Характеристика очагов поражения при вооруженных конфликтах. Очаговые поражения головного мозга Очаг поражения определение очаги поражения

Главная / Земля

10215 0

К очаговым повреждениям относят контузии или очаги первичного некроза коры мозга, интракраниальные гематомы, а также вторичные очаговые кровоизлияния и инфаркты.

Первичные травматические некрозы являются результатом непосредственного воздействия травмирующего агента на вещество мозга при открытых или закрытых ЧМТ; развиваются на месте удара или противоудара, на месте внедрения костных осколков, в стенках раневого канала и т. п.

При микроскопическом исследовании первичные контузионные травматические некрозы представляют собой очаги геморрагического размягчения или геморрагического пропитывания коры мозга. Микроскопическое исследование очага первичного некроза позволяет выделить: а)зону непосредственного тканевого разрушения; б)зону необратимых изменений; в) зону обратимых изменений.

Вторичные травматические (посттравматические) некрозы развиваются спустя некоторое время после травмы. Причиной их возникновения считают нарушения кровообращения, ликвородинамики, а также воспалительные процессы. На свежих срезах нефиксированного мозга вторичные некрозы выделяются в виде ишемических и геморрагических очагов размягчения в белом веществе, являющихся как бы продолжением очага первичного травматического некроза

Одной из причин возникновения вторичных периконтузионных некрозов, является снижение мозгового кровотока в этой зоне. Так, Y. Katayama с соавт, показали, что в центральной части очага контузии снижение кровотока до уровня ишемии наступает тотчас после нанесения травмы. В периконтузионной зоне кровоток вначале временно усиливается, а затем в течение 3 часов после травмы уменьшается до уровня ишемии. Через 6 часов после травмы тромбоз сосудов обнаруживается уже не только в очаге контузии, но и в периконтузионной зоне, что в конечном счете ведет к развитию вторичных некрозов.

Ушибы (контузии) мозга

Ушиб мозга является наиболее частой и общей макроскопической характеристикой травматического повреждения мозга, обнаруживаемой на КТ, МРТ головного мозга и на аутопсии. Хотя известно, что летальныгх исход части пострадавших с ЧМТ, особенно с ДАП, может наступить при минимальных макроскопических повреждениях мозга. Однако чаще всего, именно ушибы мозга, являются неопровержимым доказательством прижизненной или посмертной диагностики травматического повреждения мозга.

Изучением морфологии ушибов мозга занимались как отечественные, так и зарубежные патологи. Первый пик исследований пришелся на период после Второй мировой войны.

Морфологическая характеристика очага ушиба мозга, в общем, не имеет особых отличий, зависящих от возраста пострадавшего. Исключение составляют только случаи тяжелой ЧМТ у новорожденных и в раннем детском возрасте. В этой возрастной группе довольно часты разрывы белого вещества, особенно в лобной и височной долях.

Под ушибом мозга понимают очаг первичного некроза вещества мозга в сочетании с кровоизлиянием в эту зону. В очаге ушиба может преобладать кровоизлияние, в редких случаях первичный некроз может не сопровождаться кровоизлиянием.
Известны наиболее характерные участки локализации ушибов мозга при ЧМТ. Чаще всего очаги ушиба располагаются на выступающих поверхностях мозга, на вершине извилин, вплотную прилегающих к внутренней поверхности костей черепа. Это — полюса и орбитальные поверхности лобных долей (рис. 5—25), латеральная и нижняя поверхности височных долей и кора над и под сильвиевой щелью. Характерной локализацией ушиба мозга является кора конвекситальной поверхности мозга (рис. 5—26). Ушибы теменной и затылочной долей и мозжечка, встречаются при переломах костей черепа. На основании мозга, в области базальных субарахноидальных цистерн, ушибы мозга практически не встречаются. Значительно реже наблюдаются ушибы ствола мозга.


Рис. 5.25. Очаговое повреждение мозга. Ушиб орбитальной поверхности лобных долей.


Рис. 5.26. Очаговое повреждение мозга. Ушиб конвекситальной поверхности лобных долей.


Рис. 5.27. Ушиб мозга легкой степени. Сгруппированные точечные кровоизлияния.


Ушиб мозга возникает как в результате непосредственного воздействия механической энергии, так и в результате удара о противолежащие стенки черепа или большой серповидный отросток, мозжечковый намет. Ушиб мозга может возникнуть как при переломе костей, так и неповрежденных костях черепа.

В зависимости от механизма травмы ушибы мозга принято разделять на несколько подтипов:
1) Ушиб мозга на месте перелома костей. Локализация очагов ушиба в таких случаях совпадает с участком перелома костей и может наблюдаться как при открытой так и закрытой ЧМТ.

2) Ушиб мозга на месте приложения силы удара (Coup contusion). Ушиб мозга возникает в случаях, когда сила внезапного и локального вдавления костей черепа превышает толерантность прилежащих отделов мягкой мозговой оболочки и вещества мозга.Разрыв сосудов мягкой мозговой оболочки обычно является результатом сильного натяжения, которое возникает при быстром возвращении к своей нормальной конфигурации локально сдавленного эластичного участка кости. При превышении силы удара эластичности костей, происходит перелом костей черепа и ушиб прилежащего участка мозга.

3) Ушиб мозга, расположенный в противоположной стороне от места приложения удара (Contrecoup contusion). Классическим примером является ушиб полюсов лобных долей при падении на затылок.

4) Ушибы мозга от вклинения образуются от удара о край мозжечкового намета и большого затылочного отверстия, обнаруживаются на парагиппокамповых извилинах и миндаликах мозжечка. Чаще всего наблюдаются при огнестрельных ранениях, но могут встретиться и в случаях закрытой черпно-мозговой травмы.

5) Скользящий или парасагиттальный ушиб мозга или ушиб Lindenberga — названный так по имени автора, впервые описавшего этот вид ушиба мозга. В этих случаях, чаще всего при ДАП, обнаруживаются билатеральные, но несколько асимметричные очаги ушиба в конвекситальной коре.

Очаги ушиба различны по своей форме, величине, локализации численности. Очаги ушиба, располагающиеся в коре или в коре и прилежащем к коре белом веществе, в зарубежной литературе обозначают как «корковые контузии».

Л.И. Смирнов выделял следующие основные формы ушибов мозга:
1) крупные кортико-субкортикальные очаги геморрагического размягчения с разрывами мягких мозговых оболочек;
2) пятна коркового геморрагического размягчения при целости мягких мозговых оболочек, захватывающие всю толщу коры;
3) геморрагическое размягчение толщи коры при сохранности молекулярного слоя;
4) внутрикорковые пластинчатые (слоистые) размягчения, локализующиеся в большинстве случаев в третьем-четвертом слоях коры;
5) очаги контузионного размягчения, осложненные надрывами твердой мозговой оболочки и внедрением костных осколков в мозговое вещество.

При небольших размерах очага ушиба и локализации его не в жизненно важных структурах мозга, возможно самопроизвольное излечение больного. Так, в опубликованной в 1948 году сводке E. Welte о летальности в клинике общего профиля, среди 2000 умерших от соматических заболеваний, у 2,5% были найдены следы перенесенной ранее ЧМТ, в виде пигментированных рубцов на месте ушибов мозга.

Для объективизации оценки степени повреждения мозга в1985 году J. Adams с соавт. использовали так называемый контузионный индекс. Для этой цели авторы измеряли глубину и ширину очага ушиба в различных участках мозга. При этом границы очага ушиба определялись микроскопически, т.к. не имбибированная кровью некротическая зона при макроскопическом изучении обычно бывает трудно различима.

В результате проведенного исследования J. Adams с соавторами подтвердили, что:
а) ушибы мозга тяжелой степени чаще локализуются в лобной и височной долях, а также выше и ниже сильвиевой щели;
б) ушибы мозга тяжелой степени чаще являются результатом вдавленного перелома костей черепа;
в) независимо от того, приходился ли удар в лоб или затылок, ушиб мозга более тяжелой степени приходится на лобную долю;
г) в случаях несоответствия клиники тяжелой ЧМТ макроскопически неизмененному мозгу, выявляемому на КТ или аутопсии, необходимо тщательное микроскопическое исследование, которое позволит выявить ДАП.

В 1994 году G. Ryan с соавторами, разработали достаточно оригинальный метод количественной оценки степени ушиба мозга. Согласно предложенному протоколу, мозг после фиксации в формалине, разрезается на 116 секторов по предложенной схеме. Обнаруженные в каждом секторе макро- и микроскопические изменения фиксируются и наносятся на диаграммы. Этот метод позволяет детализировать информацию о распространенности повреждений в различных анатомических образованиях мозга, что крайне необходимо при изучении биомеханики ЧМТ.

В соответствии с принятой в нашей стране клинической классификацией ЧМТ, принято выделять три степени тяжести ушиба мозга.

Ушиб мозга легкой степени

Характеризуется наличием сгруппированных точечных кровоизлияния в коре мозга (рис. 5—27), нередко в сочетании с ограниченным субарахноидальным кровоизлиянием. Организация очага некроза или кровоизлияния в коре начинается уже через 15 часов после травмы и заканчивается формированием очага клеточного глиоза.

При ограниченных субарахноидальных кровоизлияниях, не сопровождающихся нарушением целостности лептоменингса, в течение первых 5— 7 дней происходит резорбция излившейся крови макрофагами. Кровоизлияние в поверхностные отделы коры приводит к очаговому разрушению концевых ветвей апикальных дендритов нейронов, расположенных в глубоких слоях коры; возможны некробиотические изменения ассоциативных и вставочных нейронов II — IV слоев коры, наиболее ранимых при гипоксии, микроциркуляторных нарушениях.

Ушиб мозга средней степени

Характеризуется наличием очага первичного некроза коры и прилежащих отделов белого вещества одной или нескольких извилин с диффузным геморрагическим пропитыванием или мелкоочаговыми кровоизлияниями (рис. 5—28).

Последовательные изменения очага ушиба подробно описаны в работах Л.И. Смирнова, R. Lindberg (93, 94), Н.А. Сингур.
Изменение тинкториальных свойств тканей, отражающих развитие некробиотических процессов, переходящих в некроз, ишемические и отечные изменения нейронов, обнаруживаются через 40 минут после травмы.

Характерную клиновидную форму контузионный очаг приобретает уже через 4—5 часов. В перифокальной зоне отмечается плазмаррагия вокруг капилляров и венул, краевое стояние лейкоцитов в сосудах, единичные лейкоциты проникают в поврежденную ткань. Через 8 часов очаг ушиба пропитывается кровью.

В случаях первичных мелкоочаговых кровоизлияний могут обнаруживаться сосуды с разрывами стенок. В течение первых 3 дней зона ушиба представлена некротизированной тканью мозга с кариорексисом, плазмолизом, очаговым скоплением лейкоцитов. В это же время появляются единичные зернистые шары. Через 6—9 дней в очаг первичного некроза активно врастают новообразованные сосуды, располагающиеся среди зернистых шаров. К концу второй недели зона непосредственного повреждения заполняется зернистыми шарами. Через 3—4 месяца зона повреждения замещена очагом волокнистого глиоза (глиальный рубец) или глиомезодермальным рубцом. Среди аргирофильных и глиальных волокон сохраняются единичные макрофаги/зернистые шары.

Ушиб мозга тяжелой степени

Характеризуется разрушением мозговой ткани с разрывами мягкой мозговой оболочки (рис. 5—29). Первичный очаг травматического некроза захватывает кору и субкортикальное белое вещество. Обширные очаги разрушения мозга (размозжения) (рис. 5—30), могут захватывать одну или несколько долей и распространяться вглубь до подкорковых узлов.
Соотношение мозгового детрита и количества излившейся крови значительно варьируют в разныгх случаях (рис. 5 — 31; 5—32). На протяжении 3 — 4 суток после травмы могут возникать эрозивные кровоизлияния, обусловленные фибриноидными некрозами стенок сосудов.



Рис. 5.28. Ушиб мозга средней степени. Фронтальный срез полушарий мозга, проведенный через клюв мозолистого тела. Контузионный очаг с кровоизлиянием на орбитальной поверхности левой лобной доли.




Рис. 5.29. Ушиб мозга тяжелой степени, захватывающий лобную и височную доли. Разрыв мягких мозговых оболочек.



Рис. 5.30. Ушиб мозга тяжелой степени. Размозжение полюсов лобных долей, субарахноидальное кровоизлияние, вторичное кровоизлияние в ствол мозга.




Рис. 5.31. Мозговой детрит в очаге ушиба, х200 (импрегнация серебром по Бильшовскому).



Рис. 5.32. Кровоизлияние в зоне ушиба мозга, х100 (гематоксилин-эозин).


При обширных очагах ушиба (размозжения) процессы организации некроза замедляются. Через 4—6 недель после травмы можно обнаружить врастание новообразованных сосудов только в периферические отделы очага. При ушибе мозга тяжелой степени развивается общее нарушение мозгового кровообращения (рис. 5—33; 5—34), выражающееся в стазах крови, тромбозах сосудов мозга, диапедезных кровоизлияниях в стенках желудочков. В течение 4—5 месяцев после травмы и до 1,5 лет на месте очагов травматических некрозов, гематом, формируются компактные, пористые, кистозные, часто пигментированные рубцы и посттравматические кисты,содержащие ксантохромную жидкость.

Сдавление мозга

Наиболее частой причиной местного (очагового) сдавления мозга при ЧМТ, оказываются эпидуральные и субдуральные гематомы (рис. 5—35), а также обширные вдавленные переломы костей свода черепа. Причиной сдавления мозга может быть и пнвмоцефалия (5, 8). Разумеется, не все случаи поди надоболочечных внутричерепных кровоизлияний приводят к сдавлению мозга и развитию компрессионного синдрома. Симптомокомплекс сдавления мозга возникает, обычно, при нарастающей ограниченной гематоме, что может привести в конечном итоге к дислокации отдельных частей мозга.

Причиной общего сдавления мозга с дислокацией ствола может быть диффузное набухание мозга, вследствие отека или гиперемии, повышенное внутричерепное давление. Таким образом, местное или общее сдавление мозга может быть осложнением различных видов ЧМТ.

Время развития симптомокомплекса сдавления мозга зависит от количества излившейся крови и локализации гематомы. Так, эпидуральная гематома объемом около 70 мл излившейся крови, возникшая вследствие повреждения средней оболочечной артерии, вызывает компрессионный и гипертензионный синдром в первые часы или дни после ЧМТ. Тогда как при субдуральной гематоме, значительно большей по объему излившейся крови около 150 мл, синдром сдавления мозга может развиться через дни и недели.

В случаях сочетания под- и надоболочечных гематом с ушибом мозга, довольно сложно бывает определить степень изменения мозга, вызванного локальным ушибом. Как в случаях вдавленного перелома, в месте сдавления мозга развивается очаг геморрагического размягчения, так и при ушибе мозга.

При отсутствии очагов ушиба мозга, в течение первых суток после субдурального или эпидурального кровоизлияния в веществе мозга, прилежащем к оболочечным гематомам, могут обнаружиться рассеянные петехиальные или мелкоочаговые кровоизлияния, полнокровие сосудистой системы. В последующие сутки нарастают нарушения микроциркуляции в коре мозга, увеличивается число ишемически измененных, так называемых «красных нейронов».

При медленном нарастании давления, что чаще наблюдается в случаях хронической эпидуральной гематомы и хронической субдуральной гематомы, увеличиваются дистрофические изменения в подлежащем участке коры, что приводит к постепенной гибели нейронов и формированию в коре мозга очажков неполного некроза с заместительным глиозом.

Повреждения черепных нервов

Открытая и закрытая травма головы, особенно в сочетании с переломами костей основания черепа, часто сопровождается повреждением черепных нервов. Наиболее повреждаемая часть черепных нервов, это участок между их внутрикостной и внутричерепной частями. При аутопсии, обычно, черепные нервы отсекаются выше места их входа в кости черепа и потому нет достаточно полного представления о частоте повреждения каждого черепного нерва, за исключением обонятельного нерва.

Известно, что травма первой пары черепно-мозговых нервов, являющаяся основной причиной потери обоняния, встречается, приблизительно, в 7% случаев ЧМТ. Ушиб орбитальной поверхности лобных долей и переломы орбитальной пластинки часто сопровождается ушибом луковицы обонятельного нерва.

Перелом костей передней черепной ямки может быть причиной травматического повреждения зрительного нерва и зрительного тракта. Наиболее уязвимой и, потому, наиболее часто травмируемой частью зрительного нерва является его интраканаликулярный участок. В результате ЧМТ могут возникнуть первичные и вторичные повреждения зрительных нервов.

К первичным повреждениям зрительного нерва относятся вызванные механической силой и происшедшие во время ЧМТ, субдуральные и субарахноидальные кровоизлияния, как в интраорбитальном, так и интракраниальном отрезках нерва, Кроме того, к первичным травматическим повреждениям зрительного нерва можно отнести вызванные ударной волной контузионные некрозы в паренхиме нерва, а также первичные повреждения аксонов.

Вторичные повреждения зрительного нерва являются результатом отека паренхимы самого нерва или диффузного отека полушарий мозга. Иногда наблюдаемое при отеке мозга сдавление хориоидальной артерии, может привести к инфаркту зрительного нерва. Вторичный некроз зрительного нерва может быть вызван локальной окклюзией глазничной артерии и ее ветвей. Возможны вторичные кровоизлияния в оболочки и паренхиму нерва.

При тяжелой травме черепа с переломом вершины орбиты и при разрыве сфеноидальной щели, может наступить повреждение III, IV и VI нервов и офтальмической ветви V нерва. III, IV и V пары черепно-мозговых нервов могут быть разрушены не только непосредственно костными отломками, но также вторично, при тенториальном вклинении ствола мозга, тромбозе кавернозного синуса или развитии травматической каротидно-кавернозной фистулы.

В литературе имеются только единичные сообщения о случаях травмы других черепно-мозговых нервов.

Так, тройничный нерв и его интраорбитальная часть могут быть травмированы при переломе основания средней черепной ямки.

Перелом пирамидки височной кости может травмировать VII и VIII нервов, что может встретиться при лобно-затылочном направлении силы удара.

Травматическое повреждение других пар черепно-мозговых нервов описаны в случаях огнестрельных ранений.

Повреждение артерий

П ри люб о м виде Ч М Т могут наблюдаться случаи разрыва, отрыва артерий, тромбоза их просвета, образование артерио-венозной фистулы интракраниальной артерии. Посттравматическая артериовенозная фистула образуется исключительно в кавернозном синусе.

В посттравматическом периоде наиболее часто встречается тромбоз общей или внутренней сонной артерии, значительно реже обнаруживается тромбоз вертебральной артерии и еще реже — тромбоз остальных интракраниальных артерий. При этом прямой зависимости характера повреждения артерии от тяжести самой травмы не замечено.

К повреждению общей сонной артерии или внутренней сонной артерии может привести травма шеи, перелом костей основания черепа, длительное латеральное сгибание или натяжение шеи. Тромбоз поврежденной сонной артерии развивается в течение нескольких часов, дней или даже недель после травмы. Описаны случаи посттравматического тромбоза супраклиноидной части внутренней сонной артерии и средней мозговой артерии. Результатом тромбоза артерий является ишемический инфаркт мозга.

Наиболее частая локализация очага повреждения вертебральных артерий, это — отрезок между 5 и 6 шейными позвонками.
Перелом костей основания черепа или проникающее ранение каротидного канала способствуют разрыву стенки артерии и истечению крови в кавернозный синус, что приводит к венозному полнокровию глаза, экзофтальму и другим характерным признакам.

При двустороннем каротидно-кавернозном соустии, из-за уменьшения притока артериальной крови в мозг, может развиться ишемическое повреждение мозга. Посттравматическое каротидно-кавернозное соустье обнаружено у 2% пациентов, переживших тяжелую ЧМТ, особенно в случаях, когда сила удара была направлена в лобно-височную область.

Травматические аневризмы интракраниальных артерий образуются на ветвях средней мозговой артерии и передней мозговой артерии. Болыиинство травматических аневризм являются ложными. В этих случаях поврежденный участок стенки артерии представлен организующейся гематомой, прилежащей к сосуду и окружающей ее. Аневризматическое расширение ослабленной стенки сосуда может наблюдаться в случаях частичного повреждения сосуда без его разрыва.
Основные отличия травматической аневризмы от артериальной аневризмы — это локализация ее дистальнее места развилки виллизиева круга, отсутствие шейки аневризмы, неровные контуры мешка.

В то же время, травма может способствовать разрыву предшествующей артериальной аневризмы или артериального выпячивания. Для дифференциальной диагностики необходимо дополнительное гистологическое исследование артерии, окраска на эластику. В случаях истинной артериальной аневризмы выявляется нарушение гистоструктуры эластической мембраны.

Травма мозга, без переломов и трещин костей основания черепа, особенно в случаях атеросклеротически измененных артерий основания мозга, может привести к тромбозу артерии. Причиной этого может быть отрыв мышечного слоя артерии от адвентиции, особенно в участках расположения атеросклеротической бляшки и образование расслаивающейся аневризмы.

Кроме травмы артерий с последующим тромбозом их просвета, после травмы головы может развиться тромбоз синусов твердой мозговой оболочки и корковых вен, что также ведет к очаговому нарушению мозгового кровотока.

Повреждения гипофиза и гипоталамуса

По данным C. Harper c соавт., из 100 летальных случаев ЧМТ, приблизительно в 38 случаях обнаруживается инфаркт передней доли гипофиза.

Причины повреждения гипофиза различны, в том числе перелом костей основания черепа, захватывающий турецкое седло; повышенное внутричерепное давление, ведущее к сдавлению и разрушению стебля гипофиза; гипотензивный шок. Во время ЧМТ может оторваться ножка гипофиза от серого бугра, что ведет к инфаркту передней доли гипофиза.
Прижизненная диагностика повреждения гипоталамуса и стебля гипофиза стала возможной благодаря современным методам визуализации мозга, в частности МРТ.

Переломы костей черепа

Почти 2/3 всех переломов костей черепа приходится на долю закрытой ЧМТ. Различают переломы свода, основания черепа и комбинированные переломы свода и основания черепа.

Из костей, составляющих свод черепа, на первом месте по частоте переломов стоит теменная кость, затем лобная, реже — затылочная и височная кости.

Вдавленные переломы свода черепа возникают, когда повреждающая сила действует на ограниченную площадь (рис. 5—36). Оскольчатые переломы и сквозные трещины возникают при воздействии тупой силы на обширный участок черепа (рис. 5—37). Особенно часто встречаются неполные переломы, при котором повреждается целостность внутренней пластины кости.

Рис. 5.35. Горизонтальный срез полушарий мозга на уровне островка. Деформация переднего рога правого бокового желудочка мозга, вызванная сдавлением субдуральной гематомой, располагавшейся в правой лобно-височной области .




Рис. 5.36. Перелом костей свода ударом топора по голове (препарат П. О. Ромодановского)




Рис. 5.37. Множественный перелом костей свода черепа (препарат П. О. Ромодановского).


Переломы основания черепа чаще обнаруживаются в средней черепной ямке, затем в передней и задней черепной ямок. Возможны множественные трещины, идущие через все основание черепа или захватывающие две смежные черепные ямки.
В значительной части случаев переломы основания черепа являются продолжением перелома свода и имеют вид трещин или возникают на отдалении от места приложения повреждающей силы. Могут возникнуть при ударе по лицу или при падении на ноги.

Тяжесть травмы определяется не самим переломом костей, а объемом и глубиной повреждения мозговой ткани. Возможны случаи обширного повреждения черепа при сохранности содержимого черепа. Довольно часто переломы свода черепа сопровождаются ушибом мозга, чаще в местах переломов костей и реже по механизму противоудара. Костные осколки могут повредить целостность твердой мозговой оболочки, ее сосудов и синусов, могут внедриться в вещество мозга.
При переломах основания черепа часто наблюдается разрыв твердой мозговой оболочки, что создает угрозу возникновения различных инфекционных осложнений; смещение костных отломков при переломах свода черепа обычно небольшое.

Переломы основания черепа часто сопровождаются внутричерепными кровоизлияниями и повреждением черепно-мозговых нервов.

Зона (очаг) поражения - это территория, на которую воздействуют опасные и вредные факторы ЧС.

Зоны поражения подразделяются:

по сложности на:

· · простые - очаг, возникший под воздействием одного поражающего фактора (от взрыва, пожара, химическое или бактериологическое заражение);

· · сложные (комбинированные) - результат действия нескольких поражающих факторов (например, взрыв на химзаводе может вызвать пожар и химическое заражение местности);

по форме:

· · круглой формы - при землетрясениях и взрывах;

· · плоской формы - при ураганах, смерчах, лавинах;

· · неправильной формы - при пожарах, цунами, оползнях и т.п..

299. Поражения отравляющими веществами

Поражения отравляющими веществами возможны при контакте с опасными химическими веществами или при нахождении в зоне химического поражения.

Зона химического поражения – это территория, в пределах которой в результате выброса сильнодействующих ядовитых веществ (СДЯВ) или при применении химического оружия происходит массовое поражение людей, животных и растительности.

Источниками СДЯВ являются: нефтегазовая и химическая промышленности, предприятия по производству пластмасс, целлюлозы, удобрений, водоочистные и холодильные установки.

Защита от СДЯВ достигается применением средств индивидуальной и коллективной защиты.

Основные пути проникновения отравляющих веществ (ОВ): через дыхательный аппарат, кожный покров и желудочно-кишечный тракт.

Токсичность ОВ и СДЯВ - это способность вызывать поражения при попадании их в организм в определенных дозах.

СДЯВ классифицируются по характеру поражающего действия на: нервно-паралитические, общеядовитые, удушающие, кожно-нарывные, раздражающие и психогенные.

ОВ нервно-паралитического действия - фосфорсодержащие средства зорин (бесцветная жидкость со слабым фруктовым запахом, растворяется в воде), зоман (бесцветная жидкость, слабый запах камфары, плохо растворим в воде), Би-Икс - бесцветная жидкость без запаха, растворим в воде.



Эти вещества растворяются в жирах, проникают через кожный покров, нарушают системы дыхания, кровообращения, сердца. При легких отравлениях: сужение зрачков, слюнотечение, затруднение дыхания. При тяжелых поражениях - затрудненное дыхание, спазмы в желудке, рвота, судороги и паралич дыхания.

ОВ общеядовитого действия - быстродействующие летучие ОВ: синильная кислота - бесцветная летучая жидкость с запахом горького миндаля, растворим в воде, хлоэциан - бесцветная, тяжелая летучая жидкость, плохо растворим в воде.

Эти вещества поражают кровь и нервную систему, наблюдаются металлический привкус во рту, чувство страха, одышка, судороги, паралич дыхательного центра.

ОВ удушающего действия - поражают верхние дыхательные пути и легочные ткани: фосген - бесцветная жидкость, в обычных условиях - газ в 3,5 раза тяжелее воздуха, дифосген - бесцветная маслянистая жидкость. Эти газы имеют запах прелого сена, при их воздействии возникает жжение в горле, кашель, дыхание затруднительно.

ОВ кожно-нарывного действия - действуют в капельножидком и парообразном состоянии - это иприт (азотистый иприт) - маслянистая бесцветная жидкость с запахом горчицы или чеснока, плохо растворим, проникает через кожу и слизистые оболочки и попадает в кровь. При легких поражениях - покраснение кожи, при тяжелых - образуются пузыри, язвы. Пары иприта вызывают поражения глаз и органов дыхания.

ОВ раздражающего действия - воздействуют на слизистые оболочки глаз, верхние дыхательные пути - это Си-Эс, Си-Эр.

ОВ психогенного действия - вызывают психозы - это ЛСД и Би-Зэт - бесцветные кристаллические вещества, растворимы, применяются в аэрозольном состоянии. Вызывают расстройства движений, зрения, слуха, психоз.

По стойкости ОВ разделяются на:

· · стойкие - сохраняющие действие до нескольких дней и недель, они медленно испаряются - это Би-Икс, зоман, иприт.

· · нестойкие - действуют 1- 2 часа - это фосген, синильная кислота, хлорциан.

В Вологде несколько предприятий используют в производстве сильнодействующие ядовитые вещества (СДЯВ): хлор и аммиак (табл. 19).. В народном хозяйстве чаще применяются хлор, цианистый водород, аммиак, сернистый ангидрид, сероводород. Они хранятся в герметичных емкостях в сжиженном состоянии и подаются по трубопроводам.

Рассмотрим газы, применяемые на предприятиях г. Вологды.

Хлор - газ зеленовато-желтого цвета, с резким удушливым запахом, тяжелее воздуха. При испарении и соединении с водяными парами в воздухе стелется над землей в виде тумана зеленовато-белого цвета. Проникает в подвалы и нижние этажи зданий. Пары сильно раздражают органы дыхания, глаза и кожу.

Таблица 19

Смертельная концентрация - 0.1 мг/л/мин при нахождении в зоне заражения хлором без средств защиты в течение 60 минут.

Признаки отравления: резкая боль в груди, сухой кашель, рвота, одышка и резь в глазах. Возможен смертельный исход при вдыхании высоких концентраций.

Средства защиты: противогазы всех типов, камеры защитные детские, ватно-марлевые повязки, смоченные водой или 2 % раствором питьевой соды. На предприятиях, использующих хлор - промышленные противогазы с коробками марки "В" желтого цвета.

При поражении хлором пострадавшего необходимо немедленно вынести на свежий воздух, потеплее укрыть и дать дышать парами воды. Ему будет полезно подышать аэрозолем 0.5 % раствора питьевой соды или кислородом. Кожу и слизистые оболочки надо промывать 2 % раствором питьевой соды в течение не менее 15 минут.

Не позволяйте пострадавшему передвигаться самостоятельно. Транспортировать пострадавшего можно только в лежачем положении, при отсутствии дыхания у пострадавшего сделать искусственное дыхание способом "рот в рот".

Аммиак - бесцветный газ с характерным удушливым запахом. Легче воздуха. Хорошо растворяется в воде. При выходе в атмосферу из неисправных емкостей дымит. Опасен при вдыхании.

При высоких концентрациях возможен смертельный исход. Пары сильно раздражают органы дыхания, глаза и кожу. Поражающая концентрация - 0.25 мг/л/мин при нахождении в зоне заражения в течение 60 минут без средств защиты.

Признаки отравления: учащенное сердцебиение, нарушение частоты пульса, насморк, кашель, резь в глазах, затрудненное дыхание.

Смертельная концентрация: 3,5 мг/л/мин при нахождении в зоне заражения в течение 30 минут без средств защиты.

Средства индивидуальной защиты на предприятиях, использующих аммиак, - промышленные противогазы марки КД, при их отсутствии - ватно-марлевые повязки, предварительно смоченные водой или 5 % раствором лимонной кислоты.

При поражении аммиаком пострадавшего нужно вынести на свежий воздух, обеспечить тепло и покой, дать увлажненный кислород. Транспортировать пострадавшего необходимо в лежачем положении. Кожу, слизистые оболочки и глаза промывать не менее 15 минут раствором борной кислоты или воды. В глаза закапать по 2-3 капли 30 % раствора альбуцида, в нос - оливковое или персиковое масло. От искусственного дыхания до прибытия медработников желательно воздержаться - возможен отек легких.

При аварии на одном из вышеперечисленных предприятий с выбросом в атмосферу аммиака или хлора может образоваться ядовитое облако с глубиной распространения до нескольких километров. Наиболее вероятно движение ядовитого облака и образование опасной зоны заражения в северную и северо-восточную сторону. В случае аварии будет сообщено направление ветра и зараженного воздуха, а также направление выхода из зоны заражения.

Наиболее эффективным способом защиты является выход из зараженной зоны, надев средства защиты. При получении информации об аварии с выбросом ядовитых веществ в атмосферу сделайте следующее:

· · уясните из переданной информации место аварии и направление распространения ядовитого облака;

· · плотно закройте все окна и двери, если находитесь в здании или автомобиле;

· · выключите нагревательные, охлаждающие приборы и системы и перекройте газ;

· · выключите вентиляционное оборудование, оконные вентиляторы, закройте вентиляционные люки и отверстия;

· · приготовьте домашнюю аптечку, проверьте наличие борной и лимонной кислоты и питьевой соды, аптечку необходимо взять с собой;

· · приготовьте средства защиты органов дыхания и кожи; если под рукой нет промышленных, приготовьте сами: плотно прилегающие очки и ватно-марлевые повязки, одежду из плотной ткани.

Если вы почувствовали в воздухе присутствие ядовитых веществ, газа, немедленно наденьте очки и ватно-марлевую повязку. Повязку желательно смочить слабым раствором лимонной кислоты. Немедленно выходите из зоны заражения. Двигайтесь в направлении, чтобы ветер дул в спину или слева, но не в лицо. По выходе из зоны заражения будьте внимательны к указаниям должностных лиц, проявите выдержку и организованность.

Вам не придется долго находиться вне дома или семьи. Ликвидацией аварии будут напряженно заниматься городские службы, силы гражданской обороны и подразделения военного гарнизона.

Если вы стали свидетелем поражения людей ядовитыми газами, не оставайтесь безучастными, окажите посильную помощь.

300. Бактериологические поражения

Зона бактериологического заражения – это территория, в пределах которой в определенных временных границах возможно заражение людей возбудителями инфекционных заболеваний.

Бактериологическое (биологическое) воздействие проявляется в способности вызвать массовые инфекционные заболевания людей и животных, которые быстро передаются от больного к здоровому. Возбудителями инфекционных заболеваний являются болезнетворные микроорганизмы (яды), носителями которых могут быть насекомые, животные, человек, среда обитания и бактериологическое оружие.

Рассмотрим некоторые инфекционные заболевания.

Чума - острое инфекционное заболевание людей и животных. Возбудитель - микроб, неустойчив вне организма, в мокроте больного человека сохраняется до 10 дней. Заболевание - слабость, озноб, головные боли, повышение температуры, сознание затемняется, кашель, без лечения наступает смерть.

Холера - возбудитель холерный вибрион, малоустойчив во внешней среде. Признаки заболевания: понос, рвота, судороги, человек быстро худеет, температура тела снижается до 35 о С.

Сибирская язва - возбудитель проникает через дыхательные пути, пищеварительный тракт или через раны на коже. Заболевание протекает в трех формах: кожная - поражаются открытые участки рук, ног, шеи и лица - образуются зудящие пятна, затем пузырек и язва.

Ботулизм - заболевание от ботулитического токсина, выделяемого бактериями ботулизма, токсин очень ядовит, заражает пищеварительную систему, центральную нервную систему. Вначале общая слабость, головная боль, расстройство зрения, паралитические явления мышц языка и лица.

Туляремия - возбудитель туляремии долго сохраняется в воде, почве, пыли. Заражение через дыхательные пути, пищеварительный тракт, слизистые оболочки и кожу. Заболевание - резкое повышение температуры, головная боль, боли в мышцах.

Признаки применения бактериологического оружия: в местах разрывов боеприпасов наблюдаются капли жидкости или порошкообразных веществ на почве, растительности и предметах; скопление насекомых, грызунов, массовые заболевания людей и животных.

Для предотвращения распространения заболеваний устанавливается обсервация и карантин.

Обсервация - это применение режимных мер, обеспечивающих максимальное ограничение въезда и выезда, а также вывоза из зоны (очага) заражения имущества без обеззараживания, усиленный медицинский контроль, ограничение движения по территории и общения между группами людей.

Карантин - это система противоэпидемических мероприятий: изоляция очага поражения и ликвидация в нем заболеваний; на внешних границах зоны карантина устанавливается вооруженная охрана, на объектах - комендантская служба.

Рабочие смены разбиваются на отдельные (возможно меньше) группы с минимальным контактом друг с другом, прекращается деятельность учреждений, связанных со скоплением людей.

В зонах обсервации и карантина проводится дезинфекция, дезинсекция и дератизация (уничтожение насекомых и грызунов).

305. Прогнозирование и оценка возможных последствий ЧС

Прогнозирование ЧС - метод ориентировочного выявления и оценки обстановки, складывающейся в результате стихийных бедствий, аварий и катастроф.

Цель прогнозирования в БЖД - это использование данных для изменения обстановки и ориентировочное определение времени возникновения ЧС. При этом используются научные достижения. Например, ураганы, тайфуны, извержения вулканов прогнозируются с помощью метеоспутников земли. Применяются и математические методы. При прогнозировании определяются границы зон разрушений, затопления, пожаров, заражения, а также потери населения и ущерб народному хозяйству.

Мероприятия, необходимые для предотвращения ущерба от ЧС, подразделяются на фоновые и защитные.

Фоновые (постоянно проводимые) основаны на долгосрочном прогнозе: надежная система оповещения населения об опасностях, устройство защитных сооружений, обеспечение населения средствами индивидуальной защиты, организация радиационного, химического и бактериологического наблюдения, разведки и лабораторного контроля, обучение населения правилам поведения и действиям в ЧС; отказ от строительства АЭС, химических и других опасных объектов - источников опасности в экономически уязвимых районах.

Защитные мероприятия после предсказания момента ЧС: развертывание систем наблюдения и разведки для уточнения прогноза, ввод в действие специальных правил функционирования экономики и общественной жизни, нейтрализация источников (объектов) повышенной опасности, готовность спасательных служб, частичная эвакуация населения.

306. Планирование мероприятий по обеспечению БЖД в ЧС

Планирование позволяет конкретизировать достижение целей во времени, ресурсам и исполнителям, составляются планы, которые состоят из следующих элементов: конкретные показатели (виды работ, мероприятия), сроки выполнения этих работ, необходимые ресурсы, способы контроля за выполнением работ.

Реальность плана проверяется в ходе тренировок и учений.

307. Классификация принципов и способов защиты

Защита населения в ЧС - это комплекс мероприятий, имеющих цель не допустить неблагоприятного воздействия последствий ЧС или ослабить степень их воздействия.

Принципы обеспечения безопасности по признаку их реализации делятся на три группы:

Заблаговременная подготовка - накопление средств защиты (коллективных и индивидуальных) от опасных и вредных факторов и поддержание их в готовности для использования населением.

Дифференцированный подход - характер и объем защитных мероприятий устанавливается в зависимости от вида источников.

Комплексность мероприятий - эффективность применения средств и способов защиты от последствий ЧС.

Способы защиты населения в ЧС следующие:

· · эвакуация населения;

· · укрытие в защитных сооружениях;

· · средства индивидуальной защиты - предназначены для защиты от попадания внутрь организма, на кожные покровы, одежду радиоактивных, ОВ и бактериальных средств;

· · медицинские средства индивидуальной защиты - профилактика и медицинская помощь населению в ЧС.

Для обеспечения безопасности населения в ЧС большое значение имеют: обучение населения действиям в ЧС, своевременное оповещение об угрозе возникновения ЧС, организация и проведение радиационной, химической и бактериологической разведки, проведение дозиметрического контроля, создание запасов материальных средств для проведения спасательных и др. работ.

312. Средства индивидуальной защиты (СИЗ)

Различают средства защиты индивидуальные (СИЗ), первой медицинской помощи (ПМП) и коллективные (КСЗ).

По назначению СИЗ подразделяются на средства защиты органов дыхания, кожи и медицинские.

По принципу действия СИЗ делятся на фильтрующие и изолирующие, по способу изготовления - на промышленного изготовления и изготовленные населением из подручных материалов.

При аварийной ситуации или угрозе нападения противника работающие получают СИЗ на своих объектах, население - в ЖЭКах.

Средства защиты органов дыхания - это противогазы, защищающие также лицо, глаза; респираторы, фильтрующие противогазы ГП-5, ГП-5м, ГП-7, ГП-7В, состоящие из фильтрующе-поглощающей коробки, лицевой части (шлем-маска, маска), соединительной трубки; для защиты от окиси углерода - дополнительный патрон, присоединяемый между маской и фильтрующей коробкой. Для избирательного поглощения некоторых СДЯВ предназначены дополнительные патроны противогазовые (ДПГ-1, 3).

Принцип действия противогазов: поглощение (адсорбция) газов и паров на шихте активированного угля катализатора и механической очистки воздуха от радиоактивного вещества (РВ) биологического средства (СВ) на противоаэрозольном фильтре (ПАФ). Шихта и ПАФнаполняют фильтрующе-поглощающую коробку.

Основные характеристики фильтрующих противогазов являются:

· · , мин,

m – количество ОВ, СДЯВ поглощенное шихтой, г;

C – концентрация, мг/л;

V - объем воздуха, проходящий через коробку противогаза в мин (принимают V ср =30 л/мин.)

  • коэффициент проскока K п – характеризует ПАФ

K п =(С к /С о)*100 %,

С о - концентрация РВ, БС до фильтра (в воздухе), мг/л;

С к - концентрация РВ, БС в подмасочном пространстве, мг/л.

Изолирующие противогазы ИП-4, ИП-5, ИП-46, ИП-46М применяются при недостатке кислорода и когда фильтрующие не защищают. Воздух в них обогащается кислородом в регенеративном патроне.

Изолирующий противогаз состоит из лицевой части, регенеративного патрона, дыхательного мешка, каркаса и сумки.

Для защиты органов дыхания от грунтовой, радиоактивной пыли и бактериальных аэрозолей используют респираторы ШБ-1 (“лепесток”) разового действия, Р-2 и Р-3. Респиратор Р-3 защищает частично и от ОВ. Коэффициент проскока респираторов К п =0,1%.

Респираторы Р-2 защищают от пыли, это фильтрующая полумаска с двумя клапанами вдоха, одним клапаном выдоха, оголовком (из тесемок) и носовым зажимом.

Кроме того применяется противопыльная тканевая маска ПТМ-1, состоящая из 2-4 слоев ткани (корпус с вырезами для смотровых стекол) и полосками ткани с резинками для крепления на голове.

Население самостоятельно изготовляет ватно-марлевые повязки из куска марли 100x50 см и ваты.

Для защиты кожи применяются:

· · изолирующие средства защиты кожи - изготавливаются из прорезиненной ткани, применяют при выполнении дегазационных работ (комбинезоны, костюмы);

· · фильтрующие средства защиты кожи - комплект одежды, защищающий от ОВ, пыли и бактериологических средств (может быть заменен обычной одеждой, пропитанной мыльно-масляной эмульсией - 2.5 л на комплект).

Простейшие средства защиты кожи - обычная одежда, обувь из резины, перчатки, рукавицы, капюшон.

Для защиты от паров ОВ одежду пропитывают моющими средствами ОП-7, ОП-10 или мыльно-масляной эмульсией.

Для оказания взаимопомощи и самопомощи применяются медицинские средства защиты: аптечка индивидуальная АИ-2, индивидуальный противохимический пакет (ИПП-8, ИПП-10 - флакон с дегазирующей жидкостью и 4 ватно-марлевых тампона), пакет перевязочный индивидуальный (ПП - бинт и 2 ватно-марлевых подушечки).

313. Действия по сигналам оповещения ГО

С целью своевременного предупреждения населения о возникновении опасности и необходимости применения мер защиты установлены следующие сигналы:

· · "Воздушная тревога" - подается для всего населения, передается по радиотрансляционной сети: "Внимание! Внимание! Граждане! Воздушная тревога! Воздушная тревога!". Этот сигнал дублируется на объектах звуком сирен, гудками заводов и др.

· · По этому сигналу прекращаются работы, останавливается транспорт и все население укрывается в защитных сооружениях.

· · "Отбой воздушной тревоги" передается по радиотрансляционной сети: "Внимание! Внимание! Граждане! Отбой воздушной тревоги!". Население покидает укрытия, приступает к работе.

· · "Радиационная опасность" - сигнал подается в населенных пунктах, по направлению к которым движется радиоактивное облако, по этому сигналу необходимо надеть респиратор, тканевую или ватно-марлевую повязку, взять запас продуктов, предметов первой необходимости, индивидуальные средства медицинской защиты и уйти в убежище, укрытие.

· · "Химическая тревога" - подается при угрозе химического или бактериологического нападения (заражения). По этому сигналу следует надеть противогаз и укрыться в защитном сооружении.

314. Факторы, влияющие на устойчивость работы объектов

Под устойчивостью работы объектов народного хозяйства (ОНХ) понимают способность противостоять разрушительному воздействию поражающих факторов ЧС, производить продукцию в запланированном объеме, обеспечивать безопасность жизнедеятельности работающих, а также способность к восстановлению в случае повреждения.

К факторам, влияющим на устойчивость работы объектов, относятся: район расположения объекта, планировка и застройка территории объекта, системы электроснабжения, технология, производственные связи объекта, система управления, подготовленность объекта к восстановлению.

При анализе района расположения объекта учитывается нахождение на данной территории других объектов, которые могут служить источником возникновения вторичных факторов поражения (гидроузлы, химзаводы), естественные условия местности (лес - источник пожаров, дороги, реки), метеорологические условия (количество осадков, направление ветра).

При рассмотрении зданий и сооружений данной территории учитываются этажность, основные конструкции, огнестойкость и другие характеристики, влияющие на устойчивость и уязвимость к воздействию световых излучений, ударной волны; отмечаются сооружения, которые не могут участвовать в производстве основной продукции.

При оценке внутренней планировки территории объекта учитываются влияние плотности и тип застройки на возможность возникновения и распространения пожаров, образование завалов входов в убежищах, возникновение вторичных факторов поражения (емкости с ЛВЖ, с ядовитыми веществами, склады ВВ, аммиачные установки).

При изучении технологии на объектах учитывается возможность изменения в производственном процессе на время ЧС (частичное производство, выпуск новой продукции), возможность электроснабжения от внутренних источников, выявляется минимальная потребность в энергии, газе, воде, паре и других видах энергоснабжения в период ЧС.

Особое внимание обращается на газоснабжение, т.к. газ может создавать угрозу населению и производству, проверяется возможность отключения подачи газа на объект и отдельные участки.

При анализе системы управления учитывают возможность связи, её надежности; возможности взаимозаменяемости руководящего состава, надежность системы оповещения. Учитывают системы материально-технического снабжения в период ЧС, оцениваются запасы сырья, деталей и возможности их пополнения.

Изучается возможность восстановления производства после поражения объекта, предусматриваются меры по скорейшему восстановлению: возможности строительно-монтажных организаций, запасы строительных материалов, наличие проектной документации для проведения работ.

315. Пути и способы повышения устойчивости работы объектов

Повышение устойчивости объекта достигается усилением наиболее слабых (уязвимых) элементов и участков.

Основные меры по повышению устойчивости:

· · защита работающих и населения;

· · усиление прочности зданий, сооружений, имеющих важное значение, но имеющих малопрочные элементы (закрепление оттяжками, устройство бетонных и металлических поясов, повышающих жесткость конструкции);

· · повышение устойчивости наиболее ценного и уникального оборудования, эталонных контрольно-измерительных приборов, это оборудование размещается в облегченных трудносгораемых зданиях (меньше повреждаются при разрушении) или размещаются в заглублениях, подземных или специально построенных помещениях повышенной прочности, устраиваются защитные шатры, кожухи, зонты, козырьки, сетки над оборудованием;

· · повышение устойчивости технологического процесса за счет резервирования систем автоматики, обеспечения возможности ручного управления, сокращение числа используемых станков, линий; размещения производства отдельных видов продукции в филиалах, параллельных цехах, замены сложной технологии более простой, разработки способов безаварийной остановки производства по сигналу тревоги;

· · повышение устойчивости систем энергоснабжения за счет: создания дублирующих источников электроэнергии, газа, воды, пара (прокладка дополнительных коммуникаций, закольцевание их), принятия мер против разрушения (усиление опор, заглубление, усиление перекрытий), введения передвижных электростанций, насосных установок с автономным приводом; приспособления ТЭЦ к различным видам топлива;

· · повышение устойчивости водоснабжения: питание от нескольких водоисточников, скважин, расположенных на достаточно большом расстоянии друг от друга, внедрение оборотного водоснабжения, защита воды от заражения (дополнительная очистка, защита водозаборов);

· · повышение устойчивости систем теплоснабжения (заглубление коммуникаций, закольцовывание);

· · устойчивость управления производством: создание групп управления (по числу смен) для руководства производством, спасательных и аварийно-восстановительными работами, устройства пункта управления в одном из убежищ, дублирование связи;

· · повышение устойчивости материально-технического снабжения объекта: создание запасов сырья, материалов, оборудования, топлива, обеспечение их сохранности;

· · проведение противопожарных мероприятий - сведение до минимума возможности возникновения пожаров от светового излучения, от воспламенений, вызванных воздействием ударной волны, защите от светового излучения подлежат сгораемые кровли, деревянные стены и элементы (окраска огнезащитной краской, покрытие известковой смесью, обмазка глиной, закрашивание стекол окон), разборка малоценных сгораемых объектов, конструкций, очистка территории от сгораемых материалов, сооружение противопожарных водоемов, противопожарных преград (брандмауэров).

316. Основы спасательных и аварийно-восстановительных работ

К спасательным работам относятся: ведение разведки маршрутов спасательных групп и участков работ, локализация и тушение пожаров, розыск и извлечение пострадавших из завалов, задымленных помещений, подача воздуха в эти места, оказание первой медицинской помощи и эвакуация людей в учебные учреждения, вывод населения из опасных мест, санитарная обработка людей и обеззараживание одежды, территории, сооружений и техники.

Неотложные аварийно-восстановительные работы: прокладка путей движения колонн, проездов в завалах и на зараженных участках, локализация аварий, укрепление или обрушение поврежденных конструкций; восстановление и ремонт защитных сооружений. Эти работы производятся круглосуточно в любую погоду до их завершения.

Группировка сил и средств ГО для проведения указанных работ создается в мирное время по территориальному и производственному принципу.

Формирование движется к очагу поражения по определенному маршруту на основании данных разведки; впереди движется отряд обеспечения движения, затем колонна главных сил, резервы.

Отряд обеспечения движения восстанавливает дороги, проезды, мосты (переправы), локализует пожары.

В очаге поражения разведывательные формирования определяют уровни радиации, отыскивают убежища и укрытия, устанавливают состояние укрываемых людей, отыскивают помещения, пригодные для размещения пораженных людей.

Спасательные работы начинаются со спасения людей, с работ по устройству проездов и проходов к защитным сооружениям, объектам, где могут находиться пораженные люди, локализации и тушения пожаров.

В убежища с людьми сначала подают воздух, расчищают воздухозаборные каналы, через отверстия в стенах, перекрытиях воздух подают компрессорами, устанавливают связь с людьми через сохранившиеся средства связи или другими способами (перестукивание через стены, трубы), разбирают завалы входов и выходов укрытий.

Люди могут оказаться под завалами поврежденных и горящих зданий. Обследование начинают с подвальных помещений, околостенных пространств, наружных оконных и лестничных проемов. Необходимы меры против внезапного обрушения конструкций.

318. Характеристика стихийных бедствий, аварий, катастроф

Землетрясения - наиболее опасные и разрушительные стихийные бедствия. Область возникновения подземного удара является очагом землетрясения, в центре которого выделяется точка - гипоцентр, проекция этой точки на поверхности земли - эпицентр. При сильном землетрясении нарушается целостность грунта, разрушаются здания и сооружения, возможны человеческие жертвы. Если землетрясение происходит под водой, возникают огромные волны - цунами, вызывающие разрушения на суше.

Наводнения - временное затопление значительной части суши, в результате действий сил природы: обильные осадки, интенсивное таяние снега, подводные землетрясения.

Селевой поток (сель) - внезапно формирующийся в руслах горных рек временный поток с высоким содержанием твердого материала в воде; имея большую массу и скорость передвижения, сель разрушает здания, сооружения, дороги на пути движения.

Оползни - скользящее смещение масс горных пород вниз по склону под влиянием силы тяжести, приводят к катастрофическим последствиям.

Снежные лавины, заносы и обледенения влияют на работу транспорта, энергоснабжения, связи. Снежные обвалы в горах наносят материальный ущерб, приводят к человеческим жертвам.

Бури и ураганы - движения воздушных масс с большой скоростью (более 118 км/ч), также вызывают разрушения домов, ЛЭП, сооружений.

Пожары возникают при нарушении мер пожарной безопасности, в результате разрядов молний и других причин.

Большую опасность представляют лесные, торфяные пожары, а также в населенных пунктах с деревянными постройками и малыми разрывами между зданиями.

Крупные аварии и катастрофы на объектах могут возникать в результате стихийных бедствий, нарушения технологии.

Авария - внезапная остановка работы на предприятии, транспорте, других объектах, приводящая к повреждению или уничтожению материальных ценностей.

Катастрофа - внезапное бедствие, событие, влекущее за собой трагические последствия.

319. Спасательные и аварийно-восстановительные работы при ликвидации последствий стихийных бедствий, крупных аварий и катастроф

Общие организационно-правовые и экономические основы создания и деятельности аварийно-спасательных служб и формирований определены Федеральным Законом “Об аварийно-спасательных службах и статусе спасателей”. Закон принят Государственной Думой Российской федерации 14 июля 1995 г.

Аварийно-спасательная служба – это совокупность органов управления, сил и средств, предназначенных для решения задач по предупреждению и ликвидации чрезвычайных ситуаций, функционально объединенных в единую систему, основу которой составляют аварийно-спасательные формирования.

Для ликвидации последствий стихийных бедствий могут привлекаться формирования общего назначения, служб ГО и воинские части.

Основная задача формирований - спасение людей и материальных ценностей.

При землетрясениях прежде всего извлекают из-под завалов людей, оказывают первую медицинскую помощь, устраняют аварии на инженерных сетях, организуют водоснабжение.

При наводнениях спасательные работы направлены на поиск людей на затопленной территории и эвакуацию в безопасные места.

При селевых потоках и оползнях - улавливают сели специальными котлованами, опасные участки оползней ограждают знаками, людей эвакуируют в безопасные районы.

При снежных лавинах, заносах и обледенениях производится очистка от снега магистралей, дорог с привлечением всей наличной техники и населения. При обледенении выводятся из строя ЛЭП, контактные сети, для борьбы с обледенением используются механический (сбитие льда скребками, шестами, перекинутыми через провода веревками), тепловой (использование электротока) способы, применение антиобледенителей.

На дорогах лед скалывают, посыпают песком и мелким гравием, особенно на поворотах.

Для предотвращения снежных лавин в безопасных местах устанавливают щиты и заборы, где и накапливается снег, на склонах гор высаживают леса.

Опасные участки, угрожающие обвалом, обстреливаются артиллерийскими орудиями и минометами.

При бурях и ураганах проводятся предупредительные работы: более прочные сооружения, опоры ЛЭП; для укрытий людей возводят заглубленные сооружения, о времени появления предупреждают население.

Для предупреждения аварий, катастроф вводят определенные решения при проектировании объектов, технологий, уменьшающие вероятность аварий, снижающие ущерб (уменьшение сгораемых материалов и конструкций, противопожарная защита и противопожарное водоснабжение и др.). Основные способы тушения лесных пожаров: забрасывание грунтом кромки пожара, устройство заградительных канав, пуск встречного огня, тушение водой.

Торфяные пожары распространяются независимо от ветра во все стороны и во время умеренного дождя и снегопада. Главный способ их тушения - окапывание территории и мощные струи воды.

Из зон возможного распространения пожара эвакуируются люди и материальные ценности.

План лекции (1 час)

      Очаг радиационного поражения.

      Очаг химического заражения.

      Очаг бактериологического поражения.

4.1. Очаг радиационного поражения.

Из многочисленных очагов поражения, возникающих в резуль­тате различных стихийных бедствий, наиболее значительными по масштабам последствий являются очаги, образующиеся при земле­трясении и наводнения, а также при авариях на АЭС и других объектах ядерной энергетики, на предприятиях имеющих СДЯВ и производствах со взрыво и пожароопасный технологией.

Очаг поражений при землетрясении – очагом поражений при землетрясении называется территория, в пределах которой произош­ли массовые разрушения и повреждения зданий, сооружений и др. объектов, сопровождающиеся поражениями и гибелью людей, живот­ных. Очаги массового поражения возникают обычно в зоне земле­трясения, где интенсивность его по шкале Рихтера составляет 7-3 баллов и более, при этом здания и сооружения получают силь­ные разрушения.

Очаги поражения на предприятиях со взрывоопасной и пожаро­опасной технологией образуется вследствии истечения к газооб­разных продуктов при перемешивании которых с воздухом образуют­ся взрывоопасные смеси как пропилен, метан, бутон и др. приво­дящие к разрушению и повреждению знаний, сооружений, емкостей, трубопроводов. Взрыв иди возгорание наступает при определенном содержании газа в воздухе. При взрыве газовоздушной смеси об­разуется ударная волна подобная ударной волне ядерного взрыва.

Очагом поражения при наводнении называется территория в пределах которой произошла затопление местности, повреждения и разрушения зданий, сооружений, сопровождающиеся гибелью лю­дей, животных.

Очаги радиактивного заражения образующиеся в результате аварии на АЭС и др.объектах ядерной энергетики, аналогичны очагам возникающим при применении ядерного оружия (см.ядерное оружие).

Очагом ядерного поражения называется территория в преде­лах которой в результате воздействия поражающих факторов ядерного взрыва произошли массовые поражения людей, животных, рас­тений, разрушения и повреждения зданий, сооружений.

Размеры очага поражения зависят от мощности взрыва и вида ядерного взрыва, местности и метеоусловий

Ядерным ору ж ием называются боеприпасы, поражающее действие которых основано на использование внутриядерной энергии, осво­бождающиеся при взрывах атомной бомбы. Оно является самым мощ­ным из всех средств поражения.

Характеристика очагов поражения

Ядерное, химическое и бактериальное оружие является ору­жием массового поражения. Его применение может привести в ко­роткие сроки к уничтожению, разрушению или повреждению мате­риальных ценностей, возникновению массовых потерь среди насе­ления, сельскохозяйственных животных, растений.

Оценка обстановки позволяет уточнить число пораженных на объектах, рассчитать необходимое количество сил и средств ме­дицинской службы, определить задачи и организовать лечебно-эвакуационные мероприятия.

К поражающим факторам ядерного взрыва относятся:

Ударная волна, световое излучение, проникающая радиация.

Ударна я во лна – наиболее сильный поражающий фактор ядер­ного взрыва. В зависимости в какой среде она возникает и расп­ространяется различают – воздушн ы й , в воде – ударной , в грунте – самовзрывной.

Ударная волна, воздействуя на незащищенных людей, способ­на нанести им серьезные травмы. Скорость движения и расстояние на которое распространяется ударная волна, зависят от мощности ядерного взрыва.

Основной способ защиты людей от ударной волны – укрытие в защитных сооружениях.

Ударная волна ядерного взрыва, как и при взрыве обычных способна наносить человеку различные травмы, в том числе и смертельные. Поражение людей вызываются как непосредственным (прямым воздействием воздушной ударной волны, так и косвенным).

При прямом воздействии ударной волны возможны повреждения внутренних органов, разрыв кровеносных сосудов, барабанных пе­репонок, сотрясение мозга, различные переломы и др.

Характер и тяжесть поражения людей зависят от величины параметров

ударной волны и степени защищенности человека.

Косвенное воздействие ударной волны заключается в пораже­нии людей летящими обломками зданий, сооружений, камнями, би­тым стеклом и др.предметами.

Свет о вое из лу чение – поток лучистой энергии, включающих ультрофиолетовые, видимые и инфракрасныеизлучения.

Источником светового излучения является огненный шар ядер­ного взрыва, температура в котором достигает несколько миллио­нов градусов.

Световое излучение способно вызывать у незащи­щенных людей ожоги различной степени, сильные пожары.

Световое излучение в зависимости от значения величины светового импульса различают ожоги ІҮ степеней.

Ожог I степени – характеризуется покраснением,

П степени – образованием пузырей наполненных жидкостью,

Ш степени – образование язвы,

1Ү степени – омертвление глубоких слоев кожи. Тяжесть поражения световым излучением зависит не только от степени ожога, а от места и площади обоженной поверхности кожи.

Степень поражающего действия светового излучения резко снижается при условии своевременного оповещения людей, исполь­зования ими защитных сооружений, индивидуальных средств защиты и строгого выполнения противопожарных мероприятий.

Защитой от светового излучения могут служить различные предметы создающие тень, убежища, укрытия.

Проникающая радиация – это поток гамма лучей и нейтронов. Проходя через живую ткань она нарушает нормальную жизнедеятель­ность клеток организма и приводит к возникновению лучевой бо­лезни. "Степень заболевания лучевой болезнью зависит от полу­ченной дозы ионизирующего излучения.

Радиактивное заражение – местности, воды и других объек­тов возникает в результате выпадения радиактивных веществ из облака ядерного взрыва. Радиактивное заражение местности может быть опасным на протяжении нескольких недель после взрыва.

Источниками радиактивного излучения при ядерном взрыве являются: радиактивные изотопы, продукты деленияядерных вз­рывчатых веществ.

На местности подвергшейся радиактивному заражению по степени опасности определяются четыре зоны:

1 зона А – умеренного заражения площадью 70-80% от площади всего следа взрыва. Уровень радиации 8 р/г;

П зона_Б_– сильного заражения площадью 10% площади радиактив­ного следа, уровень радиации 80 р/г;

Ш зона_В_– опасного заражения, площадью 8-10%, уровень радиации 240 р/г;

1Ү зона Г – чрезвычайно опасного заражения - площадью 2-3%, уровень радиации 800 р/г.

В результате воздействия ядерного оружия отмечаются тя­желые поражения людей. Лучевая болезнь затрудняет течение и лечение травм, ожогов, снижает сопротивляемость организма че­ловека и инфекционным заболеваниям. 3 населенных пунктах при ядерных взрывах могут возникнуть пожары, завалы, разрушения сооружений, выход из строя техники.

В заключении, основным способом защиты населения в очаге ядерного поражения является укрытие в защитных сооружениях.

Характер последствий аварий, катастроф и др.стихийных бедствий зависит от вида аварий, её масштабов, особенности предприятий (вида транспорта). Как правило следствием крупных аварий является взрывы, пожары в результате чего разрушаются здания, повреждается техника, оборудование, гибнут люди. В ряде случаев это загрязняет атмосферу, разлив нефтепродуктов, а также сильнодействующих ядовитых веществ.

Наибольшую опасность загрязнения атмосферы воды и про­дуктов питания РВ представляют аварии на атомных электростан­циях. Глубина проникновения РВ в продовольствие и питьевую воду зависит от способа хранения и состояния тары и вида про­довольствия. Степень заражения атмосферы питьевой воды и про­дуктов 0В зависит также от вида 0В, его физического состояния количеству 0В.

Современные средства поражения – оружие массового поражения (ядерное, химическое, бактериологическое) и обычные средства нападения.

Применение современных средств поражения сопровождаются возникновением очагов поражения. В зависимости от вида применяемого оружия массового поражения могут возникнуть:

— очаги ядерного поражения;

— очаги химического поражения;

— очаги бактериологического поражения;

— очаги комбинированного поражения.

Знание современных средств поражения, а также возможные их последствия при применении их, позволит правильно оценить сложившуюся обстановку, принять правильное решение на осуществление мероприятий гражданской обороны по защите рабочих и служащих промышленных объектов, населения, организовать в кратчайшее время выполнение спасательных и других неотложных работ.

Современные средства поражения их краткая характеристика, а также воздействие его на здания, сооружения, людей.

К современным средствам поражения относят оружие массового поражения (ядерное, химическое, бактериологическое), и обычные средства нападения.

1.1. Ядерное оружие.

Ядерным называется оружие, поражающее действие которого обусловлено энергией, выделяющейся при ядерных реакциях деления или синтеза. Это оружие включает:

— ядерные боеприпасы;

— средства управления ими;

— доставка к цели.

Ядерное оружие предназначено для массового поражения людей, уничтожения промышленных центров, различных объектов, сооружений, техники. Мощность ядерного боеприпаса характеризуется тротиловым эквивалентом т. е. массой тротила, энергия взрыва которого эквивалентна энергии взрыва данного ядерного боеприпаса и измеряется в тоннах, тысячах, миллионах тонн. По мощности ядерные боеприпасы подразделяются:

— сверхмалые (менее 1 тыс. т.);

— малые (1-10 тыс. т.);

— средние (10-100 тыс. т.);

— крупные (100 тыс. т. – 1 млн. т.);

— сверхкрупные (более 1 млн. т.).

Различают следующие виды ядерных взрывов:

— наземный (надводный);

— подземный (подводный);

— воздушный (при высоте взрыва до 10 км.);

— высотный (при высоте от 10 до 100 км.);

— космический (свыше 100 км.).

Поражающим фактором ядерного взрыва является:

— ударная волна 50% энергии ядерного взрыва;

— световое излучение 35%;

— проникающая радиация 4%;

— радиоактивное заражение 10 %;

— электромагнитный импульс 1%.

Дадим краткую характеристику поражающим факторам ядерного взрыва.

1.1.1. Ударная волна.

Воздушная ударная волна представляет собой область резкого сжатия воздуха, распространяющаяся во все стороны от центра взрыва со сверхзвуковой скоростью.

Единицей избыточного давления в системе Си является _______.

Ударная волна поражает людей, разрушает здания, сооружения, оборудование, технику, имущество. При воздействии ударной волны на незащищенных людей вызывает травмы различной степени, которые подразделяются:

— легкие;

— средние;

— тяжелые;

— крайне тяжелые.

Степени поражения незащищенных людей в зависимости избыточного давления

Таблица 1.

При воздействии ударной волны на промышленные здания и сооружения они могут получить следующие разрушения:

— легкие;

— сильные;

— средние;

— слабые.

1.1.2. Световое излучение.

Под световым излучением ядерного взрыва понимается электромагнитное излучение, включающее в себя ультрафиолетовую, видимую и инфракрасную области спектра. Источником светового излучения является светящаяся область взрыва. Время действия светового излучения и размеры светящейся области зависят от мощности ядерного взрыва и определяются по эмпирической формуле:

Где: tc – длительность свечения, с;

Q – мощность ядерного взрыва, тыс. т.

Время действия светового излучения наземных и воздушных взрывов мощностью

1 тыс. т. – 1 с.

10 тыс. т. – 2,2 с.

100 тыс. т. – 4,6с.

1 млн. т. – 10 с.

Величина светового импульса в системе Си измеряется в джоулях на 1 м2 (Дж/м2).

Световое излучение, воздействуя на людей вызывает ожоги открытых и защищенных одеждой участков тела, глаз, временное ослепление. В зависимости от значения величины светового импульса различают ожоги кожи четырех степеней.

Таблица 2.

Степень ожога Величина светового импульса, кДж/м2 Характер поражения Последствия ожога для пораженного
1 2 3 4
Первая 80-160 Покраснение и припухлость кожи, сопровождаемое болезненностью Потерпевший не теряет работоспособности
Вторая 160-400 Образование на коже пузырей Потерпевший теряет работоспособность, нуждается в лечении.
Третья 400-600 Разрушение кожного покрова, образование язв. Нуждается в длительном лечении, образуются шрамы.
Четвертая Более 600 Омертвление подкожной клетчатки, обугливание Возможен смертельный исход.

1.1.3. Проникающая радиация.

Проникающей радиацией ядерного взрыва называется поток гамма — излучения и нейтронов, испускаемых из зоны и облака ядерного взрыва. Источником проникающей радиации является ядерная реакция, протекающая в боеприпасе в момент взрыва и радиоактивный распад продуктов деления в облаке взрыва.

Время действия проникающей радиации на наземные объекты составляет 15-20 с. и определяется временем подъема облака взрыва на высоту 2-3 км., при которой гамма — нейтронное излучение, поглощаясь толщей воздуха, практически не достигает поверхности земли.

Основным параметром, характеризующим поражающее действие радиации, является доза излучения.

Доза излучения – это количество энергии ионизирующих излучений, поглощенной единицей массы облучаемой среды.

Различают следующие дозы облучения:

— экспозиционная;

— поглощенная;

— эквивалентная.

Экспозиционная доза – это доза излучения в воздухе, которая характеризует потенциальную опасность воздействия ионизирующих излучений при общем и равномерном облучении тела человека. Она в системе Си измеряется в Кулонах на килограмм (Кл/кг).

Внесистемной единицей экспозиционной дозы является рентген.

1Р=2,58*10-4 Кл/кг.

Рентген – это доза гамма — излучения, под действием которой в 1 см3 сухого воздуха при нормальных условиях (температура 00С и давление 760 мм. рт. ст.), создаются ионы, несущие одну электростатическую единицу количества электричества каждого знака. Дозе 1р соответствует образование 2,08*109 пар ионов в 1 см3 воздуха.

Поглощенная доза более точно характеризует воздействие ионизирующих излучений на биологические ткани. В системе Си измеряется в Греях.

1Гр – это такая поглощенная доза, при которой 1 кг облучаемого вещества поглощает энергию в 1 дж, следовательно, 1гр=1дж/кг.

Внесистемной единицей поглощенной дозы излучения является – рад.

1 Рад=1,14Р.

Для оценки биологического действия ионизирующих излучений используется эквивалентная доза. Она равна произведению поглощенной дозы на коэффициент качества «К». В качестве единицы эквивалентной дозы в системе Си используется зиверт (Зв), внесистемной единицей является биологический эквивалент рада (бэр).

1Зв=100 бэр=1Гр*К.

Проникающая радиация, распространяясь в среде, ионизирует ее атомы, а при прохождении через живую ткань – атомы и молекулы, входящие в состав клеток. Это приводит к нарушению нормального обмена вещества отдельных органов и систем организма.

В результате такого воздействия возникает лучевая болезнь.

Лучевая болезнь 1 степени (легкая) – возникает при суммарной дозе излучения 100-200 рад. Скрытый период продолжается 3-5 недель, после чего появляется недомогание, общая слабость, тошнота, головокружение, повышение температуры. При выздоровлении трудоспособность людей, как правило, сохраняется.

Лучевая болезнь 2-й степени (средняя) возникает при суммарной дозе излучения 200-400 рад. В течение первых 2-3 суток наблюдается бурная реакция организма (тошнота и рвота). Затем наступает скрытый период, длящийся 15-20 суток. Выздоровление при активном лечении наступает через 2-3 месяца.

Лучевая болезнь 3-й степени (тяжелая) наступает при дозе излучения 400-600 рад. Скрытый период составляет 5-10 суток. Болезнь протекает интенсивно и тяжело. В случае благоприятного исхода выздоровление может наступить через 3-6 месяцев.

Лучевая болезнь 4-й степени (крайне тяжелая), наступающая при дозе 600 рад и более, является наиболее опасной и, как правило, приводит к смертельному исходу.

Эффективность защиты от проникающей радиации характеризуется коэффициентом ослабления радиации – «Ко», показывающим, во сколько раз данная преграда ослабляет радиацию.

Ко=2h/dпол,

Где: h – толщина защитного слоя, см;

Dпол – слой половинного ослабления, см.

1.1.4. Радиоактивное заражение.

Радиоактивное заражение – это заражение поверхности земли, атмосферы, водоемов и различных предметов радиоактивными веществами.

Масштабы и степень радиоактивного заражения зависит от мощности и вида взрыва, метеорологических условий, рельефа местности, типа грунта и растительности. Наиболее сильное радиоактивное заражение возникает при наземном ядерном взрыве, в результате которого образуется мощное облако из радиоактивных продуктов.

Степень заражения местности радиоактивными веществами характеризуется уровнем радиации – «Р».

Уровень радиации – это мощность дозы гамма — излучения на высоте 0,7-1 м над зараженной поверхностью. Уровень радиации показывает дозу облучения, которую может получить человек в единицу времени и измеряется в р/ч, мр/ч, мкр/ч.

Мощность считается зараженной, если уровень радиации составляет 0,5 р/ч и более в военное время, в мирное время – 0,2 р/ч.

При ядерном взрыве спад уровня радиации подчиняется определенной зависимости, которая определяется по формуле:

Где: P1 – уровень радиации на 1 час после ядерного взрыва;

t1 – время прошедшее после ядерного взрыва;

Pt – уровень радиации на любое заданное время.

Из этой формулы вытекает основное правило. При семикратном увеличении времени после взрыва уровень радиации уменьшается в 10 раз.

Если Р1 уровень радиации через 1 час после ядерного взрыва взять за 100%, то через 7 часов он составит – 10%, через 72 часов составит – 1%, через 73 составит – 0,1%.

1.1.5. Электромагнитный импульс.

Ядерный взрыв сопровождается электромагнитным излучением в виде короткого импульса, поражающего главным образом электронную аппаратуру. Электромагнитный импульс представляет собой электрические и магнитные поля, возникающие в результате воздействия гамма — излучений на атомы окружающей среды и образования потоков электронов и положительных ионов.

1.2. Химическое оружие.

Химическим оружием называется отравляющие вещества и средства их применения.

Химическое оружие является средством массового поражения незащищенных людей и животных.

По техническому воздействию на организм ОВ подразделяются на следующие группы:

— ОВ нервно-паралитического действия, поражающие центральную нервную систему.

— ОВ кожно-нарывного действия, поражающие кожу, глаза, органы дыхания и пищеварения. К ним относятся: иприт, люизит.

— ОВ общеядовитого действия, поражающие кровь и центральную нервную систему, вызывающие общее отравления организма. К ним относятся: синильная кислота, хлорциан.

— ОВ удушающего действия, поражающие органы дыхания. К ним относятся: фосген, дифосген, хлорпикрин.

— ОВ психологического действия, поражающие центральную нервную систему, нарушают психическую деятельность, приводят к нарушению функций отдельных органов и нормального восприятия окружающей среды. К ним относятся: диэтиламидлизаргиновые кислоты.

— ОВ разрушающего действия, вызывающие раздражение органов дыхания и глаз. К ним относятся: хлорацемофепан, адамсит.

1.3. Бактериологическое оружие.

Бактериологическим оружием называется болезнетворные микробы и бактериальные яды (токсины) предназначенные для поражения людей, животных, растений и заражения запасов продовольствия, а также средства, с помощью которых они применяются.

В зависимости от строения и биологических свойств микробы подразделяются на бактерии, вирусы и грибки. Некоторые микробы, например, микробы ботулизма «столбняка» вырабатывают ядовитые сильнодействующие токсины, которые вызывают тяжелые отравления.

Существуют микробы, которые могут вызвать заболевание животных. К числу таких опасных инфекционных заболеваний относится ящур, чума, сибирская язва.

Основным способом применения возбудителей инфекционных заболеваний – распыление их в воздухе (аэрозольный способ) и через искусственно зараженных переносчиков (насекомых, клещей, грызунов), сбрасываемых в специальных контейнерах и авиабомбах, а также распространение их диверсионным путем.

1.4. Обычные средства поражения.

1.4.1. Боеприпасы объемного взрыва.

В последних агрессивных локальных войнах, развязанных США и их союзниками, в широких размерах применялись и испытывались боеприпасы объемного взрыва.

Для снаряжения таких боеприпасов используются жидкие или пастообразные рецептуры углеводородных горючих веществ (этилит, перекись уксусной кислоты, диборап и т. д.), которые при распылении в воздушной среде в виде аэрозолей образуют взрывчатые топливно-воздушные смеси. Действие таких боеприпасов основано на одновременном подрыве распыленного облака горючих смесей в нескольких точках. Основным поражающим фактором БОВ является ударная волна с избыточным давлением в центре облака до 3000 кПа и температурой 2500-3000 0С. энергия взрыва и поражающее действие БОВ в 4-6 раз, а в перспективе могут быть в 10-12 раз больше, чем у равных по весу боеприпасов.

1.4.2. Зажигательные боеприпасы.

Зажигательные боеприпасы снаряжаются веществами, которые делятся на три основные группы:

— зажигательные смеси на основе нефтепродуктов (напалм);

— металлизированные зажигательные смеси (пирогели);

— термит и термитные зажигательные составы.

Напалм – легковоспламеняющаяся жидкость, прилипает даже к влажным поверхностям. Создает высокотемпературный (1000-1200 0С) очаг горения длительностью 5-10 минут.

Применялся в войне в Корее и во Вьетнаме.

Пирогели – вязкая огне смесь (сгущенный бензин) с добавками порошкообразных металлов (магний, алюминий). Температура горения 1200-1600 0С.

Белый фосфор – ядовитое, воскообразное, самовоспламеняющееся на воздухе вещество. Температура горения 800-900 0С.

На вооружении в США находятся напалмовые бомбы калибром 250-1000 футов, которыми снаряжаются авиационные кассеты. Самолет Б-52 может нести 66 таких кассет.

1.4.3. Фугасные, осколочные, шариковые, кумулятивные и бетонобойные боеприпасы.

Фугасные бомбы предназначены для поражения промышленных, административных центров, железнодорожных узлов и станций, техники, оборудования, людей.

Поражение достигается действием ударной волны от взрыва обычного взрывчатого вещества. Фугасные бомбы имеют калибр от 100 до 3000 футов.

Осколочные боеприпасы предназначены для поражения людей. При взрыве таких боеприпасов образуется от нескольких сотен до нескольких тысяч осколков, от долей грамма до нескольких граммов. Из осколочных боеприпасов особый интерес представляют шариковые авиационные бомбы.

Поражающими элементами в них являются металлические шарики диаметром 2-3 мм. Радиус поражения бомбы 1,5-15 м. С самолета шариковые бомбы сбрасываются в кассетах, содержащих от 96-640 бомб. Под действием вышибного заряда кассета под землей разрушается и взрывается на площади 160-250 тыс. м2.

Кумулятивные боеприпасы относятся к классу боеприпасов направленного действия. Основой его действия является создание мощной структуры продуктов детонации взрывчатого вещества с температурой 6000-7000 0С и давлением 5000-6000 кгс/м2.

Бетонобойные боеприпасы предназначены для разрушения хорошо защищенных объектов, имеющих бетонные и железобетонные перекрытия. По конструкции это авиационная бомба имеющая кумулятивный и мощный фугасный заряд взрывчатого вещества и соответственно два взрывателя.

Для повышения эффективности обычных средств поражения появилось высокоточное оружие. К нему относятся управляемые авиационные бомбы (УАБ), управляемые ракеты «Воздух-земля», противорадиолокационные управляемые ракеты. На вооружении авиации США имеются УАБ «Уоллай» имеет дальность планирования до 65 км круговое вероятное отклонение несколько метров.

Характеристика очагов поражения вызванных применением современных средств поражения.

2.1. Очаг ядерного поражения.

Очагом ядерного поражения называется территория на которой под воздействием поражающих факторов ядерного взрыва возникают разрушения зданий и сооружений, пожары, радиоактивное заражение местности и поражение населения.

Размеры ядерного поражения зависит от мощности боеприпаса, вида взрыва, характера застройки, рельефа местности и погодных условий. Наибольшая площадь разрушения и поражения образуется при воздушном взрыве.

Очагом ядерного поражения по величине избыточного давления во фронте ударной волны условно делится на четыре зоны:

— зона полных разрушений с избыточным давлением свыше 50 кПа;

— зона сильных разрушений с избыточным давлением 50-30 кПа;

— зона средних разрушений с избыточным давлением 30-20 кПа;

— зона слабых разрушений с избыточным давлением 20-10 кПа.

2.2. Зоны радиоактивного заражения.

Зоны радиоактивного заражения возникают при наземных взрывах как в очаге, так и за пределами очага ядерного поражения.

Под действием ветра радиоактивное облако перемещается по его направлению и скоростью. По мере перемещения облака из него выпадают радиоактивные вещества, оставляющие на поверхности земли невидимый след радиоактивного заражения.

След представляет собой вытянутую в направлении ветра полосу по форме напоминающую эллипс, который характеризуется длинной и шириной. Размеры района радиоактивного заражения зависят от мощности ядерного взрыва, направления и скорости ветра, метеорологических условий и характера местности.

Район радиоактивного заражения в соответствии с фазами радиации и степени воздействия на людей принято условно делить на четыре зоны:

— зона «А» – умеренного заражения на карту (схему) наносится синим цветом;

— зона «Б» — сильного заражения на карту (схему) наносится зеленым цветом;

— зона «В» — опасного заражения на карту (схему) наносится коричневым цветом;

— зона «Г» — чрезвычайно опасного заражения на карту (схему) наносится черным цветом.

2.2.1. Влияние радиоактивного заражения на производственную деятельность.

Во время войны с применением ядерного оружия практически любой промышленный объект может оказаться в зоне радиоактивного заражения.

В зоне «А» в течение первых суток, люди находящиеся на открытой местности, могут получить дозу от 20 до 200 р, приводящую к выводу из строя до 15%. Поэтому рабочие и служащих, привлекаемых к работе на открытой местности, рекомендуется на несколько часов укрывать в защитных сооружениях.

В зоне «В» люди, находящиеся на открытой местности, могут выйти из строя в течение 12 часов, поэтому промышленные предприятия переходят на особый режим работы, а рабочие, работающие на открытой местности работу прекращают на время от нескольких часов до одних суток, переводятся в укрытия или защитные сооружения.

Остальное население укрывается в ПРУ от 1 до3 суток.

В зоне «В» и «Г» тяжелое поражение людей даже при кратковременном пребывании вне защищенных сооружений, поэтому промышленные предприятия прекращают работу, а рабочие и служащие укрываются на 3-4 суток в ПРУ или убежищах.

2.3. Очаг химического поражения.

Очагом химического заражения принято называть территорию, в пределах которой в результате воздействия химического оружия противника или СДЯВ произошли массовые поражения людей, животных, сельскохозяйственных угодий. Размеры очага химического заражения зависят от количества применяемых отравляющих веществ, их типа, метеорологических условий и рельефа местности. На скорость распространения отравляющего вещества и на площадь заражения существенное влияние оказывает вертикальная устойчивость приземных слоев атмосферы. Существует три степени устойчивого приземного слоя воздуха:

— инверсия, нижние слои воздуха холоднее верхних;

— изотермия, температура воздуха в пределах 20-30 м от земной поверхности почти одинакова;

— конвекция – нижний слой воздуха нагрет сильнее верхнего и происходит перемещение его по вертикали.

Изотермия и инверсия способствуют сохранению высоких концентраций ОВ и распространению зараженного воздуха на большие расстояния.

Конвекция вызывает сильное рассеивание зараженного воздуха и концентрация паров в воздухе быстро снижается. Слабый ветер способствует сохранению концентрации ОВ дольше, сильный – наоборот, ускоряет испарение ОВ, стойкость заражения уменьшается.

2.4. Очаг бактериологического заражения.

В результате бактериологического нападения противника образуется зона бактериологического заражения. Размеры зон бактериологического заражения зависят от вида боеприпасов, количества и способов их применения, а также от метеорологических условий, быстроты обнаружения и своевременности проведения профилактики, дезинфекции.

Очагом бактериологического поражения принято называть территорию, в пределах которой в результате воздействия бактериологического оружия противника произошло массовое поражение людей, животных. Границы очага бактериологического поражения устанавливается противоэпидемическими учреждениями медицинской службы и службы защиты животных и растений ГО на основе обобщенных данных, полученных от наблюдательных пунктов, разведывательных звеньев, а также от метеорологических и санитарно-эпидемиологических станций.

При возникновении очага бактериологического поражения на этой территории вводится карантин или обсервация.

Карантин – это система мероприятий, проводимых для предупреждения распространения инфекционных заболеваний из очага поражения и ликвидация самого очага.

Обсервация – это специальные мероприятия, предотвращающие распространение инфекции в другие районы. Эти мероприятия включают:

— максимальное ограничение въезда и выезда, а также вывоза из очага имущества без предварительного обеззараживания и разрешения эпидемиологов.

— усиление медицинского контроля за питанием и водоснабжением.

2.5. Вторичные очаги поражения и очаг комбинированного поражения.

Вторичным очагом поражения называют территорию в пределах которой, в результате воздействия вторичных поражающих факторов, произошли массовые поражения людей и животных.

Вторичными поражающими факторами являются взрывы, пожары, затопления, заражение атмосферы и местности, обрушение поврежденных конструкций зданий, сооружений, возникающие в результате ядерного взрыва.

При одновременном или последовательном применении противником ядерного оружия, химического и бактериологического оружия могут возникнуть очаги комбинированного поражения.

Очаг ядерного поражения

Ядерный взрыв боеприпаса или таковой, возникающий при аварии на атомной электростанции, сопровождается выделением огромного количества энергии. Он по своему разрушающему действию в сотни и тысячи раз может превосходить взрыв самого крупного обычного боеприпаса и происходит в миллионные доли секунды. При этом в центре взрыва температура мгновенно повышается до нескольких миллионов градусов, а давление возрастает до нескольких миллионов атмосфер, и в результате этого вещество заряда переходит в газообразное состояние. Сфера раскаленных газов, стремящаяся расшириться, сжимает прилегающие слои воздуха. На границе сжатого воздуха создается перепад давления и образуется воздушная ударная волна.

Одновременно с ударной волной из зоны взрыва распространяется мощный поток нейтронов и гамма-излучения, образующихся в ходе ядерной реакции. Светящаяся область взрыва в виде огненного шара через 1-2 секунды достигает своих максимальных размеров, а мощные восходящие потоки воздуха, вызываемые разностью температур, поднимают с земли пыль и частицы грунта, образуя при этом характерный пылевой столб. Поднявшаяся пыль, смешавшись с радиоактивными осколками ядерного деления, постепенно выпадая из радиоактивного облака, заражает местность.

Мгновенно действующее гамма-излучение ионизирует атомы воздуха и разделяет их на электроны и положительно заряженные ионы. Причем электроны с большой скоростью разлетаются в радиальном направлении от центра взрыва, а положительно заряженные ионы практически остаются на месте. То есть происходит разделение положительных и отрицательных зарядов, а это приводит к возникновению электрических и магнитных полей. Эти короткоживущие поля принято называть электромагнитным импульсом (ЭМИ) ядерного взрыва.

Таким образом, при ядерном взрыве поражения возможны в результате воздействия:

  • ударной волны (примерно 50-55% выделившейся при взрыве энергии);
  • светового излучения (около 35% энергии взрыва), продолжающегося от нескольких секунд (при мощности боеприпаса до 20 кт) до 20 секунд (при мощности боеприпаса более 1Мт);
  • проникающей радиации (примерно 5% энергии взрыва), продолжающейся до 15 секунд;
  • радиоактивного заражения местности (до 5% энергии взрыва);
  • электромагнитного импульса, время действия которого измеряется миллисекундами.

Ударная волна - наиболее сильный поражающий фактор ядерного взрыва, распространяется со сверхзвуковой скоростью во все стороны от места взрыва. Она представляет собой область резкого сжатия воздуха и область разрежения. Область сжатия движется впереди, а область разряжения - позади неё. Поражающее действие ударной волны продолжается несколько минут и обуславливается:

  • максимальным избыточным давлением во фронте волны;
  • скоростным напором воздуха;
  • временем действия.

Величина безопасного давления на открытой местности для людей составляет до 0,1 кг/см2 (примерно 9,8 кПа). Соответственно, давления, превышающие эту величину, вызывают разной степени повреждения, что представлено в табл. 10.1.

Воздействие избыточного давления на человека

Полные разрушения от ударной волны характеризуются обрушением стен и перекрытий, каркаса и других несущих конструкций сооружений, что возможно при избыточном: давлении 40-80 кПа.

Сильные повреждения вызывают обрушение значительной части несущих стен и перекрытий при сохранении подвальных помещений и части каркаса. Такие повреждения возможны при избыточном давлении 20-50 кПа.

Слабые и средние повреждения зданий возникают при избыточном давлении 10-30 кПа в зависимости от конструкции сооружения.

Считается, что зона пожаров и разрушений доходит до границ, где избыточное давление от воздушной волны достигает 10 кПа.

Окопы, траншеи, убежища и особенности рельефа местности резко снижают воздействие ударной волны, что необходимо использовать для защиты людей и техники.

Световое излучение - это поток лучистой энергии в широком диапазоне. Источником светового излучения является светящаяся область взрыва. Время свечения огненного шара измеряется секундами, однако этого времени достаточно, чтобы вызвать массовые пожары, сильные ожоги открытых участков кожи и повредить глаза у незащищённых людей и животных. От воздействия светового излучения защищают все виды защитных сооружений, предметы из негорючих материалов и складки местности.

Проникающая радиация - поток гамма-излучения и нейтронов, исходящих в течение секунд из зоны ядерного взрыва в окружающую среду на расстояния до 3 км.

Проходя через биологическую ткань, гамма-излучение и поток нейтронов ионизируют молекулы, входящие в состав живых клеток. В результате этого нарушается характер жизнедеятельности клеток и возникает специфическое заболевание - лучевая болезнь.

Время действия проникающей радиации определяется временем подъема на такую высоту, когда гамма-излучение будет поглощаться толщей воздуха, не достигая поверхности земли. Поражающее действие проникающей радиации на людей зависит от дозы излучения и времени, прошедшего после взрыва. Оно оценивается суммарной дозой нейтронного и гамма-излучения, т.е. энергией излучения, которая поглощена единицей массы биологической ткани.

Радиоактивное заражение местности, атмосферы и различных объектов при ядерных взрывах вызывается:

  • продуктами деления ядерного взрыва;
  • наведенной активностью (радиацией);
  • не прореагировавшей частью ядерного заряда.

Основной компонент при этом - продукты ядерной реакции (осколки деления ядер тяжелых элементов). Они представляют собой сложную смесь радиоактивных изотопов, выделяющих альфа-, бета- и гамма-излучения.

Поражающее действие радиоактивных излучений заключается в их ионизирующей способности, т.е. превращении нейтральных атомов в электрически заряженные ионы. Наибольшей ионизирующей способностью обладает альфа-излучение, наименьшей - гамма-излучение. Вместе с тем, гамма-излучение обладает высокой проникающей способностью (в воздухе - сотни метров). Степень ионизирующего воздействия на биологическую ткань зависит от величины поглощенной энергии излучения (абсолютно смертельная доза поглощённой ионизирующей энергии составляет примерно 1000 рад или 10 грей).

Размеры и конфигурация зон радиоактивного заражения при ядерных взрывах зависят от вида и мощности взрыва, направления и скорости ветра. Наиболее сильное заражение наблюдается при наземных взрывах.

Зоны радиоактивного заражения, имеющие разную степень опасности для людей, характеризуются как мощностью излучения на определенный момент времени после взрыва, так и прогнозируемой дозой радиации, получаемой до полного распада радиоактивных веществ.

По степени опасности зараженную местность, по следу облака взрыва, принято делать на следующие четыре зоны.

Зона А - умеренного заражения (40-400 рад), её площадь составляет 70-80% от всей поражённой площади.

Зона Б - сильного заражения (400-1200 рад). На долю этой зоны приходится около 10% площади радиоактивного следа.

Зона В - опасного заражения (1200-4000 рад). Эта зона занимает примерно 8-10% площади следа облака взрыва.

Зона Г - чрезвычайно опасного заражения (свыше 4000 рад).

Радиационные последствия от разрушения (аварии) ядерного объекта сопоставимы с радиационными последствиями, возникающими после применения ядерного боеприпаса. Однако, мощность излучения на местности, в случае разрушения реактора АЭС, всегда меньше, чем на следе ядерного взрыва, но сохраняется очень длительное время. При этом возможно заражение населения на прилегающей к атомной электростанции территории по пищевым цепочкам.

Наиболее опасно поступление с продуктами питания местного производства изотопов йода (J-131), цезия (Cs-137) и стронция (Sr-90). Короткоживущий J-131 опасен в первые два месяца, а Cs-137 и Sr-90 при попадании внутрь организма облучают его длительное время, так как период полураспада Cs-137 - 30,2 года, Sr-90 - 28,5 лет.

Поражающее действие электромагнитного импульса (ЭМИ) обусловлено возникновением напряжений и токов в различных проводниках. Действие ЭМИ проявляется, прежде всего, по отношению к электрической и радиоэлектронной аппаратуре. При этом может произойти пробой изоляции, повреждение трансформаторов, порча полупроводниковых приборов и др. Наиболее уязвимы линии связи, сигнализации и управления. Высотный взрыв способен создать помехи в этих линиях на очень больших площадях. Защита от ЭМИ достигается экранированием линий энергоснабжения и аппаратуры.

Нейтронные бомбы и снаряды представляют собой разновидность ядерных боеприпасов с термоядерным зарядом малой мощности. Поражающее действие нейтронных боеприпасов обусловлено повышенным нейтронным излучением. Для защиты от нейтронного поражения используются те же средства, что и при ядерном взрыве, основным из них является укрытие в защитных сооружениях.

Учитывая вышеизложенное, дадим следующее определение.

Очагом ядерного поражения называется территория, в пределах которой в результате воздействия ядерного оружия или катастрофы на АЭС произошло радиоактивное заражение местности, массовое поражение людей, сельскохозяйственных животных и растений, разрушение и повреждение различных сооружений, возникли пожары.

Размеры очага ядерного поражения зависят от мощности и, вида ядерного взрыва, от рельефа местности и характера застройки, погодных условий и других факторов.



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация