Как посчитать математическое ожидание. Математическое ожидание (Population mean) - это

Главная / Бизнес

– количество мальчиков среди 10 новорождённых.

Совершенно понятно, что это количество заранее не известно, и в очередном десятке родившихся детей может оказаться:

Либо мальчиков – один и только один из перечисленных вариантов.

И, дабы соблюсти форму, немного физкультуры:

– дальность прыжка в длину (в некоторых единицах) .

Её не в состоянии предугадать даже мастер спорта:)

Тем не менее, ваши гипотезы?

2) Непрерывная случайная величина – принимает все числовые значения из некоторого конечного или бесконечного промежутка.

Примечание : в учебной литературе популярны аббревиатуры ДСВ и НСВ

Сначала разберём дискретную случайную величину, затем – непрерывную .

Закон распределения дискретной случайной величины

– этосоответствие между возможными значениями этой величины и их вероятностями. Чаще всего закон записывают таблицей:

Довольно часто встречается термин ряд распределения , но в некоторых ситуациях он звучит двусмысленно, и поэтому я буду придерживаться «закона».

А теперь очень важный момент : поскольку случайная величина обязательно примет одно из значений , то соответствующие события образуют полную группу и сумма вероятностей их наступления равна единице:

или, если записать свёрнуто:

Так, например, закон распределения вероятностей выпавших на кубике очков имеет следующий вид:

Без комментариев.

Возможно, у вас сложилось впечатление, что дискретная случайная величина может принимать только «хорошие» целые значения. Развеем иллюзию – они могут быть любыми:

Пример 1

Некоторая игра имеет следующий закон распределения выигрыша:

…наверное, вы давно мечтали о таких задачах:) Открою секрет – я тоже. В особенности после того, как завершил работу над теорией поля .

Решение : так как случайная величина может принять только одно из трёх значений, то соответствующие события образуют полную группу , а значит, сумма их вероятностей равна единице:

Разоблачаем «партизана»:

– таким образом, вероятность выигрыша условных единиц составляет 0,4.

Контроль: , в чём и требовалось убедиться.

Ответ :

Не редкость, когда закон распределения требуется составить самостоятельно. Для этого используют классическое определение вероятности , теоремы умножения / сложения вероятностей событий и другие фишки тервера :

Пример 2

В коробке находятся 50 лотерейных билетов, среди которых 12 выигрышных, причём 2 из них выигрывают по 1000 рублей, а остальные – по 100 рублей. Составить закон распределения случайной величины – размера выигрыша, если из коробки наугад извлекается один билет.

Решение : как вы заметили, значения случайной величины принято располагать в порядке их возрастания . Поэтому мы начинаем с самого маленького выигрыша, и именно рублей.

Всего таковых билетов 50 – 12 = 38, и по классическому определению :
– вероятность того, что наудачу извлечённый билет окажется безвыигрышным.

С остальными случаями всё просто. Вероятность выигрыша рублей составляет:

Проверка: – и это особенно приятный момент таких заданий!

Ответ : искомый закон распределения выигрыша:

Следующее задание для самостоятельного решения:

Пример 3

Вероятность того, что стрелок поразит мишень, равна . Составить закон распределения случайной величины – количества попаданий после 2 выстрелов.

…я знал, что вы по нему соскучились:) Вспоминаем теоремы умножения и сложения . Решение и ответ в конце урока.

Закон распределения полностью описывает случайную величину, однако на практике бывает полезно (а иногда и полезнее) знать лишь некоторые её числовые характеристики .

Математическое ожидание дискретной случайной величины

Говоря простым языком, это среднеожидаемое значение при многократном повторении испытаний. Пусть случайная величина принимает значения с вероятностями соответственно. Тогда математическое ожидание данной случайной величины равно сумме произведений всех её значений на соответствующие вероятности:

или в свёрнутом виде:

Вычислим, например, математическое ожидание случайной величины – количества выпавших на игральном кубике очков:

Теперь вспомним нашу гипотетическую игру:

Возникает вопрос: а выгодно ли вообще играть в эту игру? …у кого какие впечатления? Так ведь «навскидку» и не скажешь! Но на этот вопрос можно легко ответить, вычислив математическое ожидание, по сути – средневзвешенный по вероятностям выигрыш:

Таким образом, математическое ожидание данной игры проигрышно .

Не верь впечатлениям – верь цифрам!

Да, здесь можно выиграть 10 и даже 20-30 раз подряд, но на длинной дистанции нас ждёт неминуемое разорение. И я бы не советовал вам играть в такие игры:) Ну, может, только ради развлечения .

Из всего вышесказанного следует, что математическое ожидание – это уже НЕ СЛУЧАЙНАЯ величина.

Творческое задание для самостоятельного исследования:

Пример 4

Мистер Х играет в европейскую рулетку по следующей системе: постоянно ставит 100 рублей на «красное». Составить закон распределения случайной величины – его выигрыша. Вычислить математическое ожидание выигрыша и округлить его до копеек. Сколько в среднем проигрывает игрок с каждой поставленной сотни?

Справка : европейская рулетка содержит 18 красных, 18 чёрных и 1 зелёный сектор («зеро»). В случае выпадения «красного» игроку выплачивается удвоенная ставка, в противном случае она уходит в доход казино

Существует много других систем игры в рулетку, для которых можно составить свои таблицы вероятностей. Но это тот случай, когда нам не нужны никакие законы распределения и таблицы, ибо доподлинно установлено, что математическое ожидание игрока будет точно таким же. От системы к системе меняется лишь

Математическим ожиданием (средним значением) случайной величины X , заданной на дискретном вероятностном пространстве, называется число m =M[X]=∑x i p i , если ряд сходится абсолютно.

Назначение сервиса . С помощью сервиса в онлайн режиме вычисляются математическое ожидание, дисперсия и среднеквадратическое отклонение (см. пример). Кроме этого строится график функции распределения F(X) .

Свойства математического ожидания случайной величины

  1. Математическое ожидание постоянной величины равно ей самой: M[C]=C , C – постоянная;
  2. M=C M[X]
  3. Математическое ожидание суммы случайных величин равно сумме их математических ожиданий: M=M[X]+M[Y]
  4. Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий: M=M[X] M[Y] , если X и Y независимы.

Свойства дисперсии

  1. Дисперсия постоянной величины равна нулю: D(c)=0.
  2. Постоянный множитель можно вынести из-под знака дисперсии, возведя его в квадрат: D(k*X)= k 2 D(X).
  3. Если случайные величины X и Y независимы, то дисперсия суммы равна сумме дисперсий: D(X+Y)=D(X)+D(Y).
  4. Если случайные величины X и Y зависимы: D(X+Y)=DX+DY+2(X-M[X])(Y-M[Y])
  5. Для дисперсии справедлива вычислительная формула:
    D(X)=M(X 2)-(M(X)) 2

Пример . Известны математические ожидания и дисперсии двух независимых случайных величин X и Y: M(x)=8 , M(Y)=7 , D(X)=9 , D(Y)=6 . Найти математическое ожидание и дисперсию случайное величины Z=9X-8Y+7 .
Решение. Исходя из свойств математического ожидания: M(Z) = M(9X-8Y+7) = 9*M(X) - 8*M(Y) + M(7) = 9*8 - 8*7 + 7 = 23.
Исходя из свойств дисперсии: D(Z) = D(9X-8Y+7) = D(9X) - D(8Y) + D(7) = 9^2D(X) - 8^2D(Y) + 0 = 81*9 - 64*6 = 345

Алгоритм вычисления математического ожидания

Свойства дискретных случайных величин: все их значения можно перенумеровать натуральными числами; каждому значению сопоставить отличную от нуля вероятность.
  1. Поочередно умножаем пары: x i на p i .
  2. Складываем произведение каждой пары x i p i .
    Например, для n = 4: m = ∑x i p i = x 1 p 1 + x 2 p 2 + x 3 p 3 + x 4 p 4
Функция распределения дискретной случайной величины ступенчатая, она возрастает скачком в тех точках, вероятности которых положительны.

Пример №1 .

x i 1 3 4 7 9
p i 0.1 0.2 0.1 0.3 0.3

Математическое ожидание находим по формуле m = ∑x i p i .
Математическое ожидание M[X] .
M[x] = 1*0.1 + 3*0.2 + 4*0.1 + 7*0.3 + 9*0.3 = 5.9
Дисперсию находим по формуле d = ∑x 2 i p i - M[x] 2 .
Дисперсия D[X] .
D[X] = 1 2 *0.1 + 3 2 *0.2 + 4 2 *0.1 + 7 2 *0.3 + 9 2 *0.3 - 5.9 2 = 7.69
Среднее квадратическое отклонение σ(x) .
σ = sqrt(D[X]) = sqrt(7.69) = 2.78

Пример №2 . Дискретная случайная величина имеет следующий ряд распределения:

Х -10 -5 0 5 10
р а 0,32 2a 0,41 0,03
Найти величину a , математическое ожидание и среднее квадратическое отклонение этой случайной величины.

Решение. Величину a находим из соотношения: Σp i = 1
Σp i = a + 0,32 + 2 a + 0,41 + 0,03 = 0,76 + 3 a = 1
0.76 + 3 a = 1 или 0.24=3 a , откуда a = 0.08

Пример №3 . Определить закон распределения дискретной случайной величины, если известна её дисперсия, причем х 1 x 1 =6; x 2 =9; x 3 =x; x 4 =15
p 1 =0,3; p 2 =0,3; p 3 =0,1; p 4 =0,3
d(x)=12,96

Решение.
Здесь надо составить формулу нахождения дисперсии d(x) :
d(x) = x 1 2 p 1 +x 2 2 p 2 +x 3 2 p 3 +x 4 2 p 4 -m(x) 2
где матожидание m(x)=x 1 p 1 +x 2 p 2 +x 3 p 3 +x 4 p 4
Для наших данных
m(x)=6*0,3+9*0,3+x 3 *0,1+15*0,3=9+0.1x 3
12,96 = 6 2 0,3+9 2 0,3+x 3 2 0,1+15 2 0,3-(9+0.1x 3) 2
или -9/100 (x 2 -20x+96)=0
Соответственно надо найти корни уравнения, причем их будет два.
x 3 =8, x 3 =12
Выбираем тот, который удовлетворяет условию х 1 x 3 =12

Закон распределения дискретной случайной величины
x 1 =6; x 2 =9; x 3 =12; x 4 =15
p 1 =0,3; p 2 =0,3; p 3 =0,1; p 4 =0,3

Математическим ожиданием случайной величины X называется среднее значение .

1. M(C) = C

2. M(CX) = CM(X) , где C = const

3. M(X ± Y) = M(X) ± M(Y)

4. Если случайные величины X и Y независимы, то M(XY) = M(X)·M(Y)

Дисперсия

Дисперсией случайной величины X называется

D(X) = S(x – M(X)) 2 p = M(X 2 ) – M 2 (X) .

Дисперсия представляет собой мерой отклонения значений случайной величины от своего среднего значения.

1. D(C) = 0

2. D(X + C) = D(X)

3. D(СX) = C 2 D(X) , где C = const

4. Для независимых случайных величин

D(X ± Y) = D(X) + D(Y)

5. D(X ± Y) = D(X) + D(Y) ± 2Cov(x, y)

Квадратный корень из дисперсии случайной величины X называется средним квадратичным отклонением .

@ Задача 3 : Пусть случайная величина X принимает всего два значения (0 или 1) с вероятностями q, p , где p + q = 1 . Найти математическое ожидание и дисперсию.

Решение:

M(X) = 1·p + 0·q = p; D(X) = (1 – p) 2 p + (0 – p) 2 q = pq.

@ Задача 4 : Математическое ожидание и дисперсия случайной величины X равны 8. Найти математическое ожидание и дисперсия случайных величин: а) X – 4 ; б) 3X – 4 .

Решение: M(X – 4) = M(X) – 4 = 8 – 4 = 4; D(X – 4) = D(X) = 8; M(3X – 4) = 3M(X) – 4 = 20; D(3X – 4) = 9D(X) = 72.

@ Задача 5 : Совокупность семей имеет следующее распределение по числу детей:

x i x 1 x 2
p i 0,1 p 2 0,4 0,35

Определить x 1 , x 2 и p 2 , если известно, что M(X) = 2; D(X) = 0,9 .

Решение: Вероятность p 2 равна p 2 = 1 – 0,1 – 0,4 – 0,35 = 0,15. Неизвестные x находятся из уравнений: M(X) = x 1 ·0,1 + x 2 ·0,15 + 2·0,4 + 3·0,35 = 2; D(X) = ·0,1 + ·0,15 + 4·0,4 + 9·0,35 – 4 = 0,9. x 1 = 0; x 2 = 1.

Генеральная совокупность и выборка. Оценки параметров

Выборочное наблюдение

Статистическое наблюдение можно организовать сплошное и не сплошное. Сплошное наблюдение предусматривает обследование всех единиц изучаемой совокупности (генеральной совокупности). Генеральная совокупность это множество физических или юридических лиц, которую исследователь изучает согласно своей задачи. Это часто экономически невыгодно, а иногда и невозможно. В связи с этим изучается только часть генеральной совокупности – выборочная совокупность .

Результаты, полученные на основе выборочной совокупности, можно распространить на генеральную совокупность, если следовать следующим принципам:



1. Выборочная совокупность должна определяться случайным образом.

2. Число единиц выборочной совокупности должно быть достаточным.

3. Должна обеспечиваться репрезентативность ( представительность) выборки. Репрезентативная выборка представляет собой меньшую по размеру, но точную модель той генеральной совокупности, которую она должна отражать.

Типы выборок

В практике применяются следующие типы выборок:

а) собственно-случайная, б) механическая, в) типическая, г) серийная, д) комбинированная.

Собственно-случайная выборка

При собственно-случайной выборке отбор единиц выборочной совокупности производится случайным образом, например, посредством жеребьевки или генератора случайных чисел.

Выборки бывают повторные и бесповторные. При повторной выборке единица, попавшая в выборку, возвращается и сохраняет равную возможность снова попасть в выборку. При бесповторной выборке единица совокупности, попавшая в выборку, в дальнейшем в выборке не участвует.

Ошибкиприсущие выборочному наблюдению, возникающие в силу того, что выборочная совокупность не полностью воспроизводит генеральную совокупность, называются стандартными ошибками . Они представляют собой среднее квадратичное расхождение между значениями показателей, полученных по выборке, и соответствующими значениями показателей генеральной совокупности.

Расчетные формулы стандартной ошибки при случайном повторном отборе следующая: , а при случайном бесповторном отборе следующая: , где S 2 – дисперсия выборочной совокупности, n/N – доля выборки, n, N - количества единиц в выборочной и генеральной совокупности. При n = N стандартная ошибка m = 0.

Механическая выборка

При механической выборке генеральная совокупность разбивается на равные интервалы и из каждого интервала случайным образом отбирается по одной единице.

Например, при 2%-ной доли выборки из списка генеральной совокупности отбирается каждая 50-я единица.

Стандартная ошибка механической выборки определяется как ошибка собственно-случайной бесповторной выборки.

Типическая выборка

При типической выборке генеральная совокупность разбивается на однородные типические группы, затем из каждой группы случайным образом производится отбор единиц.

Типической выборкой пользуются в случае неоднородной генеральной совокупности. Типическая выборка дает более точные результаты, потому что обеспечивается репрезентативность.

Например, учителя, как генеральная совокупность, разбиваются на группы по следующим признакам: пол, стаж, квалификация, образование, городские и сельские школы и т.д.

Стандартные ошибки типической выборки определяются как ошибки собственно-случайной выборки, с той лишь разницей, что S 2 заменяется средней величиной от внутригрупповых дисперсий.

Серийная выборка

При серийной выборке генеральная совокупность разбивается на отдельные группы (серии), затем случайным образом выбранные группы подвергаются сплошному наблюдению.

Стандартные ошибки серийной выборки определяются как ошибки собственно-случайной выборки, с той лишь разницей, что S 2 заменяется средней величиной от межгрупповых дисперсий.

Комбинированная выборка

Комбинированная выборка является комбинацией двух или более типов выборок.

Точечная оценка

Конечной целью выборочного наблюдения является нахождение характеристик генеральной совокупности. Так как этого невозможно сделать непосредственно, то на генеральную совокупность распространяют характеристики выборочной совокупности.

Принципиальная возможность определения средней арифметической генеральной совокупности по данным средней выборки доказывается теоремой Чебышева . При неограниченном увеличении n вероятность того, что отличие выборочной средней от генеральной средней будет сколь угодно мало, стремится к 1.

Это означает, что характеристика генеральной совокупности с точностью . Такая оценка называется точечной .

Интервальная оценка

Базисом интервальной оценки является центральная предельная теорема .

Интервальная оценка позволяет ответить на вопрос: внутри какого интервала и с какой вероятностью находится неизвестное, искомое значение параметра генеральной совокупности?

Обычно говорят о доверительной вероятности p = 1 a, с которой будет находиться в интервале D < < + D, где D = t кр m > 0 предельная ошибка выборки, a - уровень значимости (вероятность того, что неравенство будет неверным), t кр - критическое значение, которое зависит от значений n и a. При малой выборке n < 30 t кр задается с помощью критического значения t-распределения Стъюдента для двустороннего критиерия с n – 1 степенями свободы с уровнем значимости a (t кр (n – 1, a) находится из таблицы «Критические значения t–распределения Стъюдента», приложение 2). При n > 30, t кр - это квантиль нормального закона распределения (t кр находится из таблицы значений функции Лапласа F(t) = (1 a)/2 как аргумент). При p = 0,954 критическое значение t кр = 2 при p = 0,997 критическое значение t кр = 3. Это означает, что предельная ошибка обычно больше стандартной ошибки в 2-3 раза.

Таким образом, суть метода выборки заключается в том, что на основании статистических данных некоторой малой части генеральной совокупности удается найти интервал, в котором с доверительной вероятностью p находится искомая характеристика генеральной совокупности (средняя численность рабочих, средний балл, средняя урожайность, среднее квадратичное отклонение и т.д.).

@ Задача 1. Для определения скорости расчетов с кредиторами предприятий корпорации в коммерческом банке была проведена случайная выборка 100 платежных документов, по которым средний срок перечисления и получения денег оказался равным 22 дням ( = 22) со стандартным отклонением 6 дней (S = 6). С вероятностью p = 0,954 определить предельнуюошибку выборочной средней и доверительный интервал средней продолжительности расчетов предприятий данной корпорации.

Решение: Предельнаяошибка выборочной средней согласно (1) равна D = 2· 0,6 = 1,2, а доверительный интервал определяется как (22 – 1,2; 22 + 1,2), т.е. (20,8; 23,2).

§6.5 Корреляция и регрессия

Каждая, отдельно взятая величина полностью определяется своей функцией распределения. Также, для решения практических задач хватает знать несколько числовых характеристик, благодаря которым появляется возможность представить основные особенности случайной величины в краткой форме.

К таким величинам относят в первую очередь математическое ожидание и дисперсия .

Математическое ожидание — среднее значение случайной величины в теории вероятностей. Обозначается как .

Самым простым способом математическое ожидание случайной величины Х(w) , находят как интеграл Лебега по отношению к вероятностной мере Р исходном вероятностном пространстве

Еще найти математическое ожидание величины можно как интеграл Лебега от х по распределению вероятностей Р Х величины X :

где - множество всех возможных значений X .

Математическое ожидание функций от случайной величины X находится через распределение Р Х . Например , если X - случайная величина со значениями в и f(x) - однозначная борелевская функция Х , то:

Если F(x) - функция распределения X , то математическое ожидание представимо интегралом Лебега - Стилтьеса (или Римана - Стилтьеса):

при этом интегрируемость X в смысле (* ) соответствует конечности интеграла

В конкретных случаях, если X имеет дискретное распределение с вероятными значениями х k , k=1, 2 , . , и вероятностями , то

если X имеет абсолютно непрерывное распределение с плотностью вероятности р(х) , то

при этом существование математического ожидания равносильно абсолютной сходимости соответствующего ряда или интеграла.

Свойства математического ожидания случайной величины.

  • Математическое ожидание постоянной величины равно этой величине:

C - постоянная;

  • M=C.M[X]
  • Математическое ожидание суммы случайно взятых величин равно сумме их математических ожиданий:

  • Математическое ожидание произведения независимых случайно взятых величин = произведению их математических ожиданий:

M=M[X]+M[Y]

если X и Y независимы.

если сходится ряд:

Алгоритм вычисления математического ожидания.

Свойства дискретных случайных величин: все их значения можно перенумеровать натуральными числами; каждому значению приравнять отличную от нуля вероятность.

1. По очереди перемножаем пары: x i на p i .

2. Складываем произведение каждой пары x i p i .

Напрмер , для n = 4 :

Функция распределения дискретной случайной величины ступенчатая, она возрастает скачком в тех точках, вероятности которых имеют положительный знак.

Пример: Найти математическое ожидание по формуле.

Математическое ожидание - это, определение

Мат ожидание - это одно из важнейших понятий в математической статистике и теории вероятностей, характеризующее распределение значений или вероятностей случайной величины. Обычно выражается как средневзвешенное значение всех возможных параметров случайной величины. Широко применяется при проведении технического анализа, исследовании числовых рядов, изучении непрерывных и продолжительных процессов. Имеет важное значение при оценке рисков, прогнозировании ценовых показателей при торговле на финансовых рынках, используется при разработке стратегий и методов игровой тактики в теории азартных игр .

Мат ожидание - это среднее значение случайной величины, распределение вероятностей случайной величины рассматривается в теории вероятностей.

Мат ожидание - это мера среднего значения случайной величины в теории вероятности. Мат ожидание случайной величины x обозначается M(x) .

Математическое ожидание (Population mean) - это

Мат ожидание - это

Мат ожидание - это в теории вероятности средневзвешенная величина всех возможных значений, которые может принимать эта случайная величина.

Мат ожидание - это сумма произведений всех возможных значений случайной величины на вероятности этих значений.

Математическое ожидание (Population mean) - это

Мат ожидание - это средняя выгода от того или иного решения при условии, что подобное решение может быть рассмотрено в рамках теории больших чисел и длительной дистанции.

Мат ожидание - это в теории азартных игр сумма выигрыша, которую может заработать или проиграть спекулянт, в среднем, по каждой ставке. На языке азартных спекулянтов это иногда называется «преимуществом спекулянта » (если оно положительно для спекулянта) или «преимуществом казино» (если оно отрицательно для спекулянта).

Математическое ожидание (Population mean) - это


Wir verwenden Cookies für die beste Präsentation unserer Website. Wenn Sie diese Website weiterhin nutzen, stimmen Sie dem zu. OK



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация