Дифракционная решетка и ее характеристики. Дифракционная решётка

Главная / Бизнес

ДИФРАКЦИОННАЯ РЕШЁТКА, совокупность большого числа регулярно расположенных элементов (штрихов, щелей, канавок, выступов), на которых происходит дифракция света. Дифракционная решетка способна разлагать падающий на неё свет в спектр, поэтому она используется в спектральных приборах в качестве диспергирующего элемента. Обычно штрихи наносят на стеклянную или металлическую, плоскую или вогнутую поверхность. Штрихи с постоянным для данной решётки профилем повторяются через одинаковый промежуток d, называемый периодом дифракционной решетки. Различают пропускательные и отражательные дифракционные решетки, которые в зависимости от того, что изменяется - амплитуда или фаза световой волны, делятся на амплитудные и фазовые. Простейшая пропускательная амплитудная дифракционная решетка представляет собой ряд щелей в непрозрачном экране (рисунок 1, а), отражательная амплитудная дифракционная решетка - систему штрихов, нанесённых на плоское или вогнутое зеркало (рисунок 1, б). Фазовая дифракционная решетка может иметь вид профилированной стеклянной пластины (пропускательная дифракционная решетка, рисунок 1, в) или профилированного зеркала (отражательная дифракционная решетка, рисунок 1, г). В современных приборах применяются главным образом отражательные фазовые дифракционные решётки.

При падении монохроматического коллимированного пучка света с длиной волны λ под углом α на дифракционную решетку с периодом d (рисунок 2), состоящую из щелей шириной b, разделённых непрозрачными промежутками, происходит интерференция вторичных волн, исходящих из разных щелей. В результате после фокусировки на экране образуются максимумы интенсивности, положение которых определяется уравнением d(sin α + sin β) = mλ, где β - угол между нормалью к дифракционной решетке и направлением распространения дифракционного пучка (угол дифракции); m = 0, ±1, ±2, ±3, ... - число длин волн, на которое волна от некоторого элемента дифракционной решетки отстаёт от волны, исходящей от соседнего элемента решётки (или опережает её). Монохроматические пучки, относящиеся к разным значениям m, называются порядком спектра, а создаваемые ими изображения входной щели - спектральными линиями М 1 . Все порядки, соответствующие положительным и отрицательным m, симметричны относительно нулевого. Чем больше щелей имеет дифракционная решетка, тем уже и резче спектральные линии. Если на дифракционную решетку падает белый свет, то для каждой длины волны получится свой набор спектральных линий М 2 , то есть излучение будет разложено в спектры по числу возможных значений m. Относительная интенсивность линий определяется функцией распределения энергии от отдельных щелей.

Основными характеристиками дифракционной решетки являются угловая дисперсия и разрешающая способность. Угловая дисперсия dβ/dλ = m/dcos β характеризует степень углового разделения лучей с разной длиной волны. Разрешающая сила R дифракционной решетки, характеризующая минимальный интервал длин волн δλ, который может разделить данная дифракционная решетка, определяется выражением R = λ/δλ = mN = Nd(sin α + sin β)/λ (N - число штрихов решётки). При заданных углах разрешающую способность можно увеличить только за счёт увеличения ширины всей дифракционной решетки Nd. Область дисперсии дифракционной решетки, то есть величина спектрального интервала Δλ, в котором спектр данного порядка не перекрывается спектрами соседних порядков, удовлетворяет соотношению Δλ = λ/m.

Дифракционные решетки, используемые для работы в разных областях спектра, различаются размерами, формой, профилем штрихов, их частотой (от 6000 штрихов/мм в рентгеновской области до 0,25 штрихов/мм в инфракрасной). По способу изготовления дифракционные решетки делятся на нарезные (оригинальные), реплики (копии с оригинальных дифракционных решеток) и голографические. Оригинальные нарезные дифракционные решетки изготовляются с помощью специальной делительной машины с алмазным резцом, профиль которого определяет форму штриха. Изготовление реплик состоит в получении отпечатков дифракционной решетки на пластмассах с последующим нанесением на них отражающего металлического слоя. При изготовлении голографической дифракционной решетки на светочувствительном материале записывается интерференция двух когерентных лазерных пучков.

Дифракционные решетки используются не только в спектрографах. Они применяются в качестве селективно отражающих зеркал лазеров с перестраиваемой частотой излучения, а также в устройствах, обеспечивающих компрессию световых импульсов.

Для управления параметрами лазерного излучения используются фазовые решётки, представляющие собой регулярные области сжатий и разрежений в жидкостях или прозрачных твёрдых телах, сформированные путём возбуждения в них УЗ-волны.

Лит.: Борн М., Вольф Э. Основы оптики. 2-е изд. М., 1973; Лебедева В. В. Экспериментальная оптика. 3-е изд. М., 1994; Ахманов С. А., Никитин С. Ю. Физическая оптика. 2-е изд. М., 2004; Сивухин Д. В. Общий курс физики. 3-е изд. М., 2006. Т. 4: Оптика.

Решетка сбоку выглядит подобным образом.

Применение также находят отражательные решетки , которые получены нанесением алмазным резцом на полированную поверхность металла тонких штрихов. Отпечатки на желатине или пластике после такой гравировки называют репликами , но такие дифракционные решетки обычно низкого качества, поэтому применение их ограничено. Хорошими отражательными решетками считаются такие, у которых полная длина составляет около 150 мм , при общем количестве штрихов - 600 шт/мм.

Основные характеристики дифракционной решетки - это общее число штрихов N, густота штриховки n (количество штрихов, приходящееся на 1 мм) и период (постоянная) решетки d, который можно найти как d = 1/n.

Решетка освещена одним фронтом волны и ее N прозрачных штрихов принято рассматривать в качестве N когерентных источников .

Если вспомнить явление интерференции от многих одинаковых источников света, то интенсивность света выражается согласно закономерности:

где i 0 - интенсивность световой волны, которая прошла через одну щель

Исходя из понятия максимальной интенсивности волны , полученного из условия:

β = mπ при m = 0, 1, 2… и т.д.

.

Перейдем от вспомогательного угла β к пространственному углу наблюдения Θ, и тогда:

(π d sinΘ)/ λ = m π,

Главные максимумы появляются при условии:

sinΘ м = m λ/ d, при m = 0, 1, 2… и т.д.

Интенсивность света в главных максимумах можно найти согласно формуле:

I м = N 2 i 0 .

Поэтому нужно изготавливать решетки с малым периодом d, тогда существует возможность получения больших углов рассеяния лучей и широкой дифракционной картины.

Например:

На продолжении предыдущего примера рассмотрим случай, когда в первом максимуме красные лучи (λ кр = 760 нм) отклонятся на угол Θ к = 27 °, а фиолетовые (λ ф = 400 нм) отклонятся на угол Θ ф = 14 °.

Видно, что при помощи дифракционной решетки существует возможность измерения длины волны того или другого цвета . Для этого просто нужно знать период решетки и измерить угол, но который отклонился луч, соответствующим необходимому свету.

Дифракционная решетка

Очень большая отражательная дифракционная решётка.

Дифракционная решётка - оптический прибор, работающий по принципу дифракции света, представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность. Первое описание явления сделал Джеймс Грегори , который использовал в качестве решётки птичьи перья.

Виды решёток

  • Отражательные : Штрихи нанесены на зеркальную (металлическую) поверхность, и наблюдение ведется в отраженном свете
  • Прозрачные : Штрихи нанесены на прозрачную поверхность (или вырезаются в виде щелей на непрозрачном экране), наблюдение ведется в проходящем свете.

Описание явления

Так выглядит свет лампы накаливания фонарика, прошедший через прозрачную дифракционную решётку. Нулевой максимум (m =0) соответствует свету, прошедшему сквозь решётку без отклонений. В силу дисперсии решётки в первом (m =±1) максимуме можно наблюдать разложение света в спектр . Угол отклонения возрастает с ростом длины волны (от фиолетового цвета к красному)

Фронт световой волны разбивается штрихами решётки на отдельные пучки когерентного света. Эти пучки претерпевают дифракцию на штрихах и интерферируют друг с другом. Так как для каждой длины волны существует свой угол дифракции, то белый свет раскладывается в спектр.

Формулы

Расстояние, через которое повторяются штрихи на решётке, называют периодом дифракционной решётки. Обозначают буквой d .

Если известно число штрихов (N ), приходящихся на 1 мм решётки, то период решётки находят по формуле: 0,001 / N

Формула дифракционной решётки:

d - период решётки, α - угол максимума данного цвета, k - порядок максимума, λ - длина волны.

Характеристики

Одной из характеристик дифракционной решётки является угловая дисперсия. Предположим, что максимум какого-либо порядка наблюдается под углом φ для длины волны λ и под углом φ+Δφ - для длины волны λ+Δλ. Угловой дисперсией решётки называется отношение D=Δφ/Δλ. Выражение для D можно получить если продифференцировать формулу дифракционной решётки

Таким образом, угловая дисперсия увеличивается с уменьшением периода решётки d и возрастанием порядка спектра k .

Изготовление

Хорошие решётки требуют очень высокой точности изготовления. Если хоть одна щель из множества будет нанесена с ошибкой, то решётка будет бракована. Машина для изготовления решёток прочно и глубоко встраивается в специальный фундамент. Перед началом непосредственного изготовления решёток, машина работает 5-20 часов на холостом ходу для стабилизации всех своих узлов. Нарезание решётки длится до 7 суток, хотя время нанесения штриха составляет 2-3 секунды.

Применение

Дифракционную решётку применяют в спектральных приборах, также в качестве оптических датчиков линейных и угловых перемещений (измерительные дифракционные решётки), поляризаторов и фильтров инфракрасного излучения, делителей пучков в интерферометрах и так называемых "антибликовых" очках.

Литература

  • Сивухин Д. В. Общий курс физики. - Издание 3-е, стереотипное. - М .: Физматлит, МФТИ , 2002. - Т. IV. Оптика. - 792 с. - ISBN 5-9221-0228-1
  • Тарасов К. И., Спектральные приборы, 1968

См. также

  • Фурье-оптика

Wikimedia Foundation . 2010 .

Смотреть что такое "Дифракционная решетка" в других словарях:

    Оптический прибор; совокупность большого количества параллельных щелей в непрозрачном экране или отражающих зеркальных полосок (штрихов), равноотстоящих друг от друга, на которых происходит дифракция света. Дифракционная решетка разлагает… … Большой Энциклопедический словарь

    ДИФРАКЦИОННАЯ РЕШЕТКА, пластина с нанесенными на нее параллельными линиями на равном расстоянии друг от друга (до 1500 на 1 мм), которая служит для получения СПЕКТРОВ при ДИФРАКЦИИ света. Трансмиссионные решетки прозрачные и расчерчиваются на… … Научно-технический энциклопедический словарь

    дифракционная решетка - Зеркальная поверхность с нанесенными на нее микроскопическими параллельными линиями, прибор, разделяющий (подобно призме) падающий на него свет на составные цвета видимого спектра. Тематики информационные технологии в …

    дифракционная решетка - difrakcinė gardelė statusas T sritis Standartizacija ir metrologija apibrėžtis Optinis periodinės sandaros įtaisas difrakciniams spektrams gauti. atitikmenys: angl. diffraction grating vok. Beugungsgitter, n; Diffraktionsgitter, n rus.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    Оптический прибор, совокупность большого количества параллельных щелей в непрозрачном экране или отражающих зеркальных штрихов (полосок), равноотстоящих друг от друга, на которых происходит дифракция света. Д.Р. разлагает падающий на нее свет в… … Астрономический словарь

    дифракционная решетка (в оптических линиях связи) - дифракционная решетка Оптический элемент с периодической структурой, отражающий (или пропускающий) свет под одним или несколькими разными углами, зависящими от длины волны. Основу составляют периодически повторяющиеся изменения показателя… … Справочник технического переводчика

    вогнутая спектральная дифракционная решетка - Спектральная дифракционная решетка, изготовленная на вогнутой оптической поверхности. Примечание Вогнутые спектральные дифракционные решетки бывают сферическими и асферическими. [ГОСТ 27176 86] Тематики оптика, оптические приборы и измерения … Справочник технического переводчика

    голограммная спектральная дифракционная решетка - Спектральная дифракционная решетка, изготовления регистрацией на чувствительном к излучению материале интерференционной картины от двух и более когерентных пучков. [ГОСТ 27176 86] Тематики оптика, оптические приборы и измерения … Справочник технического переводчика

Дифракционная решетка — оптическое устройство, представляющее собой совокупность большого числа параллельных, обычно равноотстоящих друг от друга, щелей.

Дифракционную решетку можно получить нанесением непрозрачных царапин (штрихов) на стеклянную пластину. Непроцарапанные места — щели — будут пропускать свет; штрихи, соответствующие промежутку между щелями, рассеивают и не пропускают света. Сечение такой дифракционной решетки (а ) и ее условное обозначение (б) показаны на рис. 19.12. Суммарную ширину щели а и промежутка б между щелями называют постоянной или периодом дифракционной решетки:

с = а + б. (19.28)

Если на решетку падает пучок когерентных волн, то вторичные волны, идущие по всевозможным направлениям, будут интерферировать, формируя дифракционную картину.

Пусть на решетку нормально падает плоскопараллельный пучок когерентных волн (рис. 19.13). Выберем некоторое направление вторичных волн под углом a относительно нормали к решетке. Лучи, идущие от крайних точек двух соседних щелей, имеют разность хода d = А"В". Такая же разность хода будет для вторич-ных волн, идущих от соответственно расположенных пар точек соседних щелей. Если эта разность хода кратна целому числу длин волн, то при интерференции возникнут главные максимумы, для которых выполняется условие ÷А"В ¢÷= ± k l, или

с sin a = ± k l, (19.29)

где k = 0,1,2,... — порядок главных максимумов. Они расположены симметрично относительно центрального (k = 0, a = 0). Равенство (19.29) является основной формулой дифракционной решетки.

Между главными максимумами образуются минимумы (добавочные), число которых зависит от числа всех щелей решетки. Выведем условие для добавочных минимумов. Пусть разность хода вторичных волн, идущих под углом a от соответственных тoчек соседних щелей, равна l/N, т. е.

d = с sin a= l/N, (19.30)

где N — число щелей дифракционной решетки. Этой разности хода 5 [см. (19.9)] отвечает разность фаз Dj= 2 p/N.

Если считать, что вторичная волна от первой щели имеет в момент сложения с другими волнами нулевую фазу, то фаза волны от второй щели равна 2 p/N, от третьей — 4 p/N, от четвертой — 6p/N и т. д. Результат сложения этих волн с учетом фазового различия удобно получить с помощью векторной диаграммы: сумма N одинаковых векторов напряженности электрического поля, угол (разность фаз) между любыми соседними из которых есть 2 p/N, равна нулю. Это означает, что условие (19.30) соответствует минимуму. При разности хода вторичных волн от соседних щелей d = 2(l/N) илиразности фаз Dj = 2(2p/N) будет также получен минимум интерференции вторичных волн, идущих от всех щелей, и т. д.


В качестве иллюстрации на рис. 19.14 изображена векторная диаграмма, соответствующая дифракционной решетке, состоящей из шести щелей: и т. д. — векторы напряженности электрической составляющей электромагнитных волн от первой, второй и т. д. щелей. Возникающие при интерференции пять добавочных минимумов (сумма векторов равна нулю) наблюдаются при разности фаз волн, приходящих от соседних щелей, в 60° (а ), 120° (б), 180° (в), 240° (г) и 300° (д).

Рис. 19.14

Так, можно убедиться, что между центральным и каждым первым главным максимумами имеется N -1 добавочных минимумов, удовлетворяющих условию

с sin a = ± l/N ; 2l/N, ..., ± (N - 1)l/N. (19.31)

Между первым и вторым главными максимумами также расположены N - 1 добавочных минимумов, удовлетворяющих условию

с sin a = ± (N + 1)l/N, ± (N + 2)l/N, ..., (2N - 1)l/N, (19.32)

и т. д. Итак, между любыми двумя соседними главными максимумами наблюдается N - 1 добавочных минимумов.

При большом количестве щелей отдельные добавочные минимумы практически не различаются, а все пространство между главными максимумами выглядит темным. Чем больше число щелей дифракционной решетки, тем более резки главные максимумы. На рис. 19.15 представлены фотографии дифракционной картины, полученной от решеток с разным числом N щелей (постоянная дифракционной решетки одинакова), а на рис. 19.16 — график распределения интенсивности.

Особо отметим роль минимумов от одной щели. В направлении, отвечающем условию (19.27), каждая щель дает минимум, поэтому минимум от одной щели сохранится и для всей решетки. Если для некоторого направления одновременно выполняются условия минимума для щели (19.27) и главного максимума решетки (19.29), то соответствующий главный максимум не возникнет. Обычно стараются использовать главные максимумы, которые размещаются между первыми минимумами от одной щели, т. е. в интервале

arcsin (l/a ) > a > - arcsin (l/a ) (19.33)

При падении на дифракционную решетку белого или иного немонохроматического света каждый главный максимум, кроме центрального, окажется разложенным в спектр [см. (19.29)]. В этом случае k указывает порядок спектра.

Таким образом, решетка является спектральным прибором, поэтому для нее существенны характеристики, которые позволяют оценивать возможность различения (разрешения) спектральных линий.

Одна из таких характеристик — угловая дисперсия — определяет угловую ширину спектра. Она численно равна угловому расстоянию da между двумя линиями спектра, длины волн которых различаются на единицу (dl. = 1):

D = da/ dl.

Дифференцируя (19.29) и используя только положительные значения величин, получаем

с cos a da = ..k dl.

Из последних двух равенств имеем

D = ..k /(c cos a). (19.34)

Так как обычно используют небольшие углы дифракции, то cos a » 1. Угловая дисперсия D тем выше, чем больше порядок k спектра и чем меньше постоянная с дифракционной решетки.

Возможность различать близкие спектральные линии зависит не только от ширины спектра, или угловой дисперсии, но и от ширины спектральных линий, которые могут накладываться друг на друга.

Принято считать, что если между двумя дифракционными максимумами одинаковой интенсивности находится область, где суммарная интенсивность составляет 80% от максимальной, то спектральные линии, которым соответствуют эти максимумы, уже разрешаются.

При этом, согласно Дж. У. Рэлею, максимум одной линии совпадает с ближайшим минимумом другой, что и считается критерием разрешения. На рис. 19.17 изображены зависимости интенсивности I отдельных линий от длины волны (сплошная кривая) и их суммарная интенсивность (штриховая кривая). Из рисунков легко увидеть неразрешенность двух линий (а ) и предельную разрешенность (б ), когда максимум одной линии совпадает с ближайшим минимумом другой.

Разрешение спектральных линий количественно оценивается разрешающей способностью, равной отношению длины волны к наименьшему интервалу длин волн, которые еще могут быть разрешены:

R = l./ Dl.. (19.35)

Так, если имеются две близкие линии с длинами волн l 1 ³ l 2 , Dl = l 1 - l 2 , то (19.35) можно приближенно записать в виде

R = l 1 /(l 1 - l 2), или R = l 2 (l 1 - l 2) (19.36)

Условие главного максимума для первой волны

с sin a = k l 1 .

С ним совпадает ближайший минимум для второй волны, условие которого

с sin a = k l 2 + l 2 /N.

Приравнивая правые части последних двух равенств, имеем

k l 1 = k l 2 + l 2 /N, k (l 1 - l 2) = l 2 /N,

откуда [с учетом (19.36)]

R = k N .

Итак, разрешающая способность дифракционной решетки тем больше, чем больше порядок k спектра и число N штрихов.

Рассмотрим пример. В спектре, полученном от дифракционной решетки с числом щелей N = 10 000, имеются две линии вблизи длины волны l = 600 нм. При какой наименьшей разности длин волн Dl эти линии различаются в спектре третьего порядка (k = 3)?

Для ответа на этот вопрос приравняем (19.35) и (19.37), l/Dl = kN, откуда Dl = l/(kN ). Подставляя числовые значения в эту формулу, находим Dl = 600 нм/(3 . 10 000) = 0,02 нм.

Так, например, различимы в спектре линии с длинами волн 600,00 и 600,02 нм и не различимы линии с длинами волн 600,00 и 600,01 нм

Выведем формулу дифракционной решетки для наклонного падения когерентных лучей (рис. 19.18, b — угол падения). Условия формирования дифракционной картины (линза, экран в фокальной плоскости) те же, что и при нормальном падении.

Проведем перпендикуляры А"В кпадающим лучам и АВ" ко вторичным волнам, идущим под углом a к перпендикуляру, восставленному к плоскости решетки. Из рис. 19.18 видно, что к положению А¢В лучи имеют одинаковую фазу, от АВ" и далее разность фаз лучей сохраняется. Следовательно, разность хода есть

d = ВВ"-АА". (19.38)

Из D АА"В имеем АА¢ = АВ sin b = с sin b. Из DВВ"А находим ВВ" = АВ sin a = с sin a. Подставляя выражения для АА¢ и ВВ" в (19.38) и учитывая условие для главных максимумов, имеем

с (sin a - sin b) = ± kl. (19.39)

Центральный главный максимум соответствует направлению падающих лучей (a= b).

Наряду с прозрачными дифракционными решетками используют отражательные, у которых штрихи нанесены на металлическую поверхность. Наблюдение при этом ведется в отраженном свете. Отражательные дифракционные решетки, изготовленные на вогнутой поверхности, способны образовывать дифракционную картину без линзы.

В современных дифракционных решетках максимальное число штрихов составляет более 2000 на 1 мм, а длина решетки более 300 мм, что дает значение N около миллиона.

ОПРЕДЕЛЕНИЕ

Дифракционной решеткой называют спектральный прибор, который является системой некоторого количества щелей, разделенных непрозрачными промежутками.

Очень часто на практике используют одномерную дифракционную решетку, состоящую из параллельных щелей одинаковой ширины, находящихся в одной плоскости, которые разделяют равными по ширине непрозрачными промежутками. Такую решетку изготавливают при помощи специальной делительной машины, которая наносит на пластине из стекла параллельные штрихи. Количество таких штрихов может быть более чем тысяча на один миллиметр.

Лучшими считаются отражательные дифракционные решетки. Это совокупность участков, которые отражают свет с участками, которые свет отражают. Такие решетки представляют собой отшлифованную металлическую пластину, на которой рассеивающие свет штрихи нанесены резцом.

Картина дифракции на решетке — это результат взаимной интерференции волн, которые идут ото всех щелей. Следовательно, при помощи дифракционной решетки реализуется многолучевая интерференция когерентных пучков света, которые подверглись дифракции и которые идут от всех щелей.

Допустим, что на дифракционной решетке ширина щели будет a, ширина непрозрачного участка — b, тогда величина:

называется периодом (постоянной) дифракционной решетки.

Картина дифракции на одномерной дифракционной решетке

Представим, что нормально к плоскости дифракционной решетки падает монохроматическая волна. Вследствие того, что щели расположены на равных расстояниях друг от друга, то разности хода лучей (), которые идут от пары соседних щелей, для избранного направления будут одинаковы для всей данной дифракционной решетки:

Главные минимумы интенсивности наблюдаются в направлениях, определенных условием:

Помимо главных минимумов, в результате взаимной интерференции лучей света, которые посылает пара щелей, в некоторых направлениях они гасят друг друга, это значит, что появляются дополнительные минимумы. Они возникают в направлениях, где разность хода лучей составляют нечетное число полуволн. Условие дополнительных минимумов записывают как:

где N - число щелей дифракционной решетки; k’ принимает любые целые значения кроме 0, . Если решетка имеет N щелей, то между двумя главными максимумами находятся дополнительный минимум, которые разделяют вторичные максимумы.

Условием главных максимумов для дифракционной решетки служит выражение:

Так как величина синуса не может быть больше единицы, то количество главных максимумов:

Если через решетку пропускать белый свет, то все максимумы (кроме центрального m=0), будут разложены в спектр. При этом фиолетовая область данного спектра будет обращена к центру картины дифракции. Данное свойство дифракционной решетки применяется для изучения состава спектра света. Если известен период решетки, то вычисление длины волны света можно свести к нахождению угла , который соответствует направлению на максимум.

Примеры решения задач

ПРИМЕР 1

Задание Каков максимальный порядок спектра, который можно получить при помощи дифракционной решетки с постоянной м, если на нее перпендикулярно поверхности падает монохроматический пучок света с длиной волны м?
Решение В качестве основы для решения задачи используем формулу, которая является условием наблюдения главных максимумов для дифракционной картины, полученной при прохождении света сквозь дифракционную решетку:

Максимальным значением является единица, поэтому:

Из (1.2) выразим , получим:

Проведем вычисления:

Ответ

ПРИМЕР 2

Задание Через дифракционную решетку пропускают монохроматический свет с длиной волны . На расстоянии L от решетки поставлен экран. На него при помощи линзы, находящейся около решетки, создают проекцию дифракционной картины. При этом первый максимум дифракции находится на расстоянии l от центрального. Каково количество штрихов на единицу длины дифракционной решетки (N), если свет падает на нее нормально?
Решение Сделаем рисунок.


© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация