Между молекулами вещества действуют. Силы, действующие между молекулами

Главная / Бизнес

Строение газов, жидкостей и твердых тел.

Основные положения молекулярно-кинетической теории :

    все вещества состоят из молекул, а молекулы из атомов,

    атомы и молекулы находятся в постоянном движении,

    между молекулами существуют силы притяжения и отталкивания.

В газах молекулы двигаются хаотически, расстояния между молекулами большие, молекулярные силы малы, газ занимает весь предоставленный ему объем.

В жидкостях молекулы располагаются упорядочно только на малых расстояниях, а на больших расстояниях порядок (симметрия) расположения нарушается – “ближний порядок”. Силы молекулярного притяжения удерживают молекулы на близком расстоянии. Движение молекул – “перескоки ” из одного устойчивого положения в другое (как правило, в пределах одного слоя. Таким движением объясняется текучесть жидкости. Жидкость не имеет форму, но имеет объем.

Твердые тела – вещества, которые сохраняют форму, делятся на кристаллические и аморфные. Кристаллические твердые тела имеют кристаллическую решетку, в узлах которой могут находиться ионы, молекулы или атомы Они совершают колебания относительно устойчивых положений равновесия.. Кристаллические решетки имеют правильную структуру по всему объему – “дальний порядок” расположения.

Аморфные тела сохраняют форму, но не имеют кристаллической решетки и, как следствие, не имеют ярко выраженной температуры плавления. Их называют застывшими жидкостями, так как они, как жидкости имеют “ближний ” порядок расположения молекул.

Силы взаимодействия молекул

Все молекулы вещества взаимодействуют между собой силами притяжения и отталкивания. Доказательство взаимодействия молекул: явление смачивания, сопротивление сжатию и растяжению, малая сжимаемость твердых тел и газов и др. Причина взаимодействия молекул - это электромагнитные взаимодействия заряженных частиц в веществе. Как это объяснить? Атом состоит из положительно заряженного ядра и отрицательно заряженной электронной оболочки. Заряд ядра равен суммарному заряду всех электронов, поэтому в целом атом электрически нейтрален. Молекула, состоящая из одного или нескольких атомов, тоже электрически нейтральна. Рассмотрим взаимодействие между молекулами на примере двух неподвижных молекул. Между телами в природе могут существовать гравитационные и электромагнитные силы. Так как массы молекул крайне малы, ничтожно малые силы гравитационного взаимодействия между молекулами можно не рассматривать. На очень больших расстояниях электромагнитного взаимодействия между молекулами тоже нет. Но, при уменьшении расстояния между молекулами молекулы начинают ориентироваться так, что их обращенные друг к другу стороны будут иметь разные по знаку заряды (в целом молекулы остаются нейтральными), и между молекулами возникают силы притяжения. При еще большем уменьшении расстояния между молекулами возникают силы отталкивания, как результат взаимодействия отрицательно заряженных электронных оболочек атомов молекул. В итоге на молекулу действует сумма сил притяжения и отталкивания. На больших расстояниях преобладает сила притяжения (на расстоянии 2-3 диаметров молекулы притяжение максимально), на малых расстояниях сила отталкивания. Существует такое расстояние между молекулами, на котором силы притяжения становятся равными силам отталкивания. Такое положение молекул называется положением устойчивого равновесия. Находящиеся на расстоянии друг от друга и связанные электромагнитными силами молекулы обладают потенциальной энергией. В положении устойчивого равновесия потенциальная энергия молекул минимальна. В веществе каждая молекула взаимодействует одновременно со многими соседними молекулами, что также влияет на величину минимальной потенциальной энергии молекул. Кроме того, все молекулы вещества находятся в непрерывном движении, т.е. обладают кинетической энергией. Таким образом, структура вещества и его свойства (твердых, жидких и газообразных тел) определяются соотношением между минимальной потенциальной энергией взаимодействия молекул и запасом кинетической энергии теплового движения молекул.

Строение и свойства твердых, жидких и газообразных тел

Строение тел объясняется взаимодействием частиц тела и характером их теплового движения.

Твердое тело

Твердые тела имеют постоянную форму и объем, практически несжимаемы. Минимальная потенциальная энергия взаимодействия молекул больше кинетической энергии молекул. Сильное взаимодействие частиц. Тепловое движение молекул в твердом теле выражается только лишь колебаниями частиц (атомов, молекул) около положения устойчивого равновесия.

Из-за больших сил притяжения молекулы практически не могут менять свое положение в веществе, этим и объясняется неизменность объема и формы твердых тел. Большинство твердых тел имеет упорядоченное в пространстве расположение частиц, которые образуют правильную кристаллическую решетку. Частицы вещества (атомы, молекулы, ионы) расположены в вершинах - узлах кристаллической решетки. Узлы кристаллической решетки совпадают с положением устойчивого равновесия частиц. Такие твердые тела называются кристаллическими.

Жидкость

Жидкости имеют определенный объем, но не имеют своей формы, они принимают форму сосуда, в которой находятся. Минимальная потенциальная энергия взаимодействия молекул сравнима с кинетической энергией молекул. Слабое взаимодействие частиц. Тепловое движение молекул в жидкости выражено колебаниями около положения устойчивого равновесия внутри объема, предоставленного молекуле ее соседями. Молекулы не могут свободно перемещаться по всему объему вещества, но возможны переходы молекул на соседние места. Этим объясняется текучесть жидкости, способность менять свою форму.

В жидкостях молекулы достаточно прочно связаны друг с другом силами притяжения, что объясняет неизменность объема жидкости. В жидкости расстояние между молекулами равно приблизительно диаметру молекулы. При уменьшении расстояния между молекулами (сжимании жидкости) резко увеличиваются силы отталкивания, поэтому жидкости несжимаемы. По своему строению и характеру теплового движения жидкости занимают промежуточное положение между твердыми телами и газами. Хотя разница между жидкостью и газом значительно больше, чем между жидкостью и твердым телом. Например, при плавлении или кристаллизации объем тела изменяется во много раз меньше, чем при испарении или конденсации.

Газы не имеют постоянного объема и занимают весь объем сосуда, в котором они находятся. Минимальная потенциальная энергия взаимодействия молекул меньше кинетической энергии молекул. Частицы вещества практически не взаимодействуют. Газы характеризуются полной беспорядочностью расположения и движения молекул.

Расстояние между молекулами газа во много раз больше размеров молекул. Малые силы притяжения не могут удержать молекулы друг около друга, поэтому газы могут неограниченно расширяться. Газы легко сжимаются под действием внешнего давления, т.к. расстояния между молекулами велики, а силы взаимодействия пренебрежимо малы. Давление газа на стенки сосуда создается ударами движущихся молекул газа.

Силы межмолекулярного взаимодействия.

Когда вещество находится в газообразном состоянии , тогда образующие его частицы – молекулы или атомы – хаотически движутся и при этом преобладающую часть времени находятся на больших расстояниях (в сравнении с их собственными размерами) расстояниях друг от друга. Вследствии этого силы взаимодействия между ними пренебрежимо малы .


Иначе обстоит дело, когда вещество находится в конденсированном состоянии – в жидком или твёрдом. Здесь расстояния между частицами вещества малы и силы взаимодействия между ними велики . Эти силы удерживают частицы жидкости или твёрдого тела друг около друга. Поэтому вещества в конденсированном состоянии имеют, в отличии от газов, постоянный при данной температуре объём.


Все силы, удерживающие частицы жидкости или твёрдого тела друг около друга, имеют электрическую природу . Но в зависимости от того, что представляют собой частицы – являются ли они атомами металического или неметалического элемента, ионами или молекулами – эти силы существенно различны .

Неметалы с атомным строением

Если вещество состоит из атомов, но не является металлом, то его атомы обычно связаны друг с другом ковалентной связью .

Металлы

Если вещество – металл , то часть электронов его атомов становится общими для всех атомов. Эти электроны свободно движутся между атомами, связывая их друг с другом.

Вещества с ионным строением

Если вещество имеет ионное строение , то образующие его ионы удерживаются друг около друга силами электростатического притяжения.

Вещества с молекулярным строением

В веществах с молекулярным строением имеет место межмолекулярное взаимодействие.


Силы межмолекулярного взаимодействия , называемые также силами Ван-дер-Ваальса , слабее ковалентных сил, но проявляются на больших расстояниях. В основе их лежит электростатическое взаимодействие диполей , но в различных веществах механизм возникновения диполей различен.


1. Ориентационное взаимодействие.


Если вещество состоит из полярных молекул , например, Н 2 О, НCl , то в конденсированном состоянии молекулы ориентируются друг по отношению к другу своими разноимённо заряженными концами , вследствии чего наблюдается их взаимное притяжение.


Такой вид межмолекулярного взаимодействия называется ориентационным взаимодействием . Тепловое движение молекул препятствует их взаимной ориентации, поэтому с ростом температуры ориентационный эффект ослабевает.


2. Индукционное взаимодействие.


В случае веществ, состоящих из неполярных , но способных к поляризации молекул, например СО2, наблюдается возникновение наведённых или индуцированных диполей .


Причина их появления обычно состоит в том, что каждый атом создаёт вблизи себя электрическое поле, оказывающее поляризующее действие на ближайший атом соседней молекулы. Молекула поляризуется и образовавшийся индуцированный диполь в свою очередь поляризует соседние молекулы.


В результате происходит взаимное притяжение молекул друг к другу . Это индукционное взаимодействие наблюдается также и у веществ с полярными молекулами, но при этом оно обычно значительно слабее ориентационного.


3. Дисперсионное взаимодействие.


Дисперсионные силы (Лондоновские силы) - силы электростатического притяжения мгновенного и индуцированного (наведённого) диполей электрически нейтральных атомов или молекул.


В атомах и молекулах электроны сложным образом движутся вокруг ядер. В среднем по времени дипольные моменты неполярных молекул оказываются равными нулю. Но в каждый момент электроны занимают какое-то положение. Поэтому мгновенное значение дипольного момента (например, у атома водорода) отлично от нуля. Мгновенный диполь создаёт электрическое поле, поляризующее соседние молекулы. В результате возникает взаимодействие мгновенных диполей .


Считается, что дисперсионная энергия не имеет классического аналога и определяется квантовомеханическими флуктуациями электронной плотности.


Как показывает квантовая механика, мгновенные диполи возникают в твёрдых телах и жидкостях согласованно , причём концы соседних молекул оказываются заряженными электричеством противоположного знака, что приводит к их притяжению .


Это явление, называемое дисперсионным взаимодействием , имеет место во всех веществах, находящихся в конденсированном состоянии. В частности, оно обуславливает переход благородных газов при низких температурах в жидкое состояние.


Соотношение молекулярных сил.


Относительная величина рассмотренных видов межмолекулярных сил зависит от полярности и от поляризуемости молекул вещества.


Чем больше полярность молекул, тем больше ориентационные силы .


Чем крупнее атомы , чем слабее связаны внешние электроны атомов, чем больше деформируется электронное облако, тем значительнее дисперсионные силы .


Таким образом, в ряду однотипных веществ дисперсионное взаимодействие возрастает с увеличением размеров атомов , составляющих размеры этих веществ.


Например:

  • в случае HCl на долю дисперсионных сил приходится 81% всего
    межмолекулярного взаимодействия,
  • для НBr эта величина составляет 95% ,
  • для HI - 99,5% .

    • Индукционные силы почти всегда малы .



Если молекулы существуют и движутся, то между ними обязательно должны действовать силы. Без такого взаимодействия не было бы ни жидких, ни твердых тел.
Молекулярные силы
Доказать существование значительных сил взаимодействия между атомами или молекулами несложно. Попробуйте- ка сломать толстую палку! А ведь она состоит из молекул.
Существование сил притяжения между атомами может доказать такой наглядный опыт. Надо взять два свинцовых бруска и острым ножом срезать тонкие слои с их торцов. При до-статочном навыке срезы получаются гладкими и чистыми, свободными от оксидов свинца. Если плотно прижать бруски друг к другу свежими срезами, то они слипнутся. После этого можно один из брусков нагрузить гирей в несколько килограммов, но разрыва брусков не произойдет. Силы притяжения между атомами оказываются достаточными, чтобы предотвратить разрыв.
Если бы между молекулами не существовало сил притяжения, то вещество при любых условиях находилось бы в газообразном состоянии. Только благодаря силам притяжения молекулы могут удерживаться около друг друга и образовывать жидкие и твердые тела.
Но кроме сил притяжения между молекулами должны действовать силы отталкивания. В том, что между атомами или молекулами при непосредственном их сближении появляются силы отталкивания, убедиться очень просто. Если бы таких сил не существовало, то вы свободно могли бы проткнуть пальцем толстую стальную плиту. Более того, без появления сил отталкивания на очень малых расстояниях между молекулами вещество не могло бы существовать. Молекулы проникли бы друг в друга, и весь кусок вещества сжался бы до объема одной молекулы.
Представления о существенной роли межмолекулярных сил для описания свойств газов впервые ввел нидерландский физик Я. Д. Ван-дер-Ваальс (1837-1923). Он не пытался ус-тановить точную зависимость сил от расстояния. Ван-дер-Ва- альс считал, что на малых расстояниях между молекулами действуют силы отталкивания, которые с увеличением расстояния сменяются силами притяжения, сравнительно медленно убывающими при дальнейшем увеличении расстояния. Силы межмолекулярного взаимодействия часто называют ван- дер-ваальсовыми силами.
Электромагнитная природа молекулярных сил
Приступить к теоретическому исследованию молекулярных сил до начала XX в. было почти невозможно. Простые и хорошо изученные гравитационные силы при взаимодействии столь малых тел, как молекулы, явно не могли играть заметной роли. Оставалось предположить, что молекулярные силы имеют электромагнитную природу.
Любой атом и тем более молекула - это сложная система, состоящая из большого числа заряженных частиц: электронов и атомных ядер. Хотя в целом молекулы электрически нейтральны, между ними действуют значительные электрические силы: происходит взаимодействие между электронами и ядра- ми соседних молекул. Описание движения частиц внутри атомов и молекул - очень сложная задача. Ее рассматривают в атомной физике и решают с помощью законов квантовой механики. Мы ограничимся качественным рассмотрением межмолекулярных сил различных типов и потом приведем конечный результат: примерную зависимость сил взаимодействия двух молекул от расстояния между ними.
Ориентационные силы
У многих молекул, например у молекулы воды, распреде-ление положительных и отрицательных зарядов таково, что в среднем центры этих зарядов не совпадают. Такую молекулу приближенно можно рассматривать как совокупность двух точечных зарядов +q и -q на небольшом расстоянии I друг от друга (рис. 2.7). Эта система зарядов называется электрическим диполе м. Электрические свойства такой молекулы характеризуются дипольным моментом
p = ql, (2.4.1)
где q-абсолютное значение заряда. +q -q

Рассчитывать значения дипольных моментов молекул на первых порах не умели. До создания квантовой механики это вообще было невозможно.
Но если считать дипольные моменты и р2 двух молекул известными, то за-висимость силы взаимодействия между ними от расстояния можно вычислить. Для этого нужно только знать закон взаимодействия двух точечных электрических зарядов. Этот закон (закон Кулона) уже давно был известен. Сила притяжения двух диполей максимальна, когда они располагаются вдоль одной линии
1 2 3 4 © © © ©
Рис. 2.8
(рис. 2.8). Эта сила возникает из-за того, что расстояние между разноименными зарядами, находящимися в точках 2 и 3, чуть меньше, чем между одноименными, расположенными в точках 1, 3 и 2, 4.
Сила взаимодействия диполей зависит от их взаимной ори-ентации. Поэтому она называется ориентационной. Хаотическое тепловое движение непрерывно меняет ориентацию молекул-диполей. Учитывая это, силу взаимодействия диполей нужно вычислять как среднюю по всевозможным ориентациям. Расчеты приводят к следующему результату: сила притяжения пропорциональна произведению дипольных моментов р1 и рг молекул и обратно пропорциональна расстоянию между ними в седьмой степени:
РіРг
(2.4.2)
Это очень быстрое убывание по сравнению с силой взаимо-действия точечных заряженных частиц, которая пропорци- 1
ональна -5. Н
Индукционные (поляризационные) силы
Можно указать еще одно достаточно простое взаимодействие молекул. Оно возникает между двумя молекулами, одна из которых обладает дипольным моментом, а другая - нет.
Дипольная молекула создает электрическое поле, которое поляризует молекулу с электрическими зарядами, равномерно распределенными по объему. Положительные заряды смещаются по направлению линий напряженности электрического поля, а отрицательные - против. В результате неполярная молекула растягивается (поляризуется) и у нее возникает ди- польный момент (рис. 2.9).
Рис. 2.9
Силу взаимодействия можно рассчитать и в этом случае. Она пропорциональна дипольному моменту р полярной моле-кулы, некоторой величине а, характеризующей способность неполярной молекулы поляризоваться (она называется поля-ризуемостью), и обратно пропорциональна седьмой степени расстояния между молекулами:
(2.4.3)
г
Эти силы притяжения называются индукционными или поляризационными, так как они возникают благодаря поляризации молекул, вызванной электростатической индукцией.
Дисперсионные силы
Хорошо известно, что силы притяжения существуют и между неполярными молекулами. Например, атомы инертных газов не имеют дипольного момента, но тем не менее притягиваются друг к другу.
Качественно и очень приближенно появление этих сил можно объяснить так. В атомах и молекулах электроны каким-то сложным образом движутся вокруг ядер, и в среднем по времени дипольные моменты молекул могут оказаться равными нулю. Но в каждый момент времени электроны занимают какое-то определенное положение. Поэтому мгновенное значение дипольного момента отлично от нуля. Такой «мгновенный» диполь создает поле, поляризующее соседние неполярные атомы. Из-за этого «мгновенные» диполи начинают взаимодействовать друг с другом. Полная сила взаимодействия между неполярными молекулами есть средний результат взаимодействия всевозможных «мгновенных» диполей.
Расчет, выполненный в рамках квантовой механики, приводит к выводу, что сила взаимодействия в этом случае пропорциональна произведению поляризуемостей молекул OCj и а2 и обратно пропорциональна седьмой степени расстояния:
(2.4.4)
Эти силы называются дисперсионными, потому что дисперсия света (зависимость показателя преломления света
3-2915
от частоты) определяется теми же свойствами молекул, что и рассмотренные силы.
Дисперсионные силы действуют между всеми атомами и молекулами, так как механизм их проявления не зависит от того, есть ли у них постоянные дипольные моменты или нет. Обычно эти силы превосходят как ориентационные, так и индукционные силы. Только при взаимодействии молекул с большими дипольными моментами, например молекул воды, ориентационная сила оказывается больше дисперсионной (для молекул воды в 3 раза). При взаимодействии же таких полярных молекул, как СО, НС1, дисперсионные силы в десятки и сотни раз превосходят другие силы.
Существенно, что все три типа сил притяжения одинаковым
образом убывают с расстоянием пропорционально 4=. Впрочем,
г1
на расстояниях, в несколько раз больших размеров молекул, начинает сказываться конечность скорости распространения электромагнитных взаимодействий. Из-за этого на расстояниях порядка Ю-5 см силы притяжения начинают убывать уже
ЇСЙ-1С Q
г8
Силы отталкивания
Теперь обратим внимание на силы отталкивания, действующие между молекулами на очень малых расстояниях. С одной стороны, ситуация здесь проще, а с другой - сложнее. Проще в том смысле, что эти силы очень быстро возрастают при сближении молекул, и поэтому та или иная быстрота изменения силы с расстоянием не оказывает заметного влияния на течение любых процессов.
Сложность состоит в том, что силы отталкивания в значительно большей мере, чем силы притяжения, зависят от индивидуальности молекул. Зная, как молекула А отталкивает молекулы Б и С, мы еще не в состоянии судить, какие силы отталкивания будут действовать между молекулами В и С. При непосредственном сближении молекул их электронные обо-лочки начинают перекрываться и особенность строения молекул сказывается в большей степени, чем при больших расстояниях между ними.
К достаточно хорошим результатам приводит допущение, что силы отталкивания возрастают при сближении молекул по закону
(2.4.5)
Учитывая, что силы притяжения с уменьшением расстоя-
1
ния увеличиваются пропорционально, а силы отталкива-
г"
1
ния - пропорционально -jg , можно примерную зависимость сил от расстояния изобразить графически.
График зависимости молекулярных сил
от расстояния между молекулами
Рассмотрим, как меняется в зависимости от расстояния между молекулами проекция результирующей силы взаимодействия между ними на прямую, соединяющую центры молекул. Если молекулы находятся на расстояниях, превышающих их размеры в несколько раз, то силы взаимодействия между ними практически не сказываются. Силы взаимодействия между молекулами короткодействующие.
На расстояниях, превышающих 2-3 диаметра молекул, сила отталкивания практически равна нулю. Заметна лишь сила притяжения. По мере уменьшения расстояния сила притяжения возрастает и одновременно начинает сказываться сила отталкивания. Эта сила очень быстро увеличивается, когда электронные оболочки молекул начинают перекрываться.
На рисунке 2.10 графически изображена зависимость проекции Fr силы взаимодействия молекул от расстояния между их

з- центрами. На расстоянии г0, примерно равном сумме радиусов молекул, Fr = 0, так как сила притяжения равна по модулю силе отталкивания. При г > г0 между молекулами действует сила притяжения. Проекция силы, действующей на правую молекулу, отрицательна. При г Происхождение сил упругости
Зависимость сил взаимодействия молекул от расстояния между ними объясняет появление силы упругости при сжатии и растяжении тел. Если пытаться сблизить молекулы на расстояние, меньшее г0, то начинает действовать сила, препятствующая сближению. Наоборот, при удалении молекул друг от друга действует сила притяжения, возвращающая молекулы в исходные положения после прекращения внешнего воздействия.
При малом смещении молекул из положений равновесия силы притяжения или отталкивания растут линейно с увеличением смещения. На малом участке кривую можно считать отрезком прямой (утолщенный участок кривой на рис. 2.10). Именно поэтому при малых деформациях оказывается справедливым закон Гука, согласно которому сила упругости пропорциональна деформации. При больших смещениях молекул закон Гука уже несправедлив.
Так как при деформации тела изменяются расстояния между всеми молекулами, то на долю соседних слоев молекул при-ходится незначительная часть общей деформации. Поэтому закон Гука выполняется при деформациях, в миллионы раз превышающих размеры молекул.
Атомно-силовой микроскоп
На действии сил отталкивания между атомами и молекулами на малых расстояниях основано устройство атомно-силового микроскопа (АСМ). Этот микроскоп в отличие от туннельного позволяет получать изображения не проводящих электрический ток поверхностей. Вместо вольфрамового острия в АСМ используют маленький осколок алмаза, заостренный до атомных размеров. Этот осколок закрепляется на тонком металлическом держателе. При сближении острия с исследуемой поверхностью электронные облака атомов алмаза и поверхности начинают перекрываться и возникают силы отталкивания. Эти силы отклоняют кончик алмазного острия. Отклонение регистрируется с помощью лазерного луча, отражающегося от зеркальца, закрепленного на держателе. Отраженный луч приводит в действие пьезоэлектрический манипулятор, аналогичный манипулятору туннельного микроскопа. Механизм обратной связи обеспечивает такую высоту алмазной иглы над поверхностью, чтобы изгиб пластины держателя оставался неизменным.
На рисунке 2.11 вы видите изображение полимерных цепей аминокислоты аланина, полученное с помощью АСМ. Каждый бугорок представляет собой одну молекулу аминокислоты.
Рис. 2.11
В настоящее время сконструированы атомные микроскопы, устройство которых основано на действии молекулярных сил притяжения на расстояниях, в несколько раз превышаю-щих размеры атома. Эти силы примерно в 1000 раз меньше сил отталкивания в АСМ. Поэтому применяется более сложная чувствительная система для регистрации сил.
Атомы и молекулы состоят из электрически заряженных частиц. Благодаря действию электрических сил на малых расстояниях молекулы притягиваются, но начинают отталкиваться, когда электронные оболочки атомов перекрываются.

Молекулярные силы. Между молекулами вещества существуют силы взаимодействия, называемые молекулярными силами. Если бы между молекулами не было сил притяжения, то все вещества при любых условиях находились бы только в газообразном состоянии. Лишь благодаря силам притяжения молекулы удерживаются друг возле друга и образуют жидкие и твердые тела.

Однако одни только силы притяжения не могут обеспечить существование устойчивых образований из атомов и молекул. На очень малых расстояниях между молекулами действуют силы отталкивания.

Строение атомов и молекул. Атом, а тем более молекула, – это сложная система, состоящая из отдельных заряженных частиц – электронов и атомных ядер. Хотя в целом молекулы электрически нейтральны, между ними на малых расстояниях действуют значительные электрические силы. Происходит взаимодействие между электронами и ядрами соседних молекул. Описание движения частиц внутри атомов и молекул и сил взаимодействия между молекулами очень сложная задача. Ее рассматривают а атомной физике. Мы приведем только результат: примерную зависимость силы взаимодействия двух молекул от расстояния между ними.

Атомы и молекулы состоят из заряженных частиц противоположных знаков заряда. Между электронами одной молекулы и атомными ядрами другой действуют силы притяжения. Одновременно между электронами обеих молекул и между их ядрами действуют силы отталкивания.
Вследствие электрической нейтральности атомов и молекул молекулярные силы являются короткодействующими. На расстояниях, превышающих размеры молекул в несколько раз, силы взаимодействия между ними практически не сказываются.

Зависимость молекулярных сил от расстояния между молекулами. Рассмотрим, как меняется в зависимости от расстояния между молекулами проекция силы взаимодействия между ними на прямую, соединяющую центры молекул. На расстояниях, превышающих 2-3 диаметра молекул, сила отталкивания практически равна нулю. Заметна лишь сила притяжения. По мере уменьшения расстояния сила притяжения возрастает и одновременно начинает сказываться сила отталкивания. Эта сила очень быстро возрастает, когда электронные оболочки атомов начинают перекрываться. В результате на сравнительно больших расстояниях молекулы притягиваются, а на малых отталкиваются.

На рисунке 8 изображена примерная зависимость проекции силы отталкивания от расстояния между центрами молекул (верхняя кривая), проекции силы притяжения (нижняя кривая) и проекция результирующей силы (средняя кривая). Проекция силы отталкивания положительна, а проекция силы притяжения отрицательна. Тонкие вертикальные линии проведены для удобства выполнения сложения проекций сил.

На расстоянии r 0 , равном примерно сумме радиусов молекул, проекция результирующей силы F r = 0, так как сила притяжения равна по модулю силе отталкивания (рис. 9, а). При r > r 0 сила притяжения превосходит силу отталкивания и проекция результирующей силы (жирная стрелка) отрицательна (рис 9, б).

Если r → ∞, то F r → 0. На расстояниях r < r 0 сила отталкивания превосходит силу притяжения (рис. 9, в).

Происхождение сил упругости. Зависимость сил взаимодействия молекул от расстояния между ними объясняет появление силы упругости при сжатии и растяжении тел. Если пытаться сблизить молекулы на расстояние, меньшее r0, то начинает действовать сила, препятствующая сближению. Наоборот, при удалении молекул друг от друга действует сила притяжения, возвращающая молекулы в исходное положение после прекращения внешнего воздействия.

При малом смешении молекул из положений равновесна сила притяжения или отталкивания растут линейно с увеличением смещения. На малом участке кривую можно считать отрезком прямой (утолщенный участок кривой на рис 8). Именно поэтому при малых деформациях оказывается справедливым закон Гука, согласно которому сила упругости пропорциональна деформации. При больших смещениях молекул закон Гука уже несправедлив.

Так как при деформации тела изменяются расстояния между всеми молекулами, то на долю соседних слоев молекул приходится незначительная часть общей деформации. Поэтому закон Гука выполняется при деформациях в миллионы раз превышающих размеры молекул.

3!ГАЗООБРАЗНОЕ СОСТ.

ЖИДКОЕ СОСТ.

ТВЕРД СОСТ.

4! ГА́З (франц. gaz, от греч. chaos - хаос) , агрегатное состояние вещества, в котором составляющие его атомы и молекулы почти свободно и хаотически движутся в промежутках между столкновениями, во время которых происходит резкое изменение характера их движения. Газообразное состояние вещества является самым распространенным состоянием вещества Вселенной. Солнце, звезды, облака межзвездного вещества, туманности, атмосферы планет и т. д. состоят из газов, или нейтральных, или ионизованных (плазмы) . Газы широко распространены в природе: они образуют атмосферу Земли, в значительных количествах содержатся в твердых земных породах, растворены в воде океанов, морей и рек. Встречающиеся в природных условиях газы представляют собой, как правило, смеси химически индивидуальных газов. Газы равномерно заполняют доступное для них пространство, и в отличие от жидкостей и твердых тел, не образуют свободной поверхности. Они оказывают давление на ограничивающую заполняемое ими пространство оболочку. Плотность газов при нормальном давлении на насколько порядков меньше плотности жидкостей. В отличие от твердых тел и жидкостей, объем газов существенно зависит от давления и температуры. Свойства большинства газов - прозрачность, бесцветность и легкость - затрудняло их изучение, поэтому физика и химия газов развивались медленно.

Только в 17 в. было доказано, что воздух обладает весом (Э. Торричелли и Б. Паскаль) . Тогда же Я. ван Гельмонт ввел термин газы для обозначения воздухоподобных веществ. И только к середине 19 в. были установлены основные закономерности, которым подчиняются газы. К ним относятся закон Бойля - Мариотта, закон Шарля, закон Гей-Люссака, закон Авогадро. Наиболее полно изучены были свойства достаточно разряженных газов, в которых расстояния между молекулами при нормальных условиях порядка 10 нм, что значительно больше радиуса действия сил межмолекулярного взаимодействия. Такой газ, молекулы которого рассматриваются как невзаимодействующие материальные точки, называется идеальным газом. Идеальные газы строго подчиняются законам Бойля - Мариотта и Гей-Люссака. Практически все газы ведут себя как идеальные при не слишком высоких давлениях и не слишком низких температурах. Уравнение pV=RT называют уравнением состояния идеального газа. Оно было получено в 1834 Б. Клапейроном и обобщено Д. И. Менделеевым для любой массы газа. Входящая в это уравнение газовая постоянная R равна 8,31 Дж/моль. град. Уравнение Клапейрона - Менделеева справедливо только для идеальных газов. Для них выполняется также закон Дальтона. Молекулярно-кинетическая теория газов рассматривает газы как совокупность слабо взаимодействующих частиц (молекул или атомов) , находящихся в непрерывном хаотическом (тепловом) движении. На основе этих простых представлений кинетической теории удается объяснить основные физические свойства газов, особенно полно - свойства разреженных газов. У достаточно разреженных газов средние расстояния между молекулами оказываются значительно больше радиуса действия межмолекулярных сил. Так, например, при нормальных условиях в 1 см3 газа находится ~ 1019 молекул и среднее расстояние между ними составляет ~ 10-6 см. С точки зрения молекулярно-кинетической теории давление газов является результатом многочисленных ударов молекул газа о стенки сосуда, усредненных по времени и по стенкам сосуда. При нормальных условиях и макроскопических размерах сосуда число ударов об 1см2 поверхности составляет примерно 1024 в секунду. Любое вещество можно перевести в газообразное состояние соответствующим подбором давления и температуры. Поэтому возможную область существования газообразного состояния графически изображают в переменных: давление р - температура Т (на р-Т-диаграмме) . Существует критическая температура Тк, ниже которой эта область ограничена кривыми сублимации (возгонки) и парообразования

5! Число Авогадро:

6,02214129(27)·10²³ моль⁻¹

6!Ва́куум (от лат. vacuus - пустой) - пространство, свободное от вещества. В технике и прикладной физике под вакуумом понимают среду, содержащую газ при давлении значительно ниже атмосферного . Вакуум характеризуется соотношением между длиной свободного пробега молекул газа λ и характерным размером среды d . Под d может приниматься расстояние между стенкамивакуумной камеры, диаметр вакуумного трубопровода и т. д. В зависимости от величины соотношения λ/d различают низкий (), средний () и высокий () вакуум.

7! Идеальный газ - математическая модель газа, в которой предполагается, что потенциальной энергией молекул можно пренебречь по сравнению с их кинетической энергией. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.
Модель широко применяется для решения задач термодинамики газов и задач аэрогазодинамики. Например, воздух при атмосферном давлении и комнатной температуре с большой точностью описывается данной моделью. В случае экстремальных температур или давлений требуется применение более точной модели, например модели газа Ван-дер-Ваальса, в котором учитывается притяжение между молекулами.
Различают классический идеальный газ (его свойства выводятся из законов классической механики и описываются статистикой Больцмана) и квантовый идеальный газ (свойства определяются законами квантовой механики, описываются статистиками Ферми - Дирака или Бозе - Эйнштейна) .

Классический идеальный газ.
Свойства идеального газа на основе молекулярно-кинетических представлений определяются исходя из физической модели идеального газа, в которой приняты следующие допущения:
объём частицы газа равен нулю (то есть, диаметр молекулы пренебрежимо мал по сравнению со средним расстоянием между ними,) ;
импульс передается только при соударениях (то есть, силы притяжения между молекулами не учитываются, а силы отталкивания возникают только при соударениях) ;
суммарная энергия частиц газа постоянна (то есть, нет передачи энергии за счет передачи тепла или излучения)
В этом случае частицы газа движутся независимо друг от друга, давление газа на стенку равно сумме импульсов в единицу времени, переданной при столкновении частиц со стенкой, энергия - сумме энергий частиц газа. Свойства идеального газа описываются уравнением Менделеева - Клапейрона
где - давление, - концентрация частиц, - постоянная Больцмана, - абсолютная температура.

Равновесное распределение частиц классического идеального газа по состояниям описывается распределением Больцмана:
где - среднее число частиц, находящихся в -ом состоянии с энергией, а константа определяется условием нормировки:
где - полное число частиц.
Распределение Больцмана является предельным случаем (квантовые эффекты пренебрежимо малы) распределений Ферми - Дирака и Бозе - Эйнштейна, и, соответственно, классический идеальный газ является предельным случаем Ферми-газа и Бозе-газа.

Для любого идеального газа справедливо соотношение Майера:
где - универсальная газовая постоянная, - молярная теплоемкость при постоянном давлении, - молярная теплоемкость при постоянном объёме.

9!Зако́н Ша́рля или второй закон Гей-Люссака - один из основных газовых законов, описывающий соотношение давления и температуры для идеального газа. Экспериментальным путем зависимость давления газа от температуры при постоянном объёме установлена в 1787 году Шарлем и уточнена Гей-Люссаком в 1802 .Проще говоря, если температура газа увеличивается, то и его давление тоже увеличивается, если при этом масса и объём газа остаются неизменными.Закон имеет особенно простой математический вид, если температура измеряется по абсолютной шкале, например, в градусах Кельвина. Математически закон записывают так:

P - давление газа,

T - температура газа (в градусах Кельвина),

k - константа.

Этот закон справедлив, поскольку температура является мерой средней кинетической энергии вещества. Если кинетическая энергия газа увеличивается, его частицы сталкиваются со стенками сосуда быстрее, тем самым создавая более высокое давление.

Для сравнения того же вещества при двух различных условиях, закон можно записать в виде.

Между молекулами любого вещества действуют силы взаимодействия или молекулярные силы . Эти силы имеют электромагнитную природу. Так как массы молекул очень малы, ничтожно малые силы гравитационного взаимодействия между молекулами можно не рассматривать. Каждая молекула представляет собой сложную систему, состоящую из заряженных частиц: электронов и атомных ядер. Поэтому при взаимодействии молекул одновременно действуют как силы притяжения их разноименных зарядов, так и силы отталкивания одноименных. И те, и другие с увеличением расстояния между молекулами быстро уменьшаются. Однако убывание сил отталкивания должно быть более быстрым, чем сил притяжения, в результате чего силы отталкивания будут преобладать на малых расстояниях между молекулами, а силы притяжения - на более дальних расстояниях.

На рис.1 изображена зависимость силы взаимодействия молекул от расстояния между ними. Как видно из рисунка, на очень больших расстояниях электромагнитного взаимодействия между молекулами практически нет. При сближении молекул, оставаясь в целом электрически нейтральными, молекулы будут ориентироваться таким образом, что их обращенные друг к другу стороны будут иметь разноименные заряды. В результате между молекулами будут возникать силы притяжения. При дальнейшем сближении молекул силы притяжения между ними будут возрастать. Если молекулы сблизятся до такой степени, что их электронные облака начнут заметно проникать друг в друга, то электроны и ядра различных молекул будут резко отталкиваться с силой, которая очень быстро растет с уменьшением расстояния между молекулами. На таких расстояниях будут преобладать силы отталкивания.

Рис.1 Зависимость силы взаимодействия молекул от расстояния между ними

Таким образом, на каждую молекулу действует сумма сил притяжения и отталкивания. На больших расстояниях преобладает сила притяжения (на расстоянии 2-3 диаметров молекулы притяжение максимально), на малых расстояниях сила отталкивания.

Существует такое расстояние между молекулами , на котором силы притяжения становятся равными силам отталкивания. Такое положение молекул называется положением устойчивого равновесия.

Примеры решения задач

ПРИМЕР 1

Задание Что из приведенных ниже фактов или явлений является наиболее наглядным опытным подтверждением взаимодействия между молекулами? Указать правильное утверждение:

а) растекание масла на поверхности воды;

б) расширение твердых тел, жидкостей и газов в результате нагревания;

в) наблюдение атомов и молекул с помощью электронного микроскопа;

г) возникновение сил упругости при деформациях твердых тел.

Ответ Правильным является утверждение г). Причиной возникновения сил упругости при деформациях твердых тел является взаимодействие между молекулами вещества этих тел. Силы взаимодействия между молекулами таковы, что на малых расстояниях (по сравнению с размерами самих молекул) молекулы отталкиваются, а на больших расстояниях - притягиваются. В недеформированном теле молекулы расположены на расстояниях, соответствующих устойчивому равновесию молекул, т.е. когда силы притяжения и отталкивания молекул компенсируют друг друга. Однако, когда мы растягиваем или сжимаем тело, расстояния между молекулами увеличиваются (или уменьшаются), в результате чего начинают преобладать либо силы притяжения, либо силы отталкивания, что приводит к возникновению сил упругости.


© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация