Комплексные случайные функции и их характеристики. Характеристики случайных процессов. Понятие случайной функции

Главная / Земля

Мы имели много случаев убедиться в том, какое большое значение в теории вероятностей имеют основные числовые характеристики случайных величин: математическое ожидание и дисперсия - для одной случайной величины, математические ожидания и корреляционная матрица - для системы случайных величин. Искусство пользоваться числовыми характеристиками, оставляя по возможности в стороне законы распределения, - основа прикладной теории вероятностей. Аппарат числовых характеристик представляет собой весьма гибкий и мощный аппарат, позволяющий сравнительно просто решать многие практические задачи.

Совершенно аналогичным аппаратом пользуются и в теории случайных функций. Для случайных функций также вводятся простейшие основные характеристики, аналогичные числовым характеристикам случайных величин, и устанавливаются правила действий с этими характеристиками. Такой аппарат оказывается достаточным для решения многих практических задач.

В отличие от числовых характеристик случайных величин, предоставляющих собой определенные числа, характеристики случайных функций представляют собой в общем случае не числа, а функции.

Математическое ожидание случайной функции определяется следующим образом. Рассмотрим сечение случайной функции при фиксированном . В этом сечении мы имеем обычную случайную величину; определим ее математическое ожидание. Очевидно, в общем случае оно зависит от , т. е. представляет собой некоторую функцию :

. (15.3.1)

Таким образом, математическим ожиданием случайной функции называется неслучайная функция , которая при каждом значении аргумента равна математическому ожиданию соответствующего сечения случайной функции.

По смыслу математическое ожидание случайной функции есть некоторая средняя функция, около которой различным образом варьируются конкретные реализации случайной функции.

На рис. 15.3.1 тонкими линиями показаны реализации случайной функции, жирной линией - ее математическое ожидание.

Аналогичным образом определяется дисперсия случайной функции.

Дисперсией случайной функции называется неслучайная функция , значение которой для каждого равно дисперсии соответствующего сечения случайной функции:

. (15.3.2)

Дисперсия случайной функции при каждом характеризует разброс возможных реализаций случайной функции относительно среднего, иными словами, «степень случайности» случайной функции.

Очевидно, есть неотрицательная функция. Извлекая из нее квадратный корень, получим функцию - среднее квадратическое отклонение случайной функции:

. (15.3.3)

Математическое ожидание и дисперсия представляют собой весьма важные характеристики случайной функции; однако для описания основных особенностей случайной функции этих характеристик недостаточно. Чтобы убедиться в этом, рассмотрим две случайные функции и , наглядно изображенные семействами реализаций на рис. 15.3.2 и 15.3.3.

У случайных функций и примерно одинаковые математические ожидания и дисперсии; однако характер этих случайных функций резко различен. Для случайной функции (рис. 15.3.2) характерно плавное, постепенное изменение. Если, например, в точке случайная функция приняла значение, заметно превышающее среднее, то весьма вероятно, что и в точке она также примет значение больше среднего. Для случайной функции характерна ярко выраженная зависимость между ее значениями при различных . Напротив, случайная функция (рис. 15.3.3) имеет резко колебательный характер с неправильными, беспорядочными колебаниями. Для такой случайной функции характерно быстрое затухание зависимости между ее значениями по мере увеличения расстояния по между ними.

Очевидно, внутренняя структура обоих случайных процессов совершенно различна, но это различие не улавливается ни математическим ожиданием, ни дисперсией; для его описания необходимо вести специальную характеристику. Эта характеристика называется корреляционной функцией (иначе - автокорреляционной функцией). Корреляционная функция характеризует степень зависимости между сечениями случайной функции, относящимися к различным .

Пусть имеется случайная функция (рис. 15.3.4); рассмотрим два ее сечения, относящихся к различным моментам: и , т. е. две случайные величины и . Очевидно, что при близких значениях и величины и связаны тесной зависимостью: если величина приняла какое-то значение, то и величина с большой вероятностью примет значение, близкое к нему. Очевидно также, что при увеличении интервала между сечениями , зависимость величин и вообще должна убывать.

Степень зависимости величин и может быть в значительной мере охарактеризована их корреляционным моментом; очевидно, он является функцией двух аргументов и . Эта функция и называется корреляционной функцией.

Таким образом, корреляционной функцией случайной функции называется неслучайная функция двух аргументов , которая при каждой паре значений , равна корреляционному моменту соответствующих сечений случайной функции:

, (15.3.4)

, .

Вернемся к примерам случайных функций и (рис. 15.3.2 и 15.3.3). Мы видим теперь, что при одинаковых математических ожиданиях и дисперсиях случайные функции и имеют совершенно различные корреляционные функции. Корреляционная функция случайной функции медленно убывает по мере увеличения промежутка ; напротив, корреляционная функция случайной функции быстро убывает с увеличением этого промежутка.

Выясним, во что обращается корреляционная функция , когда ее аргументы совпадают. Полагая , имеем:

, (15.3.5)

т. е. при корреляционная функция обращается в дисперсию случайной функции.

Таким образом, необходимость в дисперсии как отдельной характеристике случайной функции отпадает: в качестве основных характеристик случайной функции достаточно рассматривать ее математическое ожидание и корреляционную функцию.

Так как корреляционный момент двух случайных величин и не зависит от последовательности, в которой эти величины рассматриваются, то корреляционная функция симметрична относительно своих аргументов, т. е. не меняется при перемене аргументов местами:

. (15.3.6)

Если изобразить корреляционную функцию в виде поверхности, то эта поверхность будет симметрична относительно вертикальной плоскости , проходящей через биссектрису угла (рис. 15.3.5).

Заметим, что свойства корреляционной функции естественно вытекают из свойств корреляционной матрицы системы случайных величин. Действительно, заменим приближенно случайную функцию системой случайных величин . При увеличении и соответственном уменьшении промежутков между аргументами корреляционная матрица системы, представляющая собой таблицу о двух входах, в пределе переходит в функцию двух непрерывно изменяющихся аргументов, обладающую аналогичными свойствами. Свойство симметричности корреляционной матрицы относительно главной диагонали переходит в свойство симметричности корреляционной функции (15.3.6). По главной диагонали корреляционной матрицы стоят дисперсии случайных величин; аналогично при корреляционная функция обращается в дисперсию .

На практике, если требуется построить корреляционную функцию случайной функции , обычно поступают следующим образом: задаются рядом равноотстоящих значений аргумента и строят корреляционную матрицу полученной системы случайных величин. Эта матрица есть не что иное, как таблица значений корреляционной функции для прямоугольной сетки значений аргументов на плоскости . Далее, путем интерполирования или аппроксимации можно построить функцию двух аргументов .

Вместо корреляционной функции можно пользоваться нормированной корреляционной функцией:

, (15.3.7)

которая представляет собой коэффициент корреляции величин , . Нормированная корреляционная функция аналогична нормированной корреляционной матрице системы случайных величин. При нормированная корреляционная функция равна единице.

До сих пор мы изучали только скалярные или векторные случайные величины, каждая из которых в результате опыта принимает одно определенное значение, скалярное или векторное, соответственно. Однако в приложениях приходится встречаться еще с такими случайными величинами, значения которых в каждом данном опыте изменяются в зависимости от времени или каких-нибудь других аргументов. Каждая такая случайная величина принимает в результате опыта бесчисленное (в общем случае несчетное) множество значений - по одному для каждого значения аргумента или для каждой совокупности значений аргументов. Так, например, в результате измерения непрерывно изменяющейся величины мы получаем функцию, определяющую закон изменения результата измерения со временем в процессе измерения. Эта функция имеет одно вполне определенное значение для каждого момента времени в интервале, в течение которого производится измерение. Повторяя измерение, казалось бы в одинаковых условиях, мы будем получать вследствие неточности измерительных приборов различные функции. Таким образом, результат измерения непрерывно изменяющейся величины является такой случайной величиной, которая в каждом данном опыте представляет собой определенную функцию времени, а в различных опытах, произведенных как будто бы в совершенно одинаковых условиях, представляет собой различные функции времени. Подобные случайные величины представляют собой случайные функции. Результат одновременного измерения нескольких непрерывно изменяющихся величин (например, координат какого-либо движущегося объекта) может служить примером векторной случайной функции, т. е. совокупности нескольких случайных функций.

Случайной функцией называется функция, значение которой при каждом данном значении аргумента (или нескольких аргументов)

является случайной величиной. В результате опыта случайная функция может принимать различные конкретные формы. Всякая функция, которой может оказаться равной случайная функция в результате опыта, называется реализацией случайной функции (или возможным значением случайной функции). В соответствии с принятым в настоящей книге правилом обозначения случайных величин и их возможных значений мы будем обозначать случайные функции большими буквами латинского алфавита, например Реализации случайных функций будем обозначать соответствующими малыми буквами, например х, у и т. д.

Аргумент случайной функции или совокупность всех ее аргументов будем обозначать буквой или буквой 5 и писать, как обычно принято, в скобках за обозначением самой функции, например Если аргумент случайной функции представляет собой совокупность скалярных переменных, то его можно рассматривать как -мерный вектор. Таким образом, аргументами случайных функций в излагаемой дальше теории могут быть произвольные скалярные или векторные величины

Случайную функцию можно также рассматривать как бесконечную (в общем случае несчетную) совокупность случайных величин, зависящую от одного или нескольких непрерывно изменяющихся параметров Каждому данному значению параметра (или параметров) соответствует одна случайная величина Вместе все случайные величины определяют случайную функцию Такая трактовка случайной функции показывает, что случайная функция как объект математического исследования значительно сложнее обычной случайной величины, а именно равноценна бесконечному (в общем случае несчетному) множеству случайных величин.

В физических и технических приложениях часто приходится рассматривать случайные функции времени. Такие случайные функции обычно называются случайными или стохастическими процессами. Соответственно теория случайных функций одной независимой переменной часто называется теорией случайных (стохастических) процессов. Примером случайной функции времени может служить ошибка измерения непрерывно изменяющейся величины. На рис. 18 приведена запись ошибки измерения угловой координаты самолета радиолокатором, заимствованная из .

В физике часто приходится рассматривать случайные функции координат точки пространства. Пространство с заданным в нем распределением значений некоторой величины называется полем данной величины. Случайная функция координат точки пространства приводит

(кликните для просмотра скана)

в соответствие каждой точке пространства некоторую случайную величину. Вследствие этого, изучая случайную функцию координат точки пространства, можно говорить о случайном поле. Поэтому теорию случайных функций координат точки пространства часто называют теорией случайных полей. Примером случайного поля может служить поле вектора скорости ветра в установившейся турбулентной атмосфере. В общем случае неустановившейся атмосферы вектор скорости ветра является случайной функцией координат точки пространства и времени.

Так как при каждом данном значении аргумента значение случайной функции является обычной скалярной случайной величиной, то полной вероятностной характеристикой этого значения является его закон распределения. Этот закон распределения называется одномерным законом распределения случайной функции Одномерный закон распределения случайной функции в общем случае зависит от как от параметра и может быть задан одномерной плотностью вероятности Одномерный закон распределения случайной функции является достаточной характеристикой случайной функции для тех задач, в которых значения случайной функции при различных значениях аргумента рассматриваются изолированно друг от друга. Для решения задач, в которых приходится рассматривать совместно значения случайной функции при двух или большем числе значений аргумента, необходимо ввести совместные законы распределения значений случайной функции при нескольких значениях аргумента.

Двумерным законом распределения случайной функции называется совместный закон распределения ее значений при двух произвольно взятых значениях аргумента Вообще -мерным законом распределения случайной функции называется закон распределения совокупности ее значений при произвольно взятых значениях аргумента Мы будем характеризовать -мерный закон распределения случайной функции ее -мерной плотностью вероятности которая в общем случае зависит от значений аргумента как от параметров.

Зная двумерную плотность вероятности случайной функции, можно определить ее одномерную плотность вероятности по формуле (15.8). В результате получим соотношение

Вообще, зная -мерную плотность вероятности случайной функции, можно определить все ее плотности вероятности чисел измерений, меньших чем пользуясь формулой (15.17). В результате

Таким образом, задавая -мерную плотность вероятности случайной функции, мы тем самым задаем и все ее плотности вероятности меньших чисел измерений. Закон распределения случайной функции большего числа измерений является более полной характеристикой случайной функции, чем любой закон распределения меньшего числа измерений. Однако закон распределения любого конечного числа измерений не может служить в общем случае исчерпывающей характеристикой случайной функции, так как знание -мерного закона распределения в общем случае недостаточно для определения законов распределения больших, чем чисел измерений. Лишь в частных случаях закон распределения конечного числа измерений может служить исчерпывающей характеристикой случайной функции. В общем случае для полной характеристики случайной функции необходимо задать всю последовательность ее законов распределения, т. е. плотности вероятности для всех значений

Если значения случайной функции при любых различных значениях аргумента являются независимыми случайными величинами, то -мерная плотность вероятности случайной функции согласно формуле (16.9) и определению независимости случайных величин (§ 16), при любом выражается через ее одномерную плотность вероятности формулой

Эта формула показывает, что исчерпывающей характеристикой случайной функции с независимыми значениями является ее одномерный закон распределения.

Примером случайных функций, исчерпывающей характеристикой которых являются двумерные законы распределения, могут служить марковские случайные процессы. Марковским случайным процессом, или случайным процессом без последствия, называется случайная функция скалярной переменной значения которой при значениях переменной при любом образуют простую цепь Маркова . Согласно определению простой цепи Маркова,

данному в § 47, условный закон распределения значения случайной функции зависит только от значения случайной величины и не зависит от значений случайных величин Поэтому, применяя последовательно общую формулу (16.17), получим для -мерной плотности вероятности марковского случайного процесса формулу

Но условная плотность вероятности на основании формулы (16.6) равна:

Формулы (48.4) и (48.5) дают:

Формулы (48.1) и (48.6) показывают, что -мерная плотность вероятности марковского случайного процесса при любом может быть определена, если известна его двумерная плотность вероятности. Следовательно, двумерный закон распределения является исчерпывающей характеристикой марковского случайного процесса.

Вторым примером случайных функций, для которых исчерпывающей характеристикой является двумерный закон распределения, могут служить нормально распределенные случайные функции. Мы будем считать, что случайная функция распределена нормально, если совокупность ее значений при любом и при любых из области изменения аргумента образует нормально распределенный случайный вектор. В § 23 мы видели, что -мерный нормальный закон распределения полностью определяется математическими ожиданиями, дисперсиями и корреляционными моментами случайных величин. Но математические ожидания и дисперсии случайных величин вполне определяются одномерным законом распределения случайной функции а их корреляционные моменты - двумерным законом распределения случайной функции Следовательно, двумерный закон распределения нормально распределенной случайной функции вполне определяет ее -мерный закон распределения при любом таким образом, является исчерпывающей ее характеристикой.

Несколько более общей, чем случайная функция с независимыми значениями, является случайная функция с некоррелированными значениями. Однако случайная функция с некоррелированными значениями в общем случае не может быть полностью охарактеризована никаким конечномерным законом распределения. Несмотря на это,

случайные функции с некоррелированными значениями играют большую роль в прикладной теории случайных функций.

Легко понять, что интеграл от случайной функции с некоррелированными (в частном случае независимыми) значениями представляет собой случайную функцию с некоррелированными (соответственно независимыми) приращениями на неперекрывающихся областях изменения аргумента. В § 54 будет показано, что интеграл от случайной функции с некоррелированными значениями имеет конечную дисперсию только в том случае, если дисперсия этой случайной функции бесконечна. Вследствие этого особенно важными для приложений являются случайные функции с некоррелированными значениями и бесконечной дисперсией, называемые обычно белыми шумами. Мы будем называть белым шумом любую случайную функцию с некоррелированными значениями, имеющую бесконечную дисперсию и конечную дисперсию интеграла от нее по любэй конечной области изменения аргумента. В основе этого термина лежат физические представления, связанные с быстро изменяющимися величинами, значения которых, разделенные очень малыми промежутками времени, практически независимы. Мы увидим дальше, что при разложении таких случайных функций на элементарные гармонические колебания гармоники всех частот оказываются одинаковыми по интенсивности. Эта аналогия с белым светом и послужила причиной того, что такие случайные функции называются белыми шумами. Это название удобно распространить на все случайные функции, обладающие перечисленными свойствами, независимо от физической (или математической) природы их аргументов.

Белый шум в чистом виде в природе не существует. Как мы увидим в § 74, для реализации белого шума необходима бесконечная мощность. Поэтому понятие белого шума является математической абстракцией, удобной для построения теории. Практически же можно говорить лишь о большей или меньшей степени приближения к белому шуму, о том, что минимальный промежуток времени, разделяющий значения случайной функции, которые можно считать практически некоррелированными, достаточно мал для того, чтобы его можно было не учитывать.

Очевидно, что вместо того, чтобы характеризовать случайную функцию последовательностью ее законов распределения различных чисел измерений, можно характеризовать ее одномерным законом распределения и последовательностью условных законов распределения, которые можно задать соответствующими условными плотностями вероятности

Совершенно так же, как был определен двумерный закон распределения случайной функции, определяется двумерный закон распределения двух случайных функций Двумерным законом распределения случайных функций называется закон распределения двумерного случайного вектора, составляющими которого

являются значение случайной функции при данном значении аргумента и значение случайной функции при данном значении аргумента Аналогично определяются совместные законы распределения других чисел измерений двух или нескольких случайных функций.

Исчерпывающей характеристикой случайной функции является ее вероятностная мера, определение которой было дано в § 14 для любых случайных объектов, в том числе и для случайных функций. Вероятностную меру случайной функции можно определить, если известны ее законы распределения всех чисел измерений. Выделим сначала из множества всех возможных реализаций случайной функции X множество всех реализаций, значения которых в точках принадлежат данным числовым множествам Согласно определению вероятностной меры значение вероятностной меры случайной функции X, соответствующее множеству ее реализаций, определится формулой

Эта формула определяет вероятностную меру случайной функции X для всех множеств рассмотренного типа при любых и при любом выборе числовых множеств Поставим теперь в соответствие каждому значению аргумента случайной функции X некоторое числовое множество и рассмотрим множество А всех реализаций случайной функции значения которых при всех принадлежат соответствующим множествам Для того чтобы определить значение вероятностной меры случайной функции X для такого множества ее реализаций, поставим в соответствие каждому целому положительному разбиение области изменения аргумента случайной функции X на ячеек таким образом, чтобы размеры всех ячеек стремились к нулю при . В каждой ячейке разбиения выберем произвольную точку так, чтобы множество точек содержало все точки соответствующие предыдущим разбиениям. Обозначим через множество реализаций случайной функции X, значения которых в точках принадлежат соответственно множествам Тогда получим последовательность множеств реализаций случайной функции X, каждое из которых включает все последующие множества. Предположим, что произведение всех множеств (т. е. множество реализаций случайной функции X, принадлежащих всем множествам совпадает с исходным множеством реализаций А, если не считать некоторых исключительных реализаций, имеющих нулевую суммарную вероятность появления, при любом выборе такого множества реализаций А. Это предположение накладывает определенные ограничения на характер возможных реализаций случайной функции . А именно, необходимо, чтобы любое множество ее реализаций можно было определить с любой степенью точности, накладывая на них ограничения в конечном числе достаточно близких друг к другу точек. Полагая в формуле (48.7)

найдем значения вероятностной меры случайной функции для множеств Числа образуют монотонную невозрастающую последовательность неотрицательных чисел. Следовательно, существует предел

который и является значением вероятностной меры случайной функции X для рассматриваемого множества ее реализаций А.

Формулы (48.7) и (48.8) определяют вероятностную меру случайной функции для всех цилиндрических множеств реализаций. Этого достаточно для того, чтобы определить ее для любых множеств реализаций .

Для случайной функции можно также определить функционал распределения, который является естественным обобщением функции распределения случайной величины. В соответствии с определением функции распределения (14.13) функционалом распределения случайной функции X называется вероятность выполнения неравенства при всех значениях аргумента

где произвольно заданная функция. Величина является функционалом, так как она зависит от вида функции Очевидно, что функционал распределения случайной функции представляет собой значение ее вероятностной меры, соответствующее множеству всех реализаций, значения которых при каждом принадлежат соответствующему полубесконечному интервалу Поэтому на основании (48.8) и (48.7) функционал распределения случайной функции X выражается формулой

Вероятностная мера и функционал распределения случайной функции пока не имеют большого практического значения, вследствие того, что методы вычисления интегралов типа (18.12) для произвольно заданной вероятностной меры в настоящее время еще очень мало разработаны .

Совершенно аналогично можно обобщить понятие характеристической функции на случайные функции. Рассматривая случайную функцию как совокупность бесконечного множества случайных величин зависящую от непрерывно изменяющегося параметра и обобщая определение характеристической функции -мерного случайного вектора (28.1), мы должны будем распространить сумму в показателе степени на все возможные значения непрерывно изменяющегося параметра При этом вместо придется взять и заменить сумму интегралом. В результате получим определение характеристического функционала действительной случайной функции

где интеграл распространяется на всю область изменения аргумента Характеристический функционал случайной функции зависит от функции (т. е. от значений этой функции при всех значениях аргумента

Характеристический функционал является исчерпывающей характеристикой случайной функции Действительно, задавая функцию к как линейную комбинацию импульсных -функций:

получим на основании свойств -функции:

Сравнивая это выражение с (28.1), приходим к заключению, что величина представляет собой характеристическую функцию -мерного случайного вектора с составляющими Поэтому, применяя формулу (28.14), можно определить -мерную плотность вероятности случайной функции при любом значении Таким образом, если задан характеристический функционал случайной функции то его значения при частных видах функции определяют все законы распределения случайной функции.

Можно дать более общее определение характеристического функционала. Для этого необходимо предварительно дать определение линейного функционала. Линейным функционалом называется такая величина, которая зависит от функции и удовлетворяет условию

где произвольные постоянные, а произвольные функции. Интеграл в показателе в формуле (48.11), очевидно, является линейным функционалом от случайной функции Сумма в показателе формулы (48.13) также является линейным функционалом от случайной функции Линейный функционал от функции можно сокращенно обозначать опуская скобки и обозначение аргумента функции х.

Обобщая определение (48.11), можно определить характеристический функционал случайной функции формулой

где А - произвольный линейный функционал. Задавая в формуле (48.15), линейный функционал А в виде интеграла или суммы, получим формулы (48.11) и (48.13) как частные случаи формулы (48.15). Формула (48.15) определяет характеристический функционал и в том случае, когда аргумент случайной функции X является вектором, одни составляющие которого представляют собой непрерывно изменяющиеся переменные, а другие составляющие являются дискретными переменными, в то время как формула (48.11) определяет характеристический функционал только в частном случае, когда все составляющие вектора являются непрерывно изменяющимися переменными.

Если характеристический функционал случайной функции X определяется формулой

где - некоторые функции, а индексы у линейных функционалов А указывают, к функциям каких аргументов они применяются, то характеристические функции всех чисел измерений случайной функции А

будут нормальными и, следовательно, случайная функция X распределена нормально. Таким образом, формула (48.16) определяет характеристический функционал нормально распределенной случайной функции. Эта формула является очевидным обобщением формулы (28.18) для характеристической функции нормально распределенного случайного вектора.

Пример 1. Найти плотности вероятности случайной функции скалярной независимой переменной с независимыми приращениями, если при ее значение равно нулю, а ее приращение на любом интервале распределено нормально и имеет математическое ожидание, равное нулю, и дисперсию

В данном случае значение случайной функции X при любом равно сумме ее значения при (равного нулю) и ее приращения на интервале Следовательно, одномерная плотность вероятности случайной функции X определяется формулой

Рассматриваемая случайная функция, очевидно, представляет собой марковский случайный процесс, так как ее приращение на любом интервале не зависит от ее значений вне этого интервала и, следовательно, ее значение в конце интервала связано лишь с ее значением в начале интервала и не имеет непосредственной статистической связи с ее значениями в точках, предшествующих началу интервала. Вследствие этого для определения всех плотностей вероятности случайной функции X в данном случае достаточно найти условную плотность вероятности ее значения в конце любого интервала относительно ее значения в начале интервала. Эта условная плотность вероятности, очевидно, выражается формулой

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Случайная функция – функция, которая в результате опыта может принять тот или иной неизвестный заранее конкретный вид. Обычно аргументом случайной функции (с.ф.) является время, тогда с.ф. называют случайным процессом (с.п.).

С.ф. непрерывно изменяющегося аргумента t называется такая с.в., распределение которой зависит не только от аргумента t=t1 , но и от того, какие частные значения принимала эта величина при других значениях данного аргумента t=t 2. Эти с.в. корреляционно связаны между собой и тем больше, чем ближе одни к другим значения аргументов. В пределе при интервале между двумя значениями аргумента, стремящемся к нулю, коэффициент корреляции равен единице:

т.е. t 1 и t1+Dt1 при Dt1 ®0 связаны линейной зависимостью.

С.ф. принимает в результате одного опыта бесчисленное (в общем случае несчетное) множество значений – по одному для каждого значения аргумента или для каждой совокупности значений аргументов. Эта функция имеет одно вполне определенное значение для каждого момента времени. Результат измерения непрерывно изменяющейся величины является такой с.в., которая в каждом данном опыте представляет собой определенную функцию времени.

С.ф. можно также рассматривать как бесконечную совокупность с.в., зависящую от одного или нескольких непрерывно изменяющихся параметров t . Каждому данному значению параметра t соответствует одна с.в Xt. Вместе все с.в. X t определяют с.ф. X(t). Эти с.в. корреляционно связаны между собой и тем сильнее, чем ближе друг к другу.

Элементарная с.ф. – это произведение обычной с.в. Х на некоторую неслучайную функцию j(t): X(t)=X×j(t) , т.е. такая с.ф., у которой случайным является не вид, а только ее масштаб.

С.ф. - имеет м.о. равное нулю. p – плотность распределения с.в. Х (значения с.ф. X(t) ), взятой при произвольном значении t 1 аргумента t .

Реализация с.ф. X(t) – описывается уравнением x=f1(t) при t=t1 и уравнением x=f2(t) при t=t2 .

Вообще функции x=f1(t) и x=f2(t) – различные функции. Но эти функции тождественны и линейны тем более, чем более (t1 ®t2 ) t 1 ближе к t 2.

Одномерная плотность вероятности с.ф. p(x,t) – зависит от х и от параметра t . Двумерная плотность вероятности p(x1,x2;t1,t2) – совместный закон распределения значений X(t1) и X(t2) с. ф. X(t) при двух произвольных значениях t и t ¢ аргумента t .

. (66.5)

В общем случае функция X(t) характеризуется большим числом n -мерных законов распределения .

М.о. с.ф. X(t) - неслучайная функция , которая при каждом значении аргумента t равна м.о. ординаты с.ф. при этом аргументе t.

- функция, зависящая от x и t .

Аналогично и дисперсия - неслучайная функция.

Степень зависимости с.в. для различных значений аргумента характеризуется автокорреляционной функцией.

Автокорреляционная функция с.ф. X(t) Kx(ti,tj) , которая при каждой паре значений ti, tj равна корреляционному моменту соответствующих ординат с.ф. (при i=j корреляционная функция (к.ф.) обращается в дисперсию с.ф.);

где - совместная плотность распределения двух с.в. (значений с.ф.), взятых при двух произвольных значениях t 1 и t 2 аргумента t . При t1=t2=t получаем дисперсию D(t).

Автокорреляционная функция - совокупность м.о. произведений отклонений двух ординат с.ф. , взятых при аргументах t1 и t 2, от ординат неслучайной функции м.о. , взятых при тех же аргументах.

Автокорреляционная функция характеризует степень изменчивости с.ф. при изменении аргумента. На рис. видно, что зависимость между значениями с.ф., соответствующим двум данным значениям аргумента t - слабее в первом случае.

Рис . Корреляционно связанные случайные функции

Если две с.ф. X(t) и Y(t) , образующие систему не являются независимыми, то тождественно не равна нулю их взаимная корреляционная функция:

где - совместная плотность распределения двух с.в. (значений двух с.ф. X(t) и Y(t) ), взятых при двух произвольных аргументах (t 1 - аргумент функции X(t) , t 2 - аргумент функции Y(t) ).

Если X(t) и Y(t) независимы, то K XY(t1,t2 )=0. Система из n с.ф. X 1(t), X2(t),...,Xn(t) характеризуется n м.о. , n автокорреляционными функциями и еще n (n -1)/2 корреляционными функциями .

Взаимная корреляционная функция (характеризует связь между двумя с.ф., т.е. стохастическую зависимость) двух с.ф. X(t) и Y(t) - неслучайная функция двух аргументов t i и t j, которая при каждой паре значений t i, t j равна корреляционному моменту соответствующих сечений с.ф. Она устанавливает связь между двумя значениями двух функций (значения - с.в.), при двух аргументах t 1 и t 2.

Особое значение имеют стационарные случайные функции , вероятностные характеристики которых не меняются при любом сдвиге аргумента. М.о. стационарной с.ф. постоянно (т.е. не является функцией), а корреляционная функция зависит лишь от разности значений аргументов t i и t j.

Это четная функция (симметрично OY ).

При большом значении интервала времени t=t2-t1 отклонение ординаты с.ф. от ее м.о. в момент времени t 2 становится практически независимым от значения этого отклонения в момент времени t 1. В этом случае функция KX(t), дающая значение корреляционного момента между X(t1) и X(t2), при ½t ½®¥ стремится к нулю.

Многие стационарные с.ф. обладают эргодическим свойством, которое заключается в том, что при неограниченно возрастающем интервале наблюдения среднее наблюденное значение стационарной с.ф. с вероятностью, равной 1, будет неограниченно приближаться к ее м.о. Наблюдение стационарной с.ф. при разных значениях t на достаточно большом интервале в одном опыте равноценно наблюдению ее значений при одном и том же значении t в ряде опытов.

Иногда требуется определить характеристики преобразованных с.ф. по характеристикам исходных с.ф. Так если

(70.5),

то т.е. м.о. интеграла (производной) от с.ф. равно интегралу (производной) от м.о. (y(t) - скорость изменения с.ф. X(t) , - скорость изменения м.о.).

При интегрировании или дифференцировании с.ф. получаем также с.ф. Если X(t) распределена нормально, то Z(t) и Y(t) распределены тоже нормально. Если X(t) – стационарная с.ф., то Z(t) уже не стационарная с.ф., т.к. зависит от t .

Примеры корреляционных функций.

1) (из (2) при b®0); 2) ;

3) ; 4) ;

5) (из (3) при b ®0); 6) (из (4) при b ®0).

На графиках a = 1, b = 5, s = 1.

a - характеризует быстроту убывания корреляционной связи между ординатами с.ф. при увеличении разности аргументов этих ординат t.

a/b - характеризует "степень нерегулярности процесса". При малом a/b ординаты процесса оказываются сильно коррелированными и реализация процесса похожа на синусоиду; при большом a/b (71.5).

Формула (71) для стационарной функции примет вид:

Корреляционная функция с.ф. и ее производной . Для дифференцируемого стационарного процесса ордината с.ф. и ее производной, взятая в тот же момент времени являются некоррелированными с.в. (а для нормального процесса и независимыми).

При умножении с.ф. на детерминированную получаем с.ф. Z(t)=a(t)X(t) , корреляционная функция которой равна

KZ(t1,t2)=a(t1)a(t2) KX(t1,t2) (72.5),

где a(t) - детерминированная функция.

Сумма двух с.ф. является тоже с.ф. Z(t)=X(t)+Y(t) и ее корреляционная функция при наличии корреляционной связи между X(t) и Y(t):

KZ(t1,t2)=KX(t1,t2)+ KY(t1,t2)+ 2KXY(t1,t2), (73.5)

где KXY(t1,t2) - см. (68.5) - взаимная корреляционная функция двух зависимых с.ф. X(t) и Y(t).

Если X(t) и Y(t) независимы, то KXY(t1,t2) =0. М.о. с.ф. Z(t): .

Во всех предыдущих параграфах этой главы предполагалось, что управляющие и возмущающие воздействия являются определенными функциями времени. Однако для систем автоматического управления, работающих в реальных условиях, характерно, что эти воздействия носят случайный характер и принципиально непредсказуемы.

Рассмотрим, например, работу следящей системы, управляющей антенной радиолокатора. Для этой системы управляющим воздействием является положение цели, а возмущающими воздействиями можно считать ветровые нагрузки на антенну, отклонения луча от направления на цель из-за рефракции в атмосфере, собственные шумы в усилительном тракте системы, помехи от источников питания и т. п. Все эти процессы обусловлены множеством взаимодействующих причин и носят настолько сложный характер, что их нельзя представить какой-либо заданной функцией времени. То же самое можно сказать и относительно управляющего воздействия. На практике его нельзя считать типовым, например ступенчатым, линейно-растущим, синусоидальным или каким-либо регулярным сигналом. Реально цель маневрирует, поэтому ее положение в любой последующий момент не может быть точно предсказано. На этом маневрирование накладывается постоянное блуждание отражающей точки по корпусу цели.

Таким образом, сигналы управления и возмущения в реальных условиях являются случайными процессами. Случайным, или стохастическим процессом

называют такую функцию времени которая при каждом значении аргумента является случайной величиной. Если вместо времени употребляют другую независимую переменную, то используют термин случайная функция. При многократном воспроизведении условий протекания случайного процесса последний принимает каждый раз различные конкретные значения. Эти значения как функции времени называют реализациями случайного процесса. Типичный вид нескольких реализаций стохастического процесса ошибки угловой координаты цели, отслеживаемой радиолокационной станцией, представлен на рис. XIII. 14.

Математическое описание случайного процесса. При фиксированном значении аргумента случайный процесс является случайной величиной, полное описание которой дает функция распределения

т. е. вероятность того, что в данный момент случайная величина примет значение, меньшее Как известно из теории вероятностей, вместо функции распределения часто удобнее пользоваться плотностью вероятности, являющейся ее производной (в обобщенном смысле):

Если зафиксировать два момента времени то значения случайного процесса образуют систему двух случайных величин или двумерный случайный вектор. Для его полного описания требуется знать двумерную функцию распределения

Рис. ХIII.14. Стохастический процесс ошибки измерения угловой координаты цели, отслеживаемой радиолокационной станцией

или двумерную плотность

которые зависят от как от параметров.

Для более подробного описания случайного процесса в произвольные моменты времени аналогично вводятся функции распределения и плотности более высоких порядков. Таким образом, полное статистическое описание случайной функции (процесса) даетесконечная последовательность ее функций распределения:

или последовательность их производных

Каждый из членов этих последовательностей имеет обычные свойства функций распределения или соответственно плотностей. Кроме того, каждый следующий член последовательности определяет все предыдущие. Например, если положить то

аналогичные формулы имеем и для любых других моментов времени.

Это условие называют условием согласованности семейства функций распределения. Справедливо также условие симметрии:

В общем случае плотности или функции распределения более высокого порядка не определяются плотностями или функциями более низких порядков.

Однако часто полезно рассматривать так называемый абсолютно случайный процесс, значения которого независимы в совокупности для любых Для такого процесса плотность распределения любого порядка определяется через одномерную:

Такой процесс является математическим упрощением, поскольку при достаточно близких значениях значения любого реального процесса близки, и, следовательно, зависимы. Другим крайним случаем является вырожденный, или сингулярный процесс, определяемый одной или несколькими случайными величинами; например,

где - случайная величина; - известные константы. Такой процесс становится полностью известным, если можно измерить его в какой-либо момент времени. В более общем случае сингулярный случайный процесс характеризуется совокупностью случайных величин например,

где - обычные (детерминированные функции времени).

Рис. XIII.15. Возможные реализации двух случайных функций: а - с высокочастотными составляющими; б - с низкочастотными составляющими

Моментные функции. В практических задачах обычно пользуются более простыми характеристиками случайных процессов - моментными функциями. Моментом первого порядка или математическим ожиданием процесса называют выражение

Если эту функцию рассматривать в зависимости от то около среднего значения функции будут группироваться все реализации случайного процесса (рис. XIII.15).

Математические ожидания более высоких степеней носятназвания начальных моментов порядка

Случайная функция имеет нулевое среднее значение и называется центрированной. Центральным моментом -порядка процесса называется математическое ожидание степени центрированного процесса

Меру рассеяния значений случайного процесса относительно математического ожидания его определяет момент второго порядка, называемый чаще дисперсией:

Однако характеристики случайного процесса, основанные на первой плотности не отражают изменения реализаций во времени. Например, два процесса с одной и той же первой плотностью (рис. XIII. 15, а и б) различаются по скорости изменения реализаций, т. е. по степени взаимосвязи между двумя значениями, принимаемыми в одной реализации в различные моменты времени. Для описания временной внутренней структуры случайных процессов используют корреляционную функцию

Эту функцию часто называют также автокорреляционной, или ковариацией, она играет основную роль в теории случайных процессов.

Легко показать, что корреляционная функция симметрична относительно своих аргументов а при ее значение равно дисперсии случайного процесса . В самом деле,

Для характеристики точности систем автоматического регулирования удобно использовать нецентрированную корреляционную функцию:

называемую также вторым начальным моментом процесса.

Связь между устанавливается следующими преобразованиями:

При средний квадрат процесса будет

В системах автоматического регулирования часто действует несколько случайных возмущающих или управляющих сигналов, независимых или взаимосвязанных. Мерой взаимосвязи двух случайных процессов служит взаимная корреляционная функция

где - совместная плотность вероятности для независимых процессов

Для взаимной корреляционной функции справедливо равенство

Теория случайных процессов, в которой используются лишь моменты первого и второго порядков называется корреляционной теорией. Она была создана основополагающими работами А. Н. Колмогорова , Д. Я. Хинчина , Н. Вииера. Большой вклад в ее развитие внесли советские ученые В. С. Пугачев , В. В. Солодовников и др.

Стационарные случайные процессы. При рассмотрении различных случайных процессов выделяют группу процессов, статистические свойства которых не изменяются при сдвиге во времени. Такие процессы называются стационарными. Рассматривая множество реализаций случайного процесса, приведенного на рис. XIII. 14, можно предположить, что в данном случае начало отсчета времени может быть выбрано произвольно, т. е. налицо стационарный процесс. Напротив, на рис. XIII. 15, очевидно, имеем примеры нестационарных процессов.

Исследование систем, случайные процессы в которых стационарны, значительно проще, чем исследование систем с нестационарными процессами. Однако процессы во многих системах регулирования можно приближенно рассматривать как стационарные. Это имеет большое прикладное значение в теории стационарных случайных процессов.

По определению стационарного случайного процесса его математическое ожидание должно быть постоянно при сдвиге аргумента на любой тервал Т:

а корреляционная функция удовлетворяет соотношению

Полагая находим, что корреляционная функция стационарного процесса зависит только от разности отсчетов

Эргодические свойства случайных процессов. Если мы имеем совокупность, или, как говорят, ансамбль реализаций, то математическое ожидание и корреляционная функция получаются усреднением по ансамблю реализаций случайного процесса, т. е. «поперек» процесса в одном или соответственно двух его сечениях. Интересно рассмотреть также результаты усреднения реализаций стационарного процесса по времени вдоль оси на интервале , определив эту операцию естественным образом:

Эта величина различна для разных реализаций случайного процесса и сама является случайной. Можно показать, что ее математическое ожидание для стационарного процесса равно . В то же время дисперсия этой величины, как показывают непосредственные расчеты,

Рис. XIII.16. Структурная схема коррелятора

Условия эргодичности процесса по , сформулированные В. С. Пугачевым , содержат более высокие моменты случайного процесса и здесь не приводятся.

Свойства эргодичности случайных процессов позволяют заменить усреднение по множеству реализаций, практически редко осуществимое, усреднением по времени, взятым по одной реализации, когда Т велико..

Не все стационарные процессы имеют эргодические свойства. Например, процесс, все реализации которого есть случайные величины, не изменяющиеся во времени, как легко убедиться, неэргодичен. Отсюда следует, что физический смысл эргодичности заключается в «хорошей перемешиваемости» реализаций случайного процесса. Поскольку это имеет место практически во всех приложениях, в дальнейшем будем предполагать рассматриваемые процессы эргодическими.

Для таких процессов можно экспериментально определить среднее значение и корреляционную функцию процесса с помощью специальных приборов - корреляторов. Принцип действия корреляторов ясен из рис. XIII.16.

Подавая на вход коррелятора единичный сигнал, на его выходе при достаточно большом времени интегрирования Т будем иметь среднее значение процесса х, приблизительно совпадающее с его математическим ожиданием Если же то в результате будем иметь второй начальный момент по которому легко определить и корреляционную функцию.

Задание на курсовую работу

Дано: пять начальных моментов

а1 = 1, а2 = 2, а3 = 2, а4 = 1, а5 = 1 г = 0, µ 0 = 1).

Найти: пять центральных моментов.

Имея в своём распоряжении пять начальных и пять центральных моментов, вычислить значения:

а) математическое ожидание;

б) дисперсию;

в) стандартное отклонение;

г) коэффициент вариации;

д) коэффициент асимметрии;

е) коэффициент эксцессии.

По полученным данным качественно описать плотность вероятности данного процесса.

1. Теоретические сведения

Распределения случайных величин и функции распределения

Распределение числовой случайной величины - это функция, которая однозначно определяет вероятность того, что случайная величина принимает заданное значение или принадлежит к некоторому заданному интервалу.

Первое - если случайная величина принимает конечное число значений. Тогда распределение задается функцией Р (Х = х), ставящей каждому возможному значению х случайной величины X вероятность того, что X = х.

Второе - если случайная величина принимает бесконечно много значений. Это возможно лишь тогда, когда вероятностное пространство, на котором определена случайная величина, состоит из бесконечного числа элементарных событий. Тогда распределение задается набором вероятностей Р (а Х для всех пар чисел а, b таких, что аРаспределение может быть задано с помощью т.н. функции распределения F(x) = Р (Х<х), определяющей для всех действительных х вероятность того, что случайная величина X принимает значения, меньшие х. Ясно, что

Р (а Х

Это соотношение показывает, что как распределение может быть рассчитано по функции распределения, так и, наоборот, функция распределения - по распределению.

Используемые в вероятностно-статистических методах принятия решений и других прикладных исследованиях функции распределения бывают либо дискретными, либо непрерывными, либо их комбинациями.

Дискретные функции распределения соответствуют дискретным случайным величинам, принимающим конечное число значений или же значения из множества, элементы которого можно перенумеровать натуральными числами (такие множества в математике называют счетными). Их график имеет вид ступенчатой лестницы (рис. 1).

Пример 1. Число X дефектных изделий в партии принимает значение 0 с вероятностью 0,3, значение 1 с вероятностью 0,4, значение 2 с вероятностью 0,2 и значение 3 с вероятностью 0,1. График функции распределения случайной величины X изображен на рис. 1.

Рис. 1. График функции распределения числа дефектных изделий.

Непрерывные функции распределения не имеют скачков. Они монотонно возрастают при увеличении аргумента - от 0 при х→∞ до 1 при х→+∞. Случайные величины, имеющие непрерывные функции распределения, называют непрерывными.

Непрерывные функции распределения, используемые в вероятностно-статистических методах принятия решений, имеют производные. Первая производная f(x) функции распределения F(x) называется плотностью вероятности,

По плотности вероятности можно определить функцию распределения:

Для любой функции распределения

Перечисленные свойства функций распределения постоянно используются в вероятностно-статистических методах принятия решений. В частности, из последнего равенства вытекает конкретный вид констант в формулах для плотностей вероятностей, рассматриваемых ниже.

Пример 2. Часто используется следующая функция распределения:

(1)

где а и b - некоторые числа, аНайдем плотность вероятности этой функции распределения:

(в точках х = а их = b производная функции F(x) не существует).

Случайная величина с функцией распределения (1) называется «равномерно распределенной на отрезке ».

Смешанные функции распределения встречаются, в частности, тогда, когда наблюдения в какой-то момент прекращаются. Например, при анализе статистических данных, полученных при использовании планов испытании на надежность, предусматривающих прекращение испытаний по истечении некоторого срока. Или при анализе данных о технических изделиях, потребовавших гарантийного ремонта.

Пример 3. Пусть, например, срок службы электрической лампочки - случайная величина с функцией распределения F(t), а испытание проводится до выхода лампочки из строя, если это произойдет менее чем за 100 часов от начала испытаний, или до момента t 0 = 100 часов. Пусть G(t) - функция распределения времени эксплуатации лампочки в исправном состоянии при этом испытании. Тогда

Функция G(t) имеет скачок в точке t 0 , поскольку соответствующая случайная величина принимает значение t 0 с вероятностью 1-F(t 0 )>0.

Характеристики случайных величин. В вероятностно-статистических методах принятия решений используется ряд характеристик случайных величин, выражающихся через функции распределения и плотности вероятностей.

При описании дифференциации доходов, при нахождении доверительных границ для параметров распределений случайных величин и во многих иных случаях используется такое понятие, как «квантиль порядка р», где 0 <р < 1 (обозначается х р ). Квантиль порядка р - значение случайной величины, для которого функция распределения принимает значение р или имеет место «скачок» со значения меньшер до значения больше р (рис. 2). Может случиться, что это условие выполняется для всех значений х, принадлежащих этому интервалу (т.е. функция распределения постоянна на этом интервале и равна р). Тогда каждое такое значение называется «квантилем порядка р». Для непрерывных функций распределения, как правило, существует единственный квантиль х р порядка р (рис. 2), причем

F(x p )=p. (2)

Рис. 2. Определение квантиля х р порядка р.

Пример 4. Найдем квантиль х р порядка р для функции распределения F(x) из (1).

При 0 <р < 1 квантиль х р находится из уравнения

т.е. х р = а + p (b - а) = а (1-р) +bр. При р = 0 любое х а является квантилем порядка p = 0. Квантилем порядка р = 1 является любое число х b.

Для дискретных распределений, как правило, не существует х р , удовлетворяющих уравнению (2). Точнее, если распределение случайной величины дается табл. 1, где x 1 < х 2 <… < х к , то равенство (2), рассматриваемое как уравнение относительно х р , имеет решения только для k значений р, а именно,

p =p 1

p =p 1 +p 2 ,

p = p 1 +p 2 +p 3 ,

p = p 1 +p 2 + р т , 3<т<к,

р =р, + р 2 +… +p k

Таблица 1. Распределение дискретной случайной величины

Значения х случайной величины 1 х 2 х k Вероятности Р (Х =х)P 1 Р 2 Р k

Для перечисленных к значений вероятности р решение х р уравнения (2) неединственно, а именно,

F(x) =р, +р 2 +… + Р т

для всех х таких, что х т < х < х т+1 . Т.е. х р - любое число из интервала т ; x m+1 ). Для всех остальных р из промежутка (0; 1), не входящих в перечень (3), имеет место «скачок» со значения меньше р до значения больше р. А именно, если

p 1 +p 2 +… + p т 1 +p 2 + … + p т + p т+1 ,

то x р =x т+1 .

Рассмотренное свойство дискретных распределений создает значительные трудности при табулировании и использовании подобных распределений, поскольку невозможным оказывается точно выдержать типовые численные значения характеристик распределения. В частности, это так для критических значений и уровней значимости непараметрических статистических критериев (см. ниже), поскольку распределения статистик этих критериев дискретны.

Большое значение в статистике имеет квантиль порядка p = ½. Он называется медианой (случайной величины X или ее функции распределения F(x)) и обозначается Ме(Х). В геометрии есть понятие «медиана» - прямая, проходящая через вершину треугольника и делящая противоположную его сторону пополам. В математической статистике медиана делит пополам не сторону треугольника, а распределение случайной величины: равенство F(x 0,5 ) = 0,5 означает, что вероятность попасть левее x 0,5 и вероятность попасть правее x 0,5 (или непосредственно x 0,5 ) равны между собой и равны ½ , т.е.

Медиана указывает «центр» распределения. С точки зрения одной из современных концепций - теории устойчивых статистических процедур - медиана является более хорошей характеристикой случайной величины, чем математическое ожидание . При обработке результатов измерений в порядковой шкале (см. главу о теории измерений) медианой можно пользоваться, а математическим ожиданием - нет.

Ясный смысл имеет такая характеристика случайной величины, как мода - значение (или значения) случайной величины, соответствующее локальному максимуму плотности вероятности для непрерывной случайной величины или локальному максимуму вероятности для дискретной случайной величины.

Если х 0 - мода случайной величины с плотностью f(x), то, как известно

из дифференциального исчисления,

У случайной величины может быть много мод. Так, для равномерного распределения (1) каждая точка х такая, что а < х < b, является модой. Однако это исключение. Большинство случайных величин, используемых в вероятностно-статистических методах принятия решений и других прикладных исследованиях, имеют одну моду. Случайные величины, плотности, распределения, имеющие одну моду, называются унимодальными.

Математическое ожидание для дискретных случайных величин с конечным числом значений рассмотрено в главе «События и вероятности». Для непрерывной случайной величины X математическое ожидание М(Х) удовлетворяет равенству

Пример 5. Математическое ожидание для равномерно распределенной случайной величины X равно

Для рассматриваемых в настоящей главе случайных величин верны все те свойства математических ожиданий и дисперсий, которые были рассмотрены ранее для дискретных случайных величин с конечным числом значений. Однако доказательства этих свойств не приводим, поскольку они требуют углубления в математические тонкости, не являющегося необходимым для понимания и квалифицированного применения вероятностно-статистических методов принятия решений.

Замечание. В настоящем учебнике сознательно обходятся математические тонкости, связанные, в частности, с понятиями измеримых множеств и измеримых функций, -алгебры событий и т.п. Желающим освоить эти понятия необходимо обратиться к специальной литературе, в частности, к энциклопедии .

Каждая из трех характеристик - математическое ожидание, медиана, мода - описывает «центр» распределения вероятностей. Понятие «центр» можно определять разными способами - отсюда три разные характеристики. Однако для важного класса распределений - симметричных унимодальных - все три характеристики совпадают.

Плотность распределения f(x) - плотность симметричного распределения, если найдется число х 0 такое, что

(3)

Равенство (3) означает, что график функции у =f(х) симметричен относительно вертикальной прямой, проходящей через центр симметрии х = х 0 . Из (3) следует, что функция симметричного распределения удовлетворяет соотношению

(4)

Для симметричного распределения с одной модой математическое ожидание, медиана и мода совпадают и равны х 0 .

Наиболее важен случай симметрии относительно 0, т.е. х п = 0. Тогда (3) и (4) переходят в равенства

(5)

(6)

соответственно. Приведенные соотношения показывают, что симметричные распределения нет необходимости табулировать при всех х, достаточно иметь таблицы при х х 0 .

Отметим еще одно свойство симметричных распределений, постоянно используемое в вероятностно-статистических методах принятия решений и других прикладных исследованиях. Для непрерывной функции распределения

Р(а) = Р (-а а) = F(a) - F(-a),

где F - функция распределения случайной величины X. Если функция распределения F симметрична относительно 0, т.е. для нее справедлива формула (6), то

Р(а) =2F(a) - 1.

Часто используют другую формулировку рассматриваемого утверждения: если

Если и - квантили порядка α и 1-α соответственно (см. (2)) функции распределения, симметричной относительно 0, то из (6) следует, что

От характеристик положения - математического ожидания, медианы, моды - перейдем к характеристикам разброса случайной величины X:

дисперсии , среднему квадратическому отклонению σ и коэффициенту вариации v . Определение и свойства дисперсии для дискретных случайных величин рассмотрены в предыдущей главе. Для непрерывных случайных величин

Среднее квадратическое отклонение - это неотрицательное значение квадратного корня из дисперсии:

Коэффициент вариации - это отношение среднего квадратического отклонения к математическому ожиданию:

Коэффициент вариации применяется при М(Х)>0. Он измеряет разброс в относительных единицах, в то время как среднее квадратическое отклонение - в абсолютных.

Пример 6. Для равномерно распределенной случайной величины X найдем дисперсию, среднеквадратическое отклонение и коэффициент вариации. Дисперсия равна:

Замена переменной дает возможность записать:

где с = (b - а )/2. Следовательно, среднее квадратическое отклонение равно , а коэффициент вариации таков:

По каждой случайной величине X определяют еще три величины - центрированную Y, нормированную V и приведенную U. Центрированная случайная величина Y - это разность между данной случайной величиной X и ее математическим ожиданием М(Х), т.е. Y= Х - М(Х). Математическое ожидание центрированной случайной величины Г равно 0, а дисперсия - дисперсии данной случайной величины: M(Y) = 0, D(Y) = D(X). Функция распределения F Y (x) центрированной случайной величины Y связана с функцией распределения F(x) исходной случайной величины X соотношением:

F Y (x) =F (x + М(Х)).

Для плотностей этих случайных величин справедливо равенство

f Y (x) =f (x + М(Х)).

Нормированная случайная величина V -это отношение данной случайной величины Х к ее среднему квадратическому отклонению σ, т.е. . Математическое ожидание и дисперсия нормированной случайной величины V выражаются через характеристики X так:

где v - коэффициент вариации исходной случайной величины X. Для функции распределения F v (x) и плотности f v (x) нормированной случайной величины V имеем:

где F(x) - функция распределения исходной случайной величины X, a f(x) - ее плотность вероятности.

Приведенная случайная величина U - это центрированная и нормированная случайная величина:

Для приведенной случайной величины:

(7)

Нормированные, центрированные и приведенные случайные величины постоянно используются как в теоретических исследованиях, так и в алгоритмах, программных продуктах, нормативно-технической и инструктивно-методической документации. В частности, потому, что позволяют упростить обоснования методов, формулировки теорем и расчетные формулы.

Используются преобразования случайных величин и более общего плана. Так, если Y= аХ+ b, где а и b - некоторые числа, то

(8)

Пример 7. Если то У - приведенная случайная величина, и формулы (8) переходят в формулы (7).

С каждой случайной величиной X можно связать множество случайных величин Y, заданных формулой У = аХ+b при различных а>0 и b. Это множество называют масштабно-сдвиговым семейством, порожденным случайной величиной X. Функции распределения F Y (x) составляют масштабно сдвиговое семейство распределений, порожденное функцией распределения F(x). Вместо Y= аХ+ b часто используют запись

(9)

Число с называют параметром сдвига, а число d - параметром масштаба. Формула (9) показывает, что Х - результат измерения некоторой величины - переходит в У - результат измерения той же величины, если начало измерения перенести в точку с, а затем использовать новую единицу измерения, в d раз большую старой.

Для масштабно-сдвигового семейства (9) распределение X называют стандартным. В вероятностно-статистических методах принятия решений и других прикладных исследованиях используют стандартное нормальное распределение, стандартное распределение Вейбулла-Гнеденко, стандартное гамма-распределение и др. (см. ниже).

Применяют и другие преобразования случайных величин. Например, для положительной случайной величины X рассматривают Y= gX, где lgX -десятичный логарифм числа X. Цепочка равенств



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация