Коэффициент полезного действия механизма сообщение по физике. Цель работы

Главная / Авто

Стадии (режимы) движения механизма

В механизмах с одной степенью свободы принято различать три стадии (режима) работы: разбег, установившееся движение и выбег (рис. 1.27). При изучении перечисленных режимов работы механизма воспользуемся уравнением (1.65), в котором суммарную работу всех сил разложим на работу движущих сил , работу сил полезного и вредногосопротивлений:

На стадии разбега скорости звеньев механизма возрастают от нуля до некоторого рабочего значения, соответствующего скорости установившегося значения. Следовательно, на стадии разбега и согласно равенству (1.81) можно записать

Выражение (1.82) показывает, что на стадии разбега при запуске механизма движущие силы должны не только преодолеть силы полезного и вредного сопротивления, но и сообщить механизму кинетическую энергию. В некоторых случаях в связи с требованиями технологического процесса для уменьшения времени пуска подвижные звенья механизма на стадии разбега не нагружаются силами полезного сопротивления . Например, рабочий процесс реза-

Рис. 1.27

ния в металлорежущих станках начинается только после завершения стадии разбега.

Установившийся режим движения механизма это движение, при котором обобщенная скорость и кинетическая энергия механизма являются периодическими функциями времени. Время цикла установившегося движения это минимальный промежуток времени, по истечении которого обобщенная координата и кинетическая энергия механизма принимают те же значения, что и в начале этого промежутки (см. рис. 1.27). Мгновенная скорость меняется за время цикла , но ее среднее значение за цикл и, следовательно, за весь период установившегося движения остается постоянным. Изменение кинетической энергии за весь период установившегося движения равно нулю, и уравнение (1.81) принимает вид

Из уравнения (1.83) очевидно, что энергия движущих сил в установившемся режиме машин расходуется только на преодоление полезных и вредных сопротивлений. И чем меньше работа сил вредного сопротивления (трения и др.), тем эффективнее используется энергия в машине.

На стадии выбега (останова ) скорости звеньев механизма убывают до нуля. Движущие силы отключают, поэтому . В конце выбега , и уравнение (1.81) перепишем следующим образом:

Когда вся кинетическая энергия механизма оказывается израсходованной на преодоление сил полезного и вредного сопротивлений, механизм останавливается. Для уменьшения времени торможения используются тормозные устройства, развивающие дополнительную работу тормозящих сил. Особенно эффективно применение тормозных устройств, если по технологическим причинам полезные сопротивления на стадии выбега выключаются.

Коэффициент полезного действия механизма

Одним из важнейших параметров, оценивающих качество машин и механизмов, эффективность использования ими поступающей энергии, является коэффициент полезного действия. Коэффициент полезного действия (КПД) это отношение работы сил полезного сопротивления к работе движущих сил , совершаемых за один и тот же промежуток времени:

Если КПД вычисляется за бесконечно малый промежуток времени (мгновенный КПД), то вместо отношения работ берется отношение мощностей:

где – мощность на ведомом звене; – мощность на ведущем звене.

Так как за период установившегося движения выполняется равенство (1.83), работу сил полезного сопротивления удобно представить разностью . Тогда КПД механизма при установившемся движении можно подсчитывать по формуле

(1.84)

Отношение называют коэффициентом потерь / При установившемся движении коэффициент потерь определяют равенствами

Коэффициенты полезного действия и потерь являются безразмерными величинами. С практической точки зрения наибольший интерес представляют их значения при установившемся движении механизма.

Анализ формулы (1.84) позволяет сделать следующие выводы:

На КПД влияют многочисленные факторы, связанные с конструкцией механизмов и машин, условиями их эксплуатации. Так, увеличения КПД можно добиться заменой трения скольжения трением качения или применением рациональной смазки в узлах трения.

Известно, что вечный двигатель невозможен. Это связано с тем, что для любого механизма справедливо утверждение: совершённая с помощью этого механизма полная работа (в том числе на нагревание механизма и окружающей среды, на преодоление силы трения) всегда больше полезной работы.

Например, больше половины работы двигателя внутреннего сгорания совершается впустую тратится на нагревание составных частей двигателя; некоторое количество теплоты уносят выхлопные газы.

Часто необходимо оценивать эффективность механизма, целесообразность его использования. Поэтому, чтобы рассчитывать, какая часть от совершённой работы тратится впустую и какая часть с пользой, вводится специальная физическая величина, которая показывает эффективность механизма.

Эта величина называется коэффициентом полезного действия механизма

Коэффициент полезного действия механизма равен отношению полезной работы к полной работе. Очевидно, коэффициент полезного действия всегда меньше единицы. Эту величину часто выражают в процентах. Обычно её обозначают греческой буквой η (читается «эта»). Сокращённо коэффициент полезного действия записывают КПД.

η = (А_полн /А_полезн) * 100 %,

где η КПД, А_полн полная работа, А_полезн полезная работа.

Среди двигателей наибольший коэффициент полезного действия имеет электрический двигатель (до 98 %). Коэффициент полезного действия двигателей внутреннего сгорания 20 % - 40 %, паровой турбины примерно 30 %.

Отметим, что для увеличения коэффициента полезного действия механизма часто стараются уменьшить силу трения. Это можно сделать, используя различные смазки или шарикоподшипники, в которых трение скольжения заменяется трением качения.

Примеры расчета КПД

Рассмотрим пример. Велосипедист массой 55 кг поднялся на велосипеде массой 5 кг на холм, высота которого 10 м, совершив при этом работу 8 кДж. Найдите коэффициент полезного действия велосипеда. Трение качения колёс о дорогу не учитывайте.

Решение. Найдём общую массу велосипеда и велосипедиста:

m = 55 кг + 5 кг = 60 кг

Найдем их общий вес:

P = mg = 60 кг * 10 Н/кг = 600 Н

Найдём работу, совершённую на подъём велосипеда и велосипедиста:

Aполезн = РS = 600 Н * 10 м = 6 кДж

Найдём КПД велосипеда:

А_полн /А_полезн * 100 % = 6 кДж / 8 кДж * 100 % = 75 %

Ответ: КПД велосипеда равен 75 %.

Рассмотрим ещё один пример. На конец плеча рычага подвешено тело массой m. К другому плечу прилагают силу F, направленную вниз, и его конец опускается на h. Найдите, насколько поднялось тело, если коэффициент полезного действия рычага равен η %.

Решение. Найдём работу, совершённую силой F:

η % от этой работы совершено на то, чтобы поднять тело массой m. Следовательно, на поднятие тела затрачено Fhη / 100. Так как вес тела равен mg, тело поднялось на высоту Fhη / 100 / mg.

Пример. Средняя сила тяги двигателя составляет 882 Н. На 100 км пути он потребляет 7 кг бензина. Определите КПД его двигателя. Сначала найдите полезную работу. Она равна произведению силы F на расстояние S, преодолеваемое телом под ее воздействием Ап=F∙S. Определите количество теплоты, которое выделится при сжигании 7 кг бензина, это и будет затраченная работа Аз=Q=q∙m, где q – удельная топлива, для бензина она равна 42∙10^6 Дж/кг, а m – масса этого топлива. КПД двигателя будет равен КПД=(F∙S)/(q∙m)∙100%= (882∙100000)/(42∙10^6∙7)∙100%=30%.

В общем случае чтобы найти КПД, любой тепловой машины (двигателя внутреннего сгорания, парового двигателя, и т.д.), где работа выполняется газом, имеет коэффициент полезного действия равный разности теплоты отданной нагревателем Q1 и полученной холодильником Q2, найдите разность теплоты нагревателя и холодильника, и поделите на теплоту нагревателя КПД= (Q1-Q2)/Q1. Здесь КПД в дольных единицах от 0 до 1, чтобы перевести результат , умножьте его на 100.

Чтобы получить КПД идеальной тепловой машины (машины Карно), найдите отношение разности температур нагревателя Т1 и холодильника Т2 к температуре нагревателя КПД=(Т1-Т2)/Т1. Это предельно возможный КПД для конкретного типа тепловой машины с заданными температурами нагревателя и холодильника.

Определите общую . Подобного рода сведения можно получить, обратившись к данным переписи населения. Для определения общих коэффициентов рождаемости, смертности, брачности и разводимости вам понадобится найти произведение общей населения и расчетного периода. Получившееся число запишите в знаменатель.

Поставьте на числителя показатель, соответствующий искомому относительному. Например, если перед вами стоит определить общий коэффициент рождаемости, то на месте числителя должно находиться число, отражающее общее количество рожденных за интересующий вас период. Если вашей целью является уровня смертности или брачности, то на место числителя поставьте число умерших в расчетный период или число вступивших в брак, соответственно.

Умножьте получившееся число на 1000. Это и будет искомый вами общий коэффициент. Если же перед вами стоит задача найти общий коэффициент прироста, то вычтите из коэффициента рождаемости коэффициент смертности.

Видео по теме

Источники:

  • Общие коэффициенты естественного движения населения

Под словом «работа» понимается прежде всего деятельность, которая дает человеку средства к существованию. Иными словами, за нее он получает материальное вознаграждение. Тем не менее, люди готовы в свое свободное время или безвозмездно, или за чисто символическую плату участвовать также в общественно-полезной работе, направленной на помощь нуждающимся, благоустройство дворов и улиц, озеленение и т.д. Число таких добровольцев наверняка было бы еще большим, но они зачастую не знают, где могут понадобиться их услуги.

пенсионерки , инвалиды или матери-одиночки, у которых каждый рубль на счету. Окажите им посильную помощь. Она вовсе не обязательно должна заключаться в денежном пожертвовании – можно, например, время от времени ходить в магазин за продуктами или за лекарствами.

Немало людей желает принять участие в благоустройстве родного города. Им стоит связаться с соответствующими структурами местного муниципалитета, например, теми, которые отвечают за уборку территорий, озеленение. Работа наверняка найдется. Кроме того, можно, например, по собственной инициативе разбить клумбу под окнами дома, посадить цветы.

Есть люди, очень любящие животных, желающие помочь безнадзорным собакам и кошкам. Если вы относитесь к этой категории, свяжитесь с местными организациями зоозащитников или с владельцами приютов для животных. Ну а если вы живете в крупном городе, где есть зоопарки, узнайте у администрации, не нужны ли помощники по уходу за животными

Коэффициент увлажнения

Коэффициент увлажнения представляет собой специальный показатель, разработанный специалистами в области метеорологии для оценки степени влажности климата в том или ином регионе. При этом было принято во внимание, что климат представляет собой многолетнюю характеристику погодных условий в данной местности. Поэтому рассматривать коэффициент увлажнения также было решено в длительных временных рамках: как правило, этот коэффициент рассчитывается на основе данных, собранных в течение года.

Таким образом, коэффициент увлажнения показывает, насколько велико количество осадков, выпадающих в течение этого периода в рассматриваемом регионе. Это, в свою очередь, является одним из основных факторов, определяющих преобладающий тип растительности в этой местности.

Расчет коэффициента увлажнения

Формула расчета коэффициента увлажнения выглядит следующим образом: K = R / E. В указанной формуле символом K обозначен собственно коэффициент увлажнения, а символом R - количество осадков, выпавших в данной местности в течение года, выраженное в миллиметрах. Наконец, символом E обозначается количество осадков, которое испарилось с поверхности земли, за тот же период времени.

Указанное количество осадков, которое также выражается в миллиметрах, зависит от , температуры в данном регионе в конкретный период времени и других факторов. Поэтому несмотря на кажущуюся простоту приведенной формулы, расчет коэффициента увлажнения требует проведения большого количества предварительных измерений при помощи точных приборов и может быть осуществлен только силами достаточно крупного коллектива метеорологов.

В свою очередь, значение коэффициента увлажнения на конкретной территории, учитывающее все эти показатели, как правило, позволяет с высокой степенью достоверности определить, какой тип растительности является преобладающим в этом регионе. Так, если коэффициент увлажнения превышает 1, это говорит о высоком уровне влажности на данной территории, что влечет за собой преобладание таких типов растительности как тайга, тундра или лесотундра.

Достаточный уровень влажности соответствует коэффициенту увлажнения, равному 1, и, как правило, характеризуется преобладанием смешанных или . Коэффициент увлажнения в пределах от 0,6 до 1 характерен для лесостепных массивов, от 0,3 до 0,6 - для степей, от 0,1 до 0,3 - для полупустынных территорий, а от 0 до 0,1 - для пустынь.

Источники:

  • Увлажнение, коэффициенты увлажнения

«Московский государственный строительный университет»

к афедра «Механическое оборудование, детали машин и технология металлов»

Конспект лекции №12 по дисциплине

«Теория механизмов и машин»

для бакалавров по направлению 190100.62

Москва 2013-12-02

Уравнение энергетического баланса

В уравнении движения можно допустить, что изменение кинетической энергии равно работе сил инерции А и, а работа сил сопротивления состоит из суммы работ: А пс - работы сил производственных сопротивлений, А тр - работы сил трения и А ст - работы сил тяжести. Тогда вместо уравнения движения можно записать

+ А и = A дв + А пс + А тр + А ст

A дв + А пс + А тр + А ст + А и =0.

Здесь знаки + перед работами сил тяжести и сил инерции потому, что они могут как помогать так и мешать движению.

Взяв эти работы на элементарных перемещениях и поделив на соответствующее время мы получим уравнение энергетического баланса машины в виде

N дв + N пс + N тр + N ст + N и =0,

по которому можно судить об эффективности работы машины в энергетическом плане.

15.2. Механический коэффициент полезного действия

Для решения конкретных задач этот коэффициент удобно представлять в другом виде как отношение соответствующих мощностей η= N пс /N дв. или через коэффициент потерь φ= А тр /A дв.:

15.3. Кпд сложных механизмов

15.3.1. Последовательное соединение механизмов

Для схемы рис. общий КПД можно найти как отношение работы А пс сил полезного сопротивления всего механизма, то есть работы на его выходе A n , к работе движущих сил тоже всего механизма, то есть работы А 1 =А д на его входе: η= А n /A 1 . Аналогичное выражение можно записать для каждого из механизмов, то есть: η 1 = А 2 /A 1 ; η 2 = А 3 /A 2 ; η 3 = А 4 /A 3 ... η n = А n-1 /A n . Если теперь перемножить все эти КПД, то промежуточные работы сократятся и останется отношение работы на выходе к работе на входе всего механизма, а это и есть общий КПД. То есть

η 1 ∙η 2 ∙η 3 ...∙η n = А n /A 1 = η.

Рис. Схема последовательно соединенных механизмов

Рассмотренный случай довольно часто встречается в технике, например, в многоступенчатом редукторе его КПД равен произведению КПД отдельных ступеней.

15.3.2. Параллельное соединение механизмов

При параллельном соединении отдельных механизмов, например, для схемы рис. общий КПД может быть найден как отношение суммы работ на выходе параллельно соединенных механизмов к работе на входе. То есть

η=(А 2 +А 3)/А 1 .

При известном КПД отдельных механизмов для каждого из них можно записать:

(А 12 +А 13)=η 1 ∙А 1 ; А 2 =η 2 ∙А 12 ; А 3 =η 3 ∙А 13 .

Тогда для всего механизма, исключая промежуточные работы, получаем:

η=η 1 ∙(А 2 +А 3)/(А 2 /η 2 +А 3 /η 3).

Рис. Схема параллельного соединения механизмов

Рассмотренный случай может встречаться в разветвленных приводах. В частном случае для двухступенчатого редуктора с раздвоенной второй ступенью при предположении, что они практически одинаковые, получим ту же формулу, что и для обычного двухступенчатого редуктора:

η=η 1 ∙η 2 ∙(η 3) 3 ,

где η 1 ∙η 2 – КПД зацепления первой и второй ступени, η 3 – КПД пары подшипников.

В жизни человек сталкивается с проблемой и необходимостью превращения разных видов энергии. Устройства, которые предназначены для преобразований энергии, называют энергетическими машинами (механизмами). К энергетическим машинам, например, можно отнести: электрогенератор, двигатель внутреннего сгорания, электрический двигатель, паровую машину и др.

В теории любой вид энергии может полностью превратиться в другой вид энергии. Но на практике помимо преобразований энергии в машинах происходят превращения энергии, которые названы потерями. Совершенство энергетических машин определяет коэффициент полезного действия (КПД).

ОПРЕДЕЛЕНИЕ

Коэффициентом полезного действия механизма (машины) называют отношение полезной энергии () к суммарной энергии (W), которая подводится к механизму. Обычно коэффициент полезного действия обозначают буквой (эта). В математическом виде определение КПД запишется так:

Коэффициент полезного действия можно определить через работу, как отношение (полезная работа) к A (полная работа):

Кроме того, можно найти как отношение мощностей:

где — мощность, которую подводят механизму; — мощность, которую получает потребитель от механизма. Выражение (3) можно записать иначе:

где — часть мощности, которая теряется в механизме.

Из определений КПД очевидно, что он не может быть более 100% (или не моет быть больше единицы). Интервал в котором находится КПД: .

Коэффициент полезного действия используют не только в оценке уровня совершенства машины, но и определения эффективности любого сложного механизма и всякого рода приспособлений, которые являются потребителями энергии.

Любой механизм стараются сделать так, чтобы бесполезные потери энергии были минимальны (). С этой целью пытаются уменьшить силы трения (разного рода сопротивления).

КПД соединений механизмов

При рассмотрении конструктивно сложного механизма (устройства), вычисляют КПД всей конструкции и коэффициенты полезного действия всех его узлов и механизмов, которые потребляют и преобразуют энергию.

Если мы имеем n механизмов, которые соединены последовательно, то результирующий КПД системы находят как произведение КПД каждой части:

При параллельном соединении механизмов (рис.1) (один двигатель приводит в действие несколько механизмов), полезная работа является суммой полезных работ на выходе из каждой отдельной части системы. Если работу затрачиваемую двигателем обозначить как , то КПД в данном случае найдем как:

Единицы измерения КПД

В большинстве случаев КПД выражают в процентах

Примеры решения задач

ПРИМЕР 1

Задание Какова мощность механизма, который поднимает n раз в секунду молот, имеющий массу m на высоту h, если КПД машины равен ?
Решение Мощность (N) можно найти исходя из ее определения как:

Так как в условии задана частота () (молот поднимается n раз в секунду), то время найдем как:

Работа будет найдена как:

В таком случае (принимая во внимание (1.2) и (1.3)) выражение (1.1) преобразуется к виду:

Так как КПД системы равен , то запишем:

где — искомая мощность, тогда:

Ответ

ПРИМЕР 2

Задание Каким будет КПД наклонной плоскости, если ее длина , высота h? Коэффициент трения при движении тела о данную плоскость равен .
Решение Сделаем рисунок.

В качестве основы для решения задачи примем формулу для вычисления КПД в виде:

Полезной работой будет работа по подъему груза на высоту h:

Произведенную работу, при доставке груза путем перемещения его по данной плоскости можно найти как:

где — сила тяги, которую найдем из второго закона Ньютона, рассмотрев силы, которые приложены к телу (рис.1):



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация