватны применяемым моделям.

Плохо организованные системы. При представлении объекта в виде «плохо организованной или диффузной системы» не ставится задача определить все учитываемые компоненты, их свойства и связи между ними и целями системы. Система характеризуется некоторым набором макропараметров и закономерностями, которые находятся на основе исследования не всего объекта или класса явлений, а на основе определенней с помощью некоторых правил выборки компонентов, характеризующих исследуемый объект или процесс. На основе такого выборочного исследования получают характеристики или закономерности (статистические, экономические) и распространяют их на всю систему в целом. При этом делаются соответствующие оговорки. Например, при получении статистических закономерностей их распространяют на поведение всей системы с некоторой доверительной вероятностью.

Подход к отображению объектов в виде диффузных систем широко применяется при: описании систем массового обслуживания, определении численности штатов на предприятиях и учреждениях, исследовании документальных потоков информации в системах управления и т. д.

Самоорганизующиеся системы. Отображение объекта в виде самоорганизующейся системы - это подход, позволяющий исследовать наименее изученные объекты и процессы. Самоорганизующиеся системы обладают признаками диффузных систем: стохастичностью поведения, нестационарностью отдельных параметров и процессов. К этому добавляются такие признаки, как непредсказуемость поведения; способность адаптироваться к изменяющимся условиям среды, изменять структуру при взаимодействии системы со средой, сохраняя при этом свойства целостности; способность формировать возможные варианты поведения и выбирать из них наилучший и др. Иногда этот класс разбивают на подклассы, выделяя адаптивные или самоприспосабливающиеся системы, самовосстанавливающиеся, самовоспроизводящиеся и другие подклассы, соответствующие различным свойствам развивающихся систем.

Примеры: биологические организации, коллективное поведение людей, организация управления на уровне предприятия, отрасли, государства в целом, т. е. в тех системах, где обязательно имеется человеческий фактор.

При применении отображения объекта в виде самоорганизующейся системы задачи определения целей и выбора средств, как правило, разделяются. При этом задача выбора целей может быть, в свою очередь, описана в виде самоорганизующейся системы, т. е. структура функциональной части АСУ, структура целей, плана может разбиваться так же, как и структура обеспечивающей части АСУ (комплекс технических средств АСУ) или организационная структура системы управления.

Большинство примеров применения системного анализа основано на представлении объектов в виде самоорганизующихся систем.

Prev Next

Функциональная департаментализация

Функциональная департаментализация - это процесс деления организации на отдельные подразделения, каждое из которых имеет четко определенные функции и обязанности. Она более характерна для малопродуктовых сфер деятельности: для...

Эффективное осуществление контроля

Контроль должен быть своевременным и гибким, ориентированным на решение поставленных организацией задач и соответствующим им. Непрерывность контроля может быть обеспечена специально разработанной системой мониторинга хода реализации...

Факторы способствующие выработке эффективных стратегических управленческих решений.

Анализ непосредственного окруж:ения организации предполагает прежде всего анализ таких факторов, как покупатели, поставщики, конкуренты, рынок рабочей силы. При анализе внутренней среды основное внимание обращается на кадры,...

Обработка данных экспертизы

Разработка сценариев возможного развития ситуации требует соответствующей обработки данных, в том числе математической. В частности, обязательная обработка данных, полученных от экспертов, требуется при коллективной экспертизе, когда...

Внешние общественные взаимоотношения

Традиционное управление проектами долгое время основывалось на классической модели вход-процесс-выход с обратной связью для контроля выхода. Динамичные руководители обнаружили также, что открытие каналов связи в обоих направлениях создает мощный...

Стратегия инноваций

Высокий уровень конкуренции на подавляюшем большинстве современных рынков сбыта повышает интенсивность конкурентной борьбы, в которой нередко побеждает тот, кто может предложить потребителю более совершенную продукцию, дополнительные...

Различия между провозглашаемыми и глубинными интересами

Основным мотивом, приводящим к созданию организации, нередко считается получение прибыли. Однако единственный ли это интерес? В некоторых случаях не менее важными для руководителя организации являются определенная...

Метод обобщенных линейных критериев

Один из широко используемых методов сравнительной оценки многокритериальных объектов принятия управленческих решений в практике управления - метод обобщенных линейных критериев. В этом методе предполагается определение весовых...

Экспертные кривые

Экспертные кривые отражают оценку динамики прогнозируемых значений показателей и параметров экспертами. Формируя экспертные кривые, эксперты определяют критические точки, в которых тенденция изменения значений прогнозируемых показателей и...

Сопровождение управленческого процесса

Если на менеджера, управляющего подразделением организации или организацией в целом, обрушивается шквал проблем, относительно которых необходимо принять своевременные и эффективные решения, положение становится трудным. Менеджер должен...

Метод матриц взаимовлияний

Метод матриц взаимовлияний, разработанный Гордоном и Хелмером, предполагает определение на основании экспертных оценок потенциального взаимовлияния событий рассматриваемой совокупности. Оценки, связывающие все возможные комбинации событий по...

Разработка сценариев возможного развития ситуации

Разработка сценариев начинается с содержательного описания и определения перечня наиболее вероятных сценариев развития ситуации. Для решения этой задачи может быть использован метод мозговой атаки...

Сетевая организация

Повышение нестабильности внешней среды и жесткая конкуренция на рынках сбыта, необходимость достаточно быстрой смены (в среднем 5 лет) поколений производимой продукции, информационно-компьютерная революция, оказавшая существенное влияние...

Эффективный руководитель

Эффективный руководитель должен проявлять свою компетентность в умении решать возникающие проблемы стратегического и тактического характера, в планировании, финансовом управлении и контроле, межличностном общении, профессиональном развитии и...

Ресурсное обеспечение

Особую роль при определении как целей, стоящих перед организацией, так и задач и заданий по реализации поставленных целей играет ресурсное обеспечение. При этом при формировании стратегии и...

Структура системы управления персоналом

Делегирование большего объема полномочий предполагает и больший объем ответственности каждого работника на своем рабочем месте. В таких условиях все большее значение придается системам стимулирования и мотивации деятельности...

Искусство принятия решения

На завершающей стадии решающее значение приобретает искусство принятия решения. Однако не следует забывать, что выдающийся художник создает свои произведения, опираясь на блестяще отточенную и совершенную технику....

Многокритериальные оценки, требования к системам критериев

При разработке управленческих решений важно правильно оценить сломсившуюся ситуацию и альтернативные варианты решений с целью выбора наиболее эффективного решения, соответствующего целям организации и ЛПР. Правильная оценка...

Решения в условиях неопределенности и риска

Поскольку, как уже говорилось выше, процесс принятия решений всегда связан с тем или иным предположением руководителя об ожидаемом развитии событий и принятое решение нацелено в будущее, оно...

Общие правила, согласно которым может быть осуществлено сравнение объектов экспертизы, характеризую…

Альтернативный вариант (объект) а- недоминируем, если не существует альтернативного варианта о, превосходящего (не уступающего) а. по всем компонентам (частным критериям). Естественно, что наиболее предпочтительный среди сравниваемых...

Идеи управления организацией Файоля

Значительный прорыв в науке об управлении связан с работами Анри Файоля (1841 -1925). В течение 30 лет Файоль возглавлял крупную французскую металлургическую и горнодобывающую компанию. Он принял...

Принцип учета и согласования внешних и внутренних факторов развития организации

Развитие организации определяется как внешними, так и внутренними факторами. Сгратегические решения, принятые на основании учета влияния только внешних или только внутренних факторов, будут неизбежно страдать недостаточной...

Возникновение науки об управленческих решениях и ее связь с другими науками об управлении

Разработка управленческих решений является важным процессом, связывающим основные функции управления: планирование, организацию, мотивацию, контроль. Именно решения, принимаемые руководителями любой организации, определяют не только эффективность ее деятельности, но...

Формирование перечня критериев, характеризующих объект принятия управленческого решения

Перечень критериев, характеризующих сравнительную предпочтительность объектов принятия управленческого решения, должен удовлетворять ряду естественных требований. Как уже говорилось выше, само понятие критерий тесно связано с...

Главное правило делегирования полномочий

Мы хотим подчеркнуть важное правило, которое должно соблюдаться при делегировании полномочий. Делегируемые полномочия, как и задачи, которые ставятся перед работником, должны быть четко определены и однозначно...

Основная задача сценария - дать ключ к пониманию проблемы.

При анализе конкретной ситуации переменные, ее характеризующие, принимают соответствующие значения - те или иные градации вербально-числовых шкал каждое из переменных. Определяются все значения парных взаимодействий между...

Этап оперативного управления ходом реализации принятых решений и планов

После этапа передачи информации о принятых решениях и их согласования наступает этап оперативного управления ходом реализации принятых решений и планов. На этом этапе осуществляется контроль за ходом...

Классификация основных методов прогнозирования

Технологическое прогнозирование подразделяется на изыскательское (иногда его называют еще поисковым) и нормативное. В основе изыскательского прогнозирования лежит ориентация на представляющиеся возмож:ности, установление тенденций развития ситуаций на...

Строительство плотины для водохранилища

Несколько лет тому назад хорошо известная строительная компания стремилась обеспечить необходимые условия для проекта строительства Главной водозадерживающей плотины в Бихаре (Индия). В то...

Безусловно, каждый бизнесмен при планировании производства стремится к тому, чтобы оно было рентабельным, приносило прибыль. Если же удельный вес затрат сравнительно велик, о рентабельной деятельности организации говорить…

  • Принятие решения ЛПР

    Результаты экспертиз по сравнительной оценке альтернативных вариантов решений либо единственного решения, если разработка альтернативных вариантов не предусматривалась, поступают к ЛПР. Они служат основной базой для принятия…

  • Разработка оценочной системы

    В процессе выработки управленческого рещения больщое значение имеет адекватная оценка ситуации, различных ее аспектов, учитывать которые необходимо при принятии решений, приводящих к успеху. Для адекватной оценки…

  • Определение зарплаты и льгот

    Производительная работа персонала на предприятии во многом зависит от проводимой руководством предприятия политики мотивации и стимулирования работников. Большое значение имеет при этом формирование структуры заработной …

  • Стратегическое планирование и целенаправленная деятельность организации

    Реализация управленческих функций организации осуществляется в значительной степени с использованием стратегического и тактического планирования, специально разрабатываемых программ и проектов и четко отслеживаемого хода их выполнения. Стратегическому…

  • Контроль подразделяется на предварительный, текущий и заключительный.

    Предварительный контроль осуществляется до начала работ. На этом этапе контролируются правила, процедуры и линия поведения, чтобы убедиться, что работа развивается в правильном направлении. На этом этапе контролируются,…

  • Цели организации реализуются во внешней среде.

    При анализе состояния внешней среды и ожидаемой динамики изменений обычно рассматриваются экономические, технологические, конкурентные, рыночные, социальные, политические, международные факторы. При анализе внешней среды обрашают внимание…

  • Prev Next

    Вероятностно-детерминированные математические прогнозирующие модели графиков энергетических нагрузок являются комбинацией статистических и детерминированных моделей. Именно эти модели позволяют обеспечить наилучшую точность прогнозирования, адаптивность к изменяющемуся процессу электропотребления .

    Они базируются на концепции стандартизованного моделирования нагрузки , т.е. аддитивной декомпозиции фактической нагрузки на стандартизованный график (базовой составляющей, детерминированного тренда) и остаточную составляющую :

    где t – время внутри суток; d – номер суток, например, в году.

    В стандартной составляющей при моделировании также осуществляют аддитивное выделение отдельных составляющих, учитывающих : изменение средней сезонной нагрузки ; недельную цикличность изменения электропотребления ; трендовую составляющую, моделирующую дополнительные эффекты, связанные с изменением времени восхода и захода солнца от сезона к сезону ; составляющую, учитывающую зависимость электропотребления от метеофакторов , в частности температуры и т.п.

    Рассмотрим подробнее подходы моделирования отдельных составляющих на основе упомянутых выше детерминированных и статистических моделей .

    Моделирование средней сезонной нагрузки зачастую осуществляют с использованием простого скользящего усреднения :

    где N – число обычных регулярных (рабочих дней), содержащихся в n прошедших неделях. , так как из недель исключаются «специальные», «нерегулярные дни», праздники и т.п. Осуществляется ежедневное обновление путем усреднения данных за n прошедших недель.

    Моделирование недельной цикличности также осуществляют скользящим усреднением вида

    с обновлением еженедельно путем усреднения данных за n прошедших недель, либо используя экспоненциально взвешенное скользящее среднее :

    где – эмпирически определяемый параметр сглаживания ().

    В работе для моделирования и используется семь составляющих , для каждого дня недели, причем каждое определяется отдельно с использованием модели экспоненциального сглаживания.

    Авторы работы для моделирования используют двойное экспоненциальное сглаживание типа Холта – Винтерса. В работе для моделирования используют гармоническое представление вида

    с параметрами , оцениваемыми по эмпирическим данным (значение «52» определяет число недель в году). Однако задача адаптивного оперативного оценивания этих параметров в указанной работе не решена полностью.

    Моделирование , в ряде случаев осуществляют с помощью конечных рядов Фурье : с недельным периодом , с суточным периодом , либо с раздельным моделированием рабочих и выходных дней соответственно с периодами пять и двое суток :

    Для моделирования трендовой составляющей используют либо полиномы 2-го – 4-го порядков , либо различные нелинейные эмпирические функции, например, вида :

    где – полином четвертой степени, описывающий относительно медленные сглаженные изменения нагрузки в дневные часы по сезонам; , , – функции моделирующие эффекты, связанные с изменением времени восхода и захода солнца по сезонам.

    Для учета зависимости электропотребления от метеофакторов в ряде случаев вводят дополнительную составляющую . В работе теоретически обосновывается включение в модель, но возможности моделирования температурного эффекта при этом рассматриваются лишь в ограниченном объеме . Так, для представления температурной составляющей для условий Египта используется полиномиальная модель

    где – температура воздуха в t-й час.

    Применяется регрессионный метод для «нормализации» максимумов и провалов реализации процесса с учетом температуры, при этом нормализованные данные представляются одномерной моделью авторегрессии интегрированного скользящего среднего (АРИСС) .

    Используют также для моделирования с учетом температуры рекурсивный фильтр Калмана, в который включаются внешние факторы – прогноз температуры. Либо используют в краткосрочном диапазоне полиномиальную кубическую интерполяцию часовых нагрузок и при этом в модели учитывают влияние температуры .

    Для учета среднесуточных прогнозов температуры, различных метеоусловий на реализации анализируемого процесса и в то же время повышения устойчивости модели предлагается использовать особую модификацию модели скользящего среднего

    ,

    где для различных метеоусловий, связанных с вероятностями формируется ряд из m графиков нагрузки , а прогноз определяется как условное математическое ожидание. Вероятности уточняются по методу Байеса по мере поступления новых фактических значений нагрузки и факторов в течении суток.

    Моделирование остаточной составляющей осуществляют как с использованием одномерных моделей, так и многомерных, учитывающих метеорологические и другие внешние факторы. Так, в качестве одномерной (однофакторной) модели зачастую используют модель авторегрессии АР(k) порядка k

    ,

    где – остаточный белый шум. Для прогнозирования часовых (получасовых) отсчетов используют модели АР(1), АР(2) и даже АР(24) . Даже в случае использования обобщенной модели АРИСС для все равно ее применение сводится к моделям АР(1), АР(2) как для пятиминутных , так и часовых измерений нагрузки .

    Иной однофакторной моделью моделирования составляющей является модель простого или двойного экспоненциального сглаживания . Эта модель позволяет эффективно выявлять краткосрочные тренды в процессе изменения остаточной нагрузки . Простота, экономичность, рекурсивность и вычислительная эффективность обеспечивают методу экспоненциального сглаживания широкое применение. С помощью простого экспоненциального сглаживания по при различных постоянных и определяют две экспоненциальные средние и . Прогноз остаточной составляющей с упреждением определяют по формуле

    Стохастические модели

    Как уже говорилось выше, стохастические модели – это модели вероятностные. При этом в результате расчетов можно сказать с достаточной степенью вероятности, каково будет значение анализируемого показателя при изменении фактора. Самое частое применение стохастических моделей – прогнозирование.

    Стохастическое моделирование является в определенной степени дополнением и углублением детерминированного факторного анализа. В факторном анализе эти модели используются по трем основным причинам:

    • необходимо изучить влияние факторов, по которым нельзя построить жестко детерминированную факторную модель (например, уровень финансового левериджа);
    • необходимо изучить влияние сложных факторов, которые не поддаются объединению в одной и той же жестко детерминированной модели;
    • необходимо изучить влияние сложных факторов, которые не могут быть выражены одним количественным показателем (например, уровень научно-технического прогресса).

    В отличие от жестко детерминированного стохастический подход для реализации требует ряда предпосылок:

    1. наличие совокупности;
    2. достаточный объем наблюдений;
    3. случайность и независимость наблюдений;
    4. однородность;
    5. наличие распределения признаков, близкого к нормальному;
    6. наличие специального математического аппарата.

    Построение стохастической модели проводится в несколько этапов:

    • качественный анализ (постановка цели анализа, определение совокупности, определение результативных и факторных признаков, выбор периода, за который проводится анализ, выбор метода анализа);
    • предварительный анализ моделируемой совокупности (проверка однородности совокупности, исключение аномальных наблюдений, уточнение необходимого объема выборки, установление законов распределения изучаемых показателей);
    • построение стохастической (регрессионной) модели (уточнение перечня факторов, расчет оценок параметров уравнения регрессии, перебор конкурирующих вариантов моделей);
    • оценка адекватности модели (проверка статистической существенности уравнения в целом и его отдельных параметров, проверка соответствия формальных свойств оценок задачам исследования);
    • экономическая интерпретация и практическое использование модели (определение пространственно-временной устойчивости построенной зависимости, оценка практических свойств модели).

    Основные понятия корреляционного и регрессионного анализа

    Корреляционный анализ - совокупность методов математической статистики, позволяющих оценивать коэффициенты, характеризующие корреляцию между случайными величинами, и проверять гипотезы об их значениях на основе расчета их выборочных аналогов.

    Корреляционным анализом называется метод обработки статистических данных, заключающийся в изучении коэффициентов (корреляции) между переменными.

    Корреляционная связь (которую также называют неполной, или статистической) проявляется в среднем, для массовых наблюдений, когда заданным значениям зависимой переменной соответствует некоторый ряд вероятных значений независимой переменной. Объяснение тому – сложность взаимосвязей между анализируемыми факторами, на взаимодействие которых влияют неучтенные случайные величины. Поэтому связь между признаками проявляется лишь в среднем, в массе случаев. При корреляционной связи каждому значению аргумента соответствуют случайно распределенные в некотором интервале значения функции .

    В наиболее общем виде задача статистики (и, соответственно, экономического анализа) в области изучения взаимосвязей состоит в количественной оценке их наличия и направления, а также характеристике силы и формы влияния одних факторов на другие. Для ее решения применяются две группы методов, одна из которых включает в себя методы корреляционного анализа, а другая – регрессионный анализ. В то же время ряд исследователей объединяет эти методы в корреляционно-регрессионный анализ, что имеет под собой некоторые основания: наличие целого ряда общих вычислительных процедур, взаимодополнения при интерпретации результатов и др.

    Поэтому в данном контексте можно говорить о корреляционном анализе в широком смысле – когда всесторонне характеризуется взаимосвязь. В то же время выделяют корреляционный анализ в узком смысле – когда исследуется сила связи – и регрессионный анализ, в ходе которого оцениваются ее форма и воздействие одних факторов на другие.

    Задачи собственнокорреляционного анализа сводятся к измерению тесноты связи между варьирующими признаками, определению неизвестных причинных связей и оценке факторов оказывающих наибольшее влияние на результативный признак.

    Задачирегрессионного анализа лежат в сфере установления формы зависимости, определения функции регрессии, использования уравнения для оценки неизвестных значении зависимой переменной.

    Решение названных задач опирается на соответствующие приемы, алгоритмы, показатели, что дает основание говорить о статистическом изучении взаимосвязей.

    Следует заметить, что традиционные методы корреляции и регрессии широко представлены в разного рода статистических пакетах программ для ЭВМ. Исследователю остается только правильно подготовить информацию, выбрать удовлетворяющий требованиям анализа пакет программ и быть готовым к интерпретации полученных результатов. Алгоритмов вычисления параметров связи существует множество, и в настоящее время вряд ли целесообразно проводить такой сложный вид анализа вручную. Вычислительные процедуры представляют самостоятельный интерес, но знание принципов изучения взаимосвязей, возможностей и ограничений тех или иных методов интерпретации результатов является обязательным условием исследования.

    Методы оценки тесноты связи подразделяются на корреляционные (параметрические) и непараметрические. Параметрические методы основаны на использовании, как правило, оценок нормального распределения и применяются в случаях, когда изучаемая совокупность состоит из величин, которые подчиняются закону нормального распределения. На практике это положение чаще всего принимается априори. Собственно, эти методы – параметрические – и принято называть корреляционными.

    Непараметрические методы не накладывают ограничений на закон распределения изучаемых величин. Их преимуществом является и простота вычислений.

    Автокорреляция - статистическая взаимосвязь между случайными величинами из одного ряда, но взятых со сдвигом, например, для случайного процесса - со сдвигом по времени.

    Парная корреляция



    Простейшим приемом выявления связи между двумя признаками является построение корреляционной таблицы:

    \ Y \ X \ Y 1 Y 2 ... Y z Итого Y i
    X 1 f 11 ... f 1z
    X 1 f 21 ... f 2z
    ... ... ... ... ... ... ...
    X r f k1 k2 ... f kz
    Итого ... n
    ... -

    В основу группировки положены два изучаемых во взаимосвязи признака – Х и У. Частоты f ij показывают количество соответствующих сочетаний Х и У.

    Если f ij расположены в таблице беспорядочно, можно говорить об отсутствии связи между переменными. В случае образования какого-либо характерного сочетания f ij допустимо утверждать о связи между Х и У. При этом, если f ij концентрируется около одной из двух диагоналей, имеет место прямая или обратная линейная связь.

    Наглядным изображением корреляционной таблице служит корреляционное поле. Оно представляет собой график, где на оси абсцисс откладывают значения Х, по оси ординат – У, а точками показывается сочетание Х и У. По расположению точек, их концентрации в определенном направлении можно судить о наличии связи.

    Корреляционным полем называется множество точек {X i , Y i } на плоскости XY (рисунки 6.1 - 6.2).

    Если точки корреляционного поля образуют эллипс, главная диагональ которого имеет положительный угол наклона (/), то имеет место положительная корреляция (пример подобной ситуации можно видеть на рисунке 6.1).

    Если точки корреляционного поля образуют эллипс, главная диагональ которого имеет отрицательный угол наклона (\), то имеет место отрицательная корреляция (пример изображен на рисунке 6.2).

    Если же в расположении точек нет какой-либо закономерности, то говорят, что в этом случае наблюдается нулевая корреляция.

    В итогах корреляционной таблицы по строкам и столбцам приводятся два распределения – одно по X, другое по У. Рассчитаем для каждого Х i среднее значение У, т.е. , как

    Последовательность точек (X i , ) дает график, который иллюстрирует зависимость среднего значения результативного признака У от факторного X, – эмпирическую линию регрессии, наглядно показывающую, как изменяется У по мере изменения X.

    По существу, и корреляционная таблица, и корреляционное поле, и эмпирическая линия регрессии предварительно уже характеризуют взаимосвязь, когда выбраны факторный и результативный признаки и требуется сформулировать предположения о форме и направленности связи. В то же время количественная оценка тесноты связи требует дополнительных расчетов.

    МАТЕМАТИЧЕСКИЕ МОДЕЛИ

    2.1. Постановка задачи

    Детерминированные модели описывают процессы в детерминированных системах.

    Детерминированные системы характеризуются однозначным соответствием (соотношением) между входными и выходными сигналами (процессами).

    Если задан входной сигнал такой системы, известны ее характеристикаy = F(x), а также ее состояние в начальный момент времени, то значение сигнала на выходе системы в любой момент времени определяется однозначно (рис. 2.1).

    Существует два подхода к исследованию физических систем: детерминированный и стохастический.

    Детерминированный подход основан на применении детерминированной математической модели физической системы.

    Стохастический подход подразумевает использование стохастической математической модели физической системы.

    Стохастическая математическая модель наиболее адекватно (достоверно) отображает физические процессы в реальной системе, функцио-нирующей в условиях влияния внешних и внутренних случайных факторов (шумов).

    2.2. Случайные факторы (шумы)

    Внутренние факторы

    1) температурная и временная нестабильность электронныхкомпонентов;

    2) нестабильность питающего напряжения;

    3) шум квантования в цифровых системах;

    4) шумы в полупроводниковых приборах в результате неравномерности процессов генерации и рекомбинации основных носителей заряда;

    5) тепловой шум в проводниках за счет теплового хаотического движения носителей заряда;

    6) дробовой шум в полупроводниках, обусловленный случайным характером процесса преодоления носителями потенциального барьера;

    7) фликкер – шум, обусловленный медленными случайными флуктуациями физико-химического состояния отдельных областей материалов электронных устройств и т. д.

    Внешние факторы

    1) внешние электрические и магнитные поля;

    2) электромагнитные бури;

    3) помехи, связанные с работой промышленности и транспорта;

    4) вибрации;

    5) влияние космических лучей, тепловое излучение окружающих объектов;

    6) колебания температуры, давления, влажности воздуха;

    7) запыленность воздуха и т. д.

    Влияние (наличие) случайных факторов приводит к одной из ситуаций, приведенных на рис. 2.2:

    Следовательно, предположение о детерминированном характере физической системы и описание ее детерминированной математической моделью являетсяидеализацией реальной системы. Фактически имеем ситуацию, изображенную на рис. 2.3.

    Детерминированная модель допустима в следующих случаях:

    1) влияние случайных факторов столь незначительно, что пренебрежение ими не приведет к ощутимому искажению результатов моделирования.

    2) детерминированная математическая модель отображает реальные физические процессы в усредненном смысле.

    В тех задачах, где не требуется высокой точности результатов моделирования, предпочтение отдается детерминированной модели. Это объясняется тем, что реализация и анализ детерминированной математической модели много проще, чем стохастической.

    Детерминированная модель недопустима в следующих ситуациях: случайные процессы ω(t) соизмеримы с детерминированными x(t). Результаты, полученные с помощью детерминированной математической модели, будут неадекватными реальным процессам. Это относится к системам радиолокации, к системам наведения и управления летательными аппаратами, к системам связи, телевидению, к системам навигации, к любым системам, работающим со слабыми сигналами, в электронных устройствах контроля, в прецизионных измерительных устройствах и т. д.

    В математическом моделировании случайный процесс часто рассматривают как случайную функцию времени, мгновенные значения которой являются случайными величинами.

    2.3. Суть стохастической модели

    Стохастическая математическая модель устанавливает вероятностные соотношения между входом и выходом системы . Такая модель позволяет сделать статистические выводы о некоторых вероятностных характеристиках исследуемого процесса y(t):

    1) математическое ожидание (среднее значение):

    2) дисперсия (мера рассеивания значений случайного процесса y(t) относительно его среднего значения):

    3) среднее квадратичное отклонение:

    (2.3)

    4) корреляционная функция (характеризует степень зависимости – корреляции – между значениями процесса y(t), отстоящими друг от друга на время τ):

    5) спектральная плотность случайного процесса y(t) описывает его частотные свойства:

    (2.5)

    преобразование Фурье.

    Стохастическаямодель формируется на основе стохастического дифференциального либо стохастического разностного уравнения.

    Различают три типа стохастических дифференциальных уравнений: со случайными параметрами, со случайными начальными условиями, со случайным входным процессом (случайной правой частью). Приведем пример стохастического дифференциального уравнения третьего типа:

    , (2.6)

    где
    аддитивный случайный процесс – входной шум.

    В нелинейных системах присутствуют мультипликативные шумы .

    Анализ стохастических моделей требует использования довольно сложного математического аппарата, особенно для нелинейных систем.

    2.4. Понятие типовой модели случайного процесса. Нормальный (гауссовский) случайный процесс

    При разработке стохастической модели важное значение имеет определение характера случайного процесса
    . Случайный процесс может быть описан набором (последовательностью) функций распределения – одномерной, двумерной, … , n-мерной или соответствующими плотностями распределения вероятности. В большинстве практических задач ограничиваются определением одномерного и двумерного законов распределения.

    В некоторых задачах характер распределения
    априорно известен.

    В большинстве случаев, когда случайный процесс
    представляет собой результат воздействия на физическую систему совокупности значительного числа независимых случайных факторов, полагают, что
    обладает свойствами нормального (гауссовского) закона распределения . В этом случае говорят, что случайный процесс
    заменяется его типовой моделью – гауссовским случайным процессом. Одномерная плотность распределения вероятности нормального (гауссовского)случайного процесса приведена на рис. 2.4.

    Нормальное (гауссовское) распределение случайного процесса обладает следующими свойствами .

    1. Значительное количество случайных процессов в природе подчиняются нормальному (гауссовскому) закону распределения.

    2. Возможность достаточно строго определить (доказать) нормальный характер случайного процесса.

    3. При воздействии на физическую систему совокупности случайных факторов с различными законами распределения их суммарный эффект подчиняется нормальному закону распределения (центральная предельная теорема ).

    4. При прохождении через линейную систему нормальный процесс сохраняет свои свойства в отличие от других случайных процессов.

    5. Гауссовский случайный процесс может быть полностью описан с помощью двух характеристик – математического ожидания и дисперсии.

    Впроцессе моделирования часто возникает задача –определить характер распределения некоторой случайной величины x по результатам её многократных измерений (наблюдений)
    .Для этого составляют гистограмму – ступенчатый график, позволяющий по результатам измерения случайной величины оценить её плотность распределения вероятности.

    При построении гистограммы диапазон значений случайной величины
    разбивают на некоторое количество интервалов, а затем подсчитывают частоту (процент) попадания данных в каждый интервал. Таким образом, гистограмма отображает частоту попадания значений случайной величины в каждый из интервалов. Если аппроксимировать построенную гистограмму непрерывной аналитической функцией, то эта функция может рассматриваться как статистическая оценка неизвестной теоретической плотности распределения вероятности.

    При формировании непрерывных стохастических моделей используется понятие «случайный процесс». Разработчики разностных стохастических моделей оперируют понятием «случайная последовательность».

    Особую роль в теории стохастического моделирования играют марковские случайные последовательности. Для них справедливо следующее соотношение для условной плотности вероятности:

    Из него следует, что вероятностный закон, описывающий поведение процесса в момент времени , зависит только от предыдущего состояния процесса в момент времени
    и абсолютно не зависит от его поведения в прошлом (т. е. в моменты времени
    ).

    Перечисленные выше внутренние и внешние случайные факторы (шумы) представляют собой случайные процессы различных классов. Другими примерами случайных процессов являются турбулентные течения жидкостей и газов, изменение нагрузки энергосистемы, питающей большое количество потребителей, распространение радиоволн при наличии случайных замираний радиосигналов, изменение координат частицы в броуновском движении, процессы отказов аппаратуры, поступления заявок на обслуживание, распределение числа частиц в малом объеме коллоидного раствора, задающее воздействие в радиолокационных следящих системах, процесс термоэлектронной эмиссии с поверхности металла и т. д.



    © 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация