Светотехнические величины: световой поток, сила света, освещенность, светимость, яркость. Световые величины

Главная / Земля

Все тела по характеру распределения в пространстве отраженного и пропущенного световых потоков можно разделить на три группы. К первой группе относятся тела с направленным отражением (зеркальные поверхности) или пропусканием (оконное стекло), ко второй группе относятся тела с рассеянным (диффузным) отражением (гипс, мел) или пропусканием (молочное или матовое стекло). К третьей группе относятся тела со смешанным отражением и пропусканием. Зная световые свойства тел, можно выбрать наиболее рациональный материал для изготовления светильников, отделки стен и потолков.

В природе нет ни одного материала, у которого хотя бы один из трех коэффициентов был равен 1. Наибольшее диффузное отражение имеют свежевыпавший снег (1) и химически чистые сернокислый барий и окись магния (0,96). Наиболее зеркальное отражение у чистого полированного серебра (0,92) и у специально обработанного алюминия (0,95).

Величина коэффициента пропускания указывается в справочниках для толщины материала в 1 см. К наиболее прозрачным материалам можно отнести особо чистый кварц и некоторые марки органического стекла, у которых = 0,99 см.

Вещество с коэффициентом поглощения, равным 1, называется «абсолютно черным телом».

рабочая поверхность: Поверхность, на которой непосредственно выполняется работа.

расчетная рабочая поверхность: Условная горизонтальная поверхность, на которой рассчитывают среднюю освещенность при проектировании освещения.

Примечание - Исключая особые случаи, расчетная рабочая поверхность выбирается на расстоянии 0,85 м от пола (при особых случаях 0,7-0,75 м)

6 Расчет освещенностиот светящей линии

4 Конструкция,принцип действия ламп накаливания,галогенных ламп накал.

Лампы накаливания являются типичными теплоизлучателями. Важнейшие свойства лампы накаливания – световая отдача и срок службы – определяются температурой спирали. При повышении температуры спирали возрастает яркость, но вместе с тем и сокращается срок службы. Сокращение срока службы является следствием того, что испарение материала (вольфрама), из которого сделана нить, при высоких температурах происходит быстрее, вследствие чего колба темнеет, а нить накала становится все тоньше и тоньше и в определенный момент расплавляется, после чего лампа выходит из строя. Светоотдача ламп накаливания составляет примерно от 9 до 19 лм/Вт. Далеко от идеальной светоотдачи (683 лм/Вт).

Спектр излучения сплошной, что обеспечивает идеальную цветопередачу. Зажигание происходит моментально.

Рис. 2.2. Конструкция лампы накаливания общего назначения:1 – колба; 2 – спираль; 3 – кручки (держатели); 4 – линза; 5 – штабик; 6 – электроды; 7 – лопатки; 8 – штангель; 9 – цоколь; 10 – изолятор; 11 – нижний контакт. Материалы: а – вольфрам; б – стекло; в – молибден; г – никель; д – медь; ж – цокольная мастика; з – латунь, сталь;и – свинец, олово

Тело накала изготавливается из вольфрамовой проволоки. Вольфрам имеет большую температуру плавления около 3400°С (3600 К), формоустойчив при высокой рабочей температуре, устойчив к механическим нагрузкам, обладает высокой пластичностью в горячем состоянии, что позволяет получить из него нити весьма малых диаметров путем протяжки проволоки через калиброванное отверстие. Нить накала накаляется до температуры 2500…2800°С.

В зависимости от типа ламп вводы могут быть одно-, двух- и трехзвенными. Вводы и держатели являются частью, так называемой ножки. Это стеклянный конструктивный узел лампы, который кроме вводов и держателей включает в себя стеклянный штабик 5 с линзой 4 . Ножка служит опорой для тела накала лампы и в месте с колбой 1 обеспечивает герметизацию лампы.

Для обеспечения нормальной работы раскаленной вольфрамовой нити накала необходимо изолировать ее от кислорода воздуха. Для этого в колбе создается вакуум (такие лампы называются вакуумные) или заполняется инертным газом (аргон, криптон, ксенон с разным содержанием азота или галогенные с добавкой к наполняющему газу определенной доли галогенов, например йода) - газополные лампы.

Достоинства: непосредственное включение в сеть, т.е. для своей работы не требует дополнительных аппаратов;невысокая стоимость; удобство в эксплуатации; относительно небольшие первоначальные затраты на осветительную установку;

большой выбор по конструктивным особенностям;

широкая номенклатура по номинальному напряжению и мощности ламп; стабильность светового потока за срок службы.

Недостатки:малый срок службы (для ламп общего назначения средний срок службы составляет 1000 ч);низкая световая отдача (20 лм/Вт);неэкономичные (более 90% электроэнергии затрачивается на нагрев тела накала и выделяется в виде тепла).

Галогенные лампы По структуре и принципу действия сравнимы с лампами накаливания, но они содержат в газе-наполнителе незначительные добавки галогенов (бром, хлор, фтор, йод) или их соединения. С помощью этих добавок возможно в определенном температурном интервале практически полностью устранить потемнение колбы (вызванное испарением атомов вольфрама нити накала). Поэтому размер колбы в галогенных лампах накаливания может быть сильно уменьшен.

Конструктивно не отличаются от ламп накаливания, но обладают более высоким сроком службы. Между сроком службы и световой отдачей существует прямая зависимость – чем больше светоотдача – тем меньше срок службы. Срок службы увеличен в галогенных лампах за счет иодно-вольфрамового цикла, возвращающего испарившийся вольфрам обратно на спираль.

Принцип действия галогенных ламп заключается в образовании на стенке колбы летучих соединений – галогенидов вольфрама, которые испаряются со стенки, разлагаются на теле накала и возвращают ему, таким образом, испарившиеся атомы вольфрама. В результате увеличивается срок службы ламп. Галогенные лампы по сравнению с обычными лампами накаливания имеют более стабильный световой поток, значительно меньшие размеры, более высокую термостойкость и механическую прочность благодаря применению кварцевой колбы.

В качестве галогенных добавок применяется йод, бром, хлор, фтор. Работа по подбору новых летучих химических соединений галогенов продолжается.

Энергетические величины являются исчерпывающими с энергетической точки зрения, но они не позволяют количественно оценить визуальное восприятие излучения. Восприятие глазом излучения видимого диапазона определяется не только мощностью воспринимаемого излучения, но также зависит от его спектрального состава (так как глаз - селективный приемник излучения). Световые характеристики описывают, как энергию излучения воспринимает зрительная система глаза с учетом спектрального состава света.

2.2.1. Световые величины

Световые величины обозначаются аналогично энергетическим величинам, но без индекса.

У световых величин нет никакой спектральной плотности, так как глаз не может провести спектральный анализ.

Сила света:

Если в энергетических величинах исходная единица - это энергия, то в световых величинах исходная единица - это сила света (так сложилось исторически). Сила света определяется аналогично энергетической силе света:

,
(2.2.1)

Сила излучения эталона (эталонный излучатель или черное тело) при температуре затвердевания платины () площадью .

Абсолютно черное тело - это тело, которое полностью поглощает падающую на него энергию. Модель абсолютно черного тела представляет собой полое тело, внутренняя поверхность которого выкрашена в черный цвет. Через небольшое отверстие поток излучения поступает внутрь тела, где в результате многократного отражения полностью поглощается (рис.2.2.1).

Рис.2.2.1. Абсолютно черное тело. Поток излучения:

Это поток, который излучается источником с силой света в телесном угле :
.

Освещенность:

Освещенность такой поверхности, на каждый квадратный метр которой равномерно падает поток в .

Светимость:

За единицу светимости принимают светимость такой поверхности, которая излучает с световой поток, равный .

Яркость:

За единицу яркости принята яркость такой плоской поверхности, которая в перпендикулярном направлении излучает силу света с .

2.2.2. Связь световых и энергетических величин

Связь световых и энергетических величин связь устанавливается через зрительное восприятие, которое хорошо изучено экспериментально. Функция видности - это относительная спектральная кривая эффективности монохроматического излучения. Она показывает, как глаз воспринимает излучение различного спектрального состава. - величина, обратно пропорциональная монохроматическим мощностям, дающим одинаковое зрительное ощущение, причем воздействие потока излучения с длиной волны условно принимается за единицу. Функция видности глаза максимальна в области желто-зеленого цвета (550-570 нм) и спадает до нуля для красных и фиолетовых лучей (рис.2.2.2).


Рис.2.2.2. Функция видности глаза.

Определить некую световую величину (поток, сила света, яркость, и т.д.), по спектральной плотности соответствующей ей энергетической величины можно по общей формуле:

(2.2.4)

где - функция видности глаза, 680 - экспериментально установленный коэффициент (поток излучения мощностью с длиной волны соответствует светового потока).

Например, сила света:
(2.2.5)
яркость:
(2.2.6)

Другие единицы измерения световых величин:
сила света
яркость
освещенность

Сопоставление энергетических и световых единиц:
Энергетические Световые
Наименование и обозначение Единицы измерения Наименование и обозначение Единицы измерения
поток излучения световой поток
энергетическая сила света сила света
энергетическая освещенность освещенность
энергетическая светимость светимость
энергетическая яркость яркость

2.2.3. Практические световые величины и их примеры

Световая экспозиция

Световая экспозиция - это величина энергии, приходящейся на единицу площади за некоторое время (освещенность, накопленная за время от до ):


,
(2.2.7)

Если освещенность постоянна, то экспозиция определяется выражением:

Блеск

Для протяженного источника характеристика, воспринимаемая глазом - яркость. Для точечного источника характеристика, воспринимаемая глазом - блеск (чем больше блеск, тем больше кажется яркость). Блеск - это величина, применяемая при визуальном наблюдении точечного источника света.

Блеск - это освещенность, создаваемая точечным источником в плоскости зрачка наблюдателя, .

Видимый блеск небесных тел оценивается в звездных величинах . Шкала звездных величин устанавливается следующим экспериментальным соотношением:

Чем меньше звездная величина, тем больше блеск. Например:
- освещенность рабочего места,
- освещенность от полной луны,
- порог блеска (примерно 8-ая звездная величина).

С точки зрения гигиены труда основной светотехнической характеристикой является освещенность (Е), которая представляет собой распределение светового потока (Ф) на поверхности площадью (S) и может быть выражена формулой

освещение ночной искусственный световой

Световой поток (Ф) - мощность лучистой энергии, оцениваемая по производимому ею зрительному ощущению. Измеряется в люменах (лм).

В физиологии зрительного восприятия важное значение придается не падающему потоку, а уровню яркости освещаемых объектов, которая отражается от освещаемой поверхности в направлении глаза. Зрительное восприятие определяется не освещенностью, а яркостью, под которой понимают характеристику светящихся тел, равную отношению силы света в каком-либо направлении к площади проекции светящейся поверхности на плоскость, перпендикулярную к этому направлению. Яркость измеряется в нитах (нт). Яркость освещенных поверхностей зависит от их световых свойств, степени освещенности и угла, под которым поверхность рассматривается.

Сила света - световой поток, распространяющийся внутри телесного угла, равного 1 стерадианту. Единица силы света - кандела (кд).

Световой поток, падающий на поверхность, частично отражается, поглощается или пропускается сквозь освещаемое тело. Поэтому световые свойства освещаемой поверхности характеризуются также следующими коэффициентами:

  • 1) коэффициент отражения - отношение отраженного телом светового потока к падающему;
  • 2) коэффициент пропускания - отношение светового потока, прошедшего через среду, к падающему;
  • 3) коэффициент поглощения - отношение поглощенного телом светового потока к падающему.

Необходимые уровни освещенности нормируются в соответствии со СНиП 23-05-95 "Естественное и искусственное освещение" в зависимости от точности выполняемых производственных операций, световых свойств рабочей поверхности и рассматриваемой детали, системы освещения".

К гигиеническим требованиям, отражающим качество производственного освещения, относятся:

  • 1) равномерное распределение яркостей в поле зрения и ограничение теней;
  • 2) ограничение прямой и отраженной блесткости;
  • 3) ограничение или устранение колебаний светового потока.

Равномерное распределение яркости в поле зрения имеет важное значение для поддержания работоспособности человека. Если в поле зрения постоянно находятся поверхности, значительно отличающиеся по яркости (освещенности), то при переводе взгляда с ярко - на слабоосвещенную поверхность глаз вынужден переадаптироваться. Частая переадаптация ведет к развитию утомления зрения и затрудняет выполнение производственных операций.

Степень неравномерности определяется коэффициентом неравномерности - отношением максимальной освещенности к минимальной. Чем выше точность работ, тем меньше должен быть коэффициент неравномерности.

Чрезмерная слепящая яркость (блесткость) - свойство светящихся поверхностей с повышенной яркостью нарушать условия комфортного зрения, ухудшать контрастную чувствительность или оказывать одновременно оба эти действия.

Светильники - источники света, заключенные в арматуру, - предназначены для правильного распределения светового потока и защиты глаз от чрезмерной яркости источника света. Арматура защищает источник света от механических повреждений, а также дыма, пыли, копоти, влаги, обеспечивает крепление и подключение к источнику питания.

По светораспределению светильники подразделяются на светильники прямого, рассеянного и отраженного света. Светильники прямого света более 80% светового потока направляют в нижнюю полусферу за счет внутренней отражающей эмалевой поверхности. Светильники рассеянного света излучают световой поток в обе полусферы: одни - 40-60% светового потока вниз, другие - 60-80% вверх. Светильники отраженного света более 80% светового потока направляют вверх на потолок, а отражаемый от него свет направляется вниз в рабочую зону.

Для защиты глаз от блесткости светящейся поверхности ламп служит защитный угол светильника - угол, образованный горизонталью от поверхности лампы (края светящейся нити) и линией, проходящей через край арматуры.

Светильники для люминисцентных ламп в основном имеют прямое светораспределение. Мерой защиты от прямой блесткости служат защитный угол, экранирующие решетки, рассеиватели из прозрачной пластмассы или стекла.

С помощью соответствующего размещения светильников в объеме рабочего помещения создается система освещения. Общее освещение может быть равномерным или локализованным. Общее размещение светильников (в прямоугольном или шахматном порядке) для создания рациональной освещенности производят при выполнении однотипных работ по всему помещению, при большой плотности рабочих мест. Общее локализованное освещение предусматривается для обеспечения на ряде рабочих мест освещенности в заданной плоскости (термическая печь, кузнечный молот и др.), когда около каждого из них устанавливается дополнительный светильник (например, кососвет), а также при выполнении на участках цеха различных по характеру работ или при наличии затеняющего оборудования.

Местное освещение предназначено для освещения рабочей поверхности и может быть стационарным и переносным, для него чаще применяются лампы накаливания, так как люминисцентные лампы могут вызвать стробоскопический эффект.

Аварийное освещение устраивается в производственных помещениях и на открытой территории для временного продолжения работ в случае аварийного отключения рабочего освещения (общей сети). Оно должно обеспечивать не менее 5% освещенности от нормируемой при системе общего освещения.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Установки электрического освещения в помещениях. Принцип действия и недостатки источников света. Ламы накаливания, люминесцентные лампы низкого и высокого давления, галогенные лампы, светодиодные лампы. Обслуживание осветительных электроустановок.

    курсовая работа , добавлен 03.01.2013

    Классификация и основные параметры электрических источников света. Лампы накаливания. Люминесцентные лампы низкого и высокого давления. Схемы питания люминесцентных ламп. Основные светотехнические величины. Техника безопасности.

    курсовая работа , добавлен 21.09.2006

    Путь развития искусственного освещения. Проектирование англичанином Деларю первой лампы накаливания (с платиновой спиралью). Г. Гебель - изобретатель электрической лампы накаливания. Томас Эдисон - запатентовал лампу накаливания с угольной нитью.

    презентация , добавлен 12.08.2012

    Стандарты измерения интенсивности света. Основные единицы измерения интенсивности света. Телесный угол, световой поток, освещенность в точке поверхности. Вторичная яркость. Основные показатели светимости. Световая энергия. Сущность фотометрического тела.

    презентация , добавлен 26.10.2013

    Устройство фотометрической головки. Световой поток и мощность источника света. Определение силы света, яркости. Принцип фотометрии. Сравнение освещенности двух поверхностей, создаваемой исследуемыми источниками света.

    лабораторная работа , добавлен 07.03.2007

    Система электрического освещения – массовый потребитель электрической энергии. Возможность применения электрической дуги для освещения. Первые лампы накаливания: конструкции с нитью накаливания из различных материалов. Сравнение эффективности ламп.

    презентация , добавлен 21.11.2011

    Исследование основных первичных источников света. Типичные источники излучения. Прямой солнечный свет. Виды ламп накаливания общего и специального назначения. Сущность и основные показатели световой отдачи. Излучение черного тела. Лампы с отражателем.

    презентация , добавлен 26.10.2013

    Проектирование системы офисного помещения с помощью программного пакета DIALux. Расчет освещения комнаты, его особенности. Мощность светильников, их классификация. План расположения светильников. Общий световой поток. Удельная подсоединенная мощность.

    курсовая работа , добавлен 24.05.2014

К световым свойствам материалов относят свойство тел отражать, поглощать и пропускать падающий на них световой поток, изменять спектральный состав падающего на них светового потока при его отражении или пропускании.

Все окружающие нас тела подразделяются на прозрачные и непрозрачные. Прозрачными называют тела и предметы, через которые проходит большая часть световых лучей, например: стекло, воздух, вода. Непрозрачными называют такие тела и предметы, которые не пропускают видимого света. Такие тела отражают и поглощают весь падающий световой поток. Есть тела, которые занимают промежуточное место в этой классификации. Они пропускают свет, но ясно видеть предметы через них нельзя. Такие тела называют просвечивающимися. К ним относятся, например, матовое и молочное стекла, промасленная бумага и др.

Падающий на тело световой поток в общем случае распределяется на три части. Часть светового потока проходит через тело, часть поглощается, а остальная часть отражается. Общее поглощение светового потока характеризуется коэффициентом поглощения, который равен отношению поглощенного телом или средой светового потока к падающему световому потоку на это тело или среду. Коэффициент поглощения реальных тел всегда меньше единицы; только лишь идеально поглощающее тело (так называемое абсолютно черное тело) будет иметь коэффициент поглощения, равный единице.

Способность тела отражать падающий на него световой поток характеризуется коэффициентом отражения, который равен отношению отраженного и падающего световых потоков. Различают следующие виды отражения

1. Направленное, или зеркальное, отражение получается от хорошо обработанных полированных поверхностей. Направленное отражение характеризуется тем, что телесный угол, в котором заключены падающий и отраженный световой потоки, сохраняется одним и тем же.

2. Направленно-рассеянным отражением называется такое рассеянное отражение при котором телесный угол, в котором концентрируется отраженный поток, больше телесного угла падающего потока. При этом направление оси телесного угла отраженного потока соответствует закону зеркального отражения. Материалы, обладающие таким отражением, называются полуматовыми; такое отражение свойственно неполированному металлу.

3. Полное рассеянное (диффузное) отражение получается от тел, обладающих способностью отражать свет во все стороны (телесный угол отраженного потока 2π), независимо от направления падающего на него светового потока. Такие тела (поверхности) называют диффузными и при наблюдении кажутся одинаково яркими со всех направлений. Примером таких поверхностей служат матовые отражающие поверхности, молочные, рассеивающие стекла.



4. Смешанное отражение характеризуется наличием направленного и рассеянного отражения одновременно.

При посадке самолета на освещенную полосу пилот видит поверхность полосы благодаря отраженному от нее световому потоку. Способность покрытий отражать свет оценивается коэффициентом яркости . Этот коэффициент равен отношению истинной яркости в заданном направлении к яркости совершенно рассеивающей поверхности в случае, когда на указанные поверхности падает один и тот же световой поток. Максимальные значения коэффициентов яркости сухих покровов при наблюдении по направлению падающих лучей получаются в 2-3 раза больше, чем в противоположном направлении. Коэффициент яркости тем больше, чем светлее полоса и чем больше ее шероховатость. Значения коэффициента яркости для мокрых покровов будет больше в направлении обратном направлению падения света. В этом случае появляется большая составляющая зеркального отражения. Чем меньше угол падения световых лучей к поверхности покровов, тем больше коэффициент яркости, причем с уменьшением углов падения света к поверхности покровов значение коэффициента яркости резко возрастает.

Прохождение света через прозрачное тело (среду), по аналогии с рассеиванием, характеризуется четырьмя возможными видами пропускания, представленными на рис.2.5

Отношение светового потока F τ , прошедшего через тело или среду, к падающему световому потоку F на это тело или среду называется коэффициентом пропускания (τ):

τ =

где: 𝝀 1 , 𝝀 2 соответственно минимальная и максимальная длина волны падающего светового потока;



Спектральный коэффициент пропускания, который представляет собой относительную величину пропускания какой-либо среды для монохроматического потока с длиной волны 𝝀.


Для различных длин волн коэффициенты пропускания и, аналогично, отражения в общем случае неодинаковы. Белые поверхности и бесцветные прозрачные среды обладают способностью отражать или пропускать падающие на них излучения одинаково для всех длин волн. В тоже время существуют поверхности и тела, которые по-разному отражают или пропускают различные волны, такие тела называют цветными. Если на это тело падает белый свет, то отраженный или прошедший через него свет будет не белый, а цветной. Такие материалы или среды характеризуются спектральными кривыми пропускания или отражения.

Среди таких материалов широкое распространение в авиации получили светофильтры, которые обычно представляют собой пластинки или соответствующие колпаки, изготовленные из цветного стекла. Характеристики светофильтра обязательно рассматриваются совместно со спектральной характеристикой источника света. Светофильтр выделяет ту часть спектра излучения, которая лежит в полосе пропускания фильтра. На рис.2.6 в качестве примера приведен расчет светового потока после прохождения фильтра.

На рисунке показаны: кривая 1 представляет излучение источника света в зависимости от длины волны; кривая 2- спектральное пропускание светофильтра. Кривая 3- световой поток источника, воспринимаемый глазом, она построена путем умножения кривой 1 на кривую относительной видности. Светофильтр будет пропускать только часть светового потока кривой 3 в соответствии со своей характеристикой 2. Этой части будет соответствовать кривая 4, которая получена умножением кривой 3 на кривую 2. Штриховка области ограниченной кривой 4 соответствует световому потоку, прошедшему через фильтр.

Пороговая освещенность

Световой сигнал создает определенную освещенность на зрачке наблюдателя. Минимальная величина освещенности, ниже которой человеческий глаз не реагирует на свет, называется пороговой освещенностью. Пороговая освещенность зависит от цвета излучения сигнала, яркости фона, на котором наблюдается сигнал, индивидуальных особенностей глаза наблюдателя. Величина пороговой освещенности даже у одного и того же наблюдателя различается в зависимости от его психологического состояния, времени в течение которого наблюдается сигнал и других причин. Для исключения разброса характеристик зрения отдельных наблюдателей вводится коэффициент запаса. К факторам влияющим на выбор коэффициента запаса относят также:

а) неизвестность направления, в котором следует наблюдать сигналы;

б) наблюдение сигналов через стекла машин;

в) шум двигателей, вибрация, кислородное голодание и другие причины.

Очень сильное влияние на величину пороговой освещенности оказывает яркость фона на котором регистрируется световой сигнал. Наименьшая пороговая освещенность получается при наблюдении светового сигнала на совершенно темном фоне, соответствующим яркости порядка 10 -6 нит. Эта величина носит название абсолютного порога. Освещенность зрачка при этом 0,85 лк, с учетом коэффициента запаса расчетная пороговая освещенность – 8,5 лк. По мере увеличения яркости фона величина пороговой освещенности увеличивается, а дальность видимости сигналов уменьшается.

Расчет дальности видимости световых сигналов ведется для наиболее неблагоприятных условий. К такому случаю относят наблюдение в ясную лунную ночь на фоне снежного покрова. Яркость фона в этом случае составит 5 нт, освещенность - 5 лк. Расчетная пороговая освещенность для яркости фона 5 нт составляет 2 лк, т.е. имеет коэффициент запаса равный четырем.

Различают световой и цветовой пороги освещенности. Цветовой порог это минимальная освещенность глаза при котором он уверенно начинает воспринимать цвет сигнала. Под световым порогом цветного источника света понимается та минимальная освещенность на глазу наблюдателя, при которой только начинается наблюдаться световой сигнал без различия цвета сигнала. Уровень освещенности для цветового порога заметно выше чем для светового. Минимальным цветовым порогом обладает красный цвет, что явилось одной из причин применения красных светофильтров в заградительных огнях, обозначающих летные препятствия.


На рис. 2.7 показаны зависимости пороговых освещенностей (Е пор) от яркости фона (L ф): 1-абсолютный световой порог; 2- расчетный световой порог; 3- расчетный порог для красного огня; 4 -расчетный порог для зеленого огня; 5- расчетный порог для желтого огня. На рисунке также указаны яркости фона для различных состояний окружающего покрова.



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация