Спектральная плотность сигналов. Спектральная плотность и ее свойства. Теоремы о спектрах

Главная / Квартира

В статистической радиотехнике и физике при изучении детерминированных сигналов и случайных процессов широко используется их спектральное представление в виде спектральной плотности, которая базируется на преобразовании Фурье .

Если процесс имеет конечную энергию и квадратично интегрируем (а это нестационарный процесс), то для одной реализации процесса можно определить преобразование Фурье как случайную комплексную функцию частоты:

X (f) = ∫ − ∞ ∞ x (t) e − i 2 π f t d t . {\displaystyle X(f)=\int \limits _{-\infty }^{\infty }x(t)e^{-i2\pi ft}dt.} (1)

Однако она оказывается почти бесполезной для описания ансамбля. Выходом из этой ситуации является отбрасывание некоторых параметров спектра, а именно спектра фаз, и построении функции, характеризующей распределение энергии процесса по оси частот. Тогда согласно теореме Парсеваля энергия

E x = ∫ − ∞ ∞ | x (t) | 2 d t = ∫ − ∞ ∞ | X (f) | 2 d f . {\displaystyle E_{x}=\int \limits _{-\infty }^{\infty }|x(t)|^{2}dt=\int \limits _{-\infty }^{\infty }|X(f)|^{2}df.} (2)

Функция S x (f) = | X (f) | 2 {\displaystyle S_{x}(f)=|X(f)|^{2}} характеризует, таким образом, распределение энергии реализации по оси частот и называется спектральной плотностью реализации. Усреднив эту функцию по всем реализациям можно получить спектральную плотность процесса.

Перейдем теперь к стационарному в широком смысле центрированному случайному процессу x (t) {\displaystyle x(t)} , реализации которого с вероятностью 1 имеют бесконечную энергию и, следовательно, не имеют преобразования Фурье. Спектральная плотность мощности такого процесса может быть найдена на основании теоремы Винера-Хинчина как преобразование Фурье от корреляционной функции:

S x (f) = ∫ − ∞ ∞ k x (τ) e − i 2 π f τ d τ . {\displaystyle S_{x}(f)=\int \limits _{-\infty }^{\infty }k_{x}(\tau)e^{-i2\pi f\tau }d\tau .} (3)

Если существует прямое преобразование, то существует и обратное преобразование Фурье , которое по известной определяет k x (τ) {\displaystyle k_{x}(\tau)} :

k x (τ) = ∫ − ∞ ∞ S x (f) e i 2 π f τ d f . {\displaystyle k_{x}(\tau)=\int \limits _{-\infty }^{\infty }S_{x}(f)e^{i2\pi f\tau }df.} (4)

Если полагать в формулах (3) и (4) соответственно f = 0 {\displaystyle f=0} и τ = 0 {\displaystyle \tau =0} , имеем

S x (0) = ∫ − ∞ ∞ k x (τ) d τ , {\displaystyle S_{x}(0)=\int \limits _{-\infty }^{\infty }k_{x}(\tau)d\tau ,} (5)
σ x 2 = k x (0) = ∫ − ∞ ∞ S x (f) d f . {\displaystyle \sigma _{x}^{2}=k_{x}(0)=\int \limits _{-\infty }^{\infty }S_{x}(f)df.} (6)

Формула (6) с учетом (2) показывает, что дисперсия определяет полную энергию стационарного случайного процесса, которая равна площади под кривой спектральной плотности. Размерную величину S x (f) d f {\displaystyle S_{x}(f)df} можно трактовать как долю энергии, сосредоточенную в малом интервале частот от f − d f / 2 {\displaystyle f-df/2} до f + d f / 2 {\displaystyle f+df/2} . Если понимать под x (t) {\displaystyle x(t)} случайный (флуктуационный) ток или напряжение, то величина S x (f) {\displaystyle S_{x}(f)} будет иметь размерность энергии [В 2 /Гц] = [В 2 с]. Поэтому S x (f) {\displaystyle S_{x}(f)} иногда называют энергетическим спектром . В литературе часто можно встретить другую интерпретацию: σ x 2 {\displaystyle \sigma _{x}^{2}} – рассматривается как средняя мощность, выделяемая током или напряжением на сопротивлении 1 Ом. При этом величину S x (f) {\displaystyle S_{x}(f)} называют спектром мощности случайного процесса.

Свойства спектральной плотности

  • Энергетический спектр стационарного процесса (вещественного или комплексного) – неотрицательная величина:
S x (f) ≥ 0 {\displaystyle S_{x}(f)\geq 0} . (7)
  • Энергетический спектр вещественного стационарного в широком смысле случайного процесса есть действительная и четная функция частоты:
S x (− f) = S x (f) {\displaystyle S_{x}(-f)=S_{x}(f)} . (8)

ных процесса друг с другом никак не связаны (статистически независимы), то

Rxy (τ) = 0

6.3 Спектральная плотность случайного процесса

Понятие о спектральной плотности связано с разложением стационарного случайного процесса на гармонические составляющие, подобные обычному разложению в ряд Фурье. Это позволяет при расчете автоматических систем, использовать частотные методы анализа.

Спектральная плотность S x (ω) случайного процессаx(t) характеризует спектральный (частотный) состав случайной величины и представляет собой частотную функцию для средних значений квадратов амплитуд гармоник, на которые может быть разложен случайный процесс.

Для стационарного случайного процесса спектральная плотность S x (ω) может быть получена как изображение Фурье корреляционной функцииR x (τ)

Sx (ω )= ∫ Rx (τ )å− j ωτ dτ

С помощью обратного преобразования Фурье можно определить корреляционную функцию через спектральную плотность

Rx (τ )=

∞ Sx (ω )åj ωτ dω

На рисунке 6.3 показаны графики корреляционной функции R x (τ) (смотри рисунок 6.2) и соответствующие им графики спектральной плотности S(ω). Это соотношение аналогично соотношению между переходной и частотной характеристикой системы: чем продолжительнее переходный процесс, тем уже его частотная характеристика. При рассмотрении случайных процессов: чем шире график корреляционной функции (кривые 3, 4) , тем уже график спектральной плотности и наоборот.

Рисунок 6. 3 – Корреляционные функции и соответствующие спектральные плотности центрированных стационарных процессов

В предельном случае, когда случайная величина x(t) является постоянной величиной и корреляционная функция тоже постоянная и равнаD x = a 2

(прямая 1), то спектральная плотность существует только при нулевой частоте и равна

Sx (ω )= 2π a2 δ (ω )

В другом предельном случае, когда случайная величина x(t) является абсолютно случайным процессом (белый шум), то корреляционная функция существует только приτ = 0 (прямая 2). Спектральная плотность такого случайного процесса равномерно распределена по всем частотам и равна

Sx (ω )= C2

Для непериодического случайного процесса (кривые 3, 4) корреляционная функция аппроксимируется R (τ )= D x å − α τ , тогда спектральная плотность определяется

Sx (ω )= 2D x α

α 2+ ω 2

Если случайная величина x(t) имеет периодическую составляющую при ω = ω0 , то спектральная плотность при частотах ω = + ω0 и ω = - ω0 будет иметь соответствующие пики (кривая 5). Корреляционная функция такого слу-

чайного процесса аппроксимируется

R(τ ) = Dx å− α

cos βτ . Спектральная

плотность определяется

Dx α

Dx α

S÷ (ω )=

α2 + (ω+ β) 2

α2 + (ω− β) 2

Одним из основных параметров работы системы при случайных воздействиях является среднеквадратичное отклонение, которое характеризует отклонение случайной величины от его среднего значения. Если известна спектральная плотность сигнала S(ω) , то приτ = 0 можно определить дисперсию

Rx (0)=

∫ Sx (ω )åj ω 0 dω =

∫ Sx (ω ) dω

Тогда среднеквадратичное отклонение (СКО)

σ x = Dx = Rx (0)

По полученным основным характеристикам случайного процесса исследование автоматической системы на статистическую точность работы проводят

в следующей последовательности:

- по заданному случайному процессу определяют его корреляционную

функцию R x (τ) ;

- по корреляционной функции R x (τ) определяют спектральную плотность сигнала на входе системыS x (ω) ;

- по известной частотной передаточной функции системы W(jω) определяют спектральную плотность на выходе системыS y (ω) ;

- по полученной спектральной плотности на выходе системы S y (ω) определяют корреляционную функцию выходного сигналаR y (τ) ;

По корреляционной функции выходного сигнала R y (τ) определяют дисперсиюD y = R y (0) и среднеквадратичное отклонение регулируемой величины.

6.4 Анализ точности работы линейной системы при случайном воздействии

Если входное воздействие, приложенное к линейной системе, является случайным стационарным процессом x(t), то выходная величина y(t) то же будет случайным стационарным процессом. При этом предполагается, что рассматриваемая система устойчива. Ясно, что в этих условиях судить о точности работы системы нужно не по мгновенным значениям выходной величины, а по некоторым средним значениям, которые вычисляются по спектральной плотности выходного сигналаS y (ω) .

Пусть спектральная плотность входного сигнала S x (ω) , тогда спектральная плотность выходного сигналаS y (ω) определяется (без вывода)

S y (ω )= W (j ω )2 S x (ω )

Спектральная плотность выходного сигнала автоматической системы равна спектральной плотности входного сигнала умноженного на квадрат модуля частотной характеристики исследуемой системы.

Закон распределения случайной величины при прохождении ее через автоматическую систему в общем случае может меняться. Но если на входе линейной системы закон распределения нормальный, то и на выходе системы можно принять нормальное распределение.

Пусть математическое ожидание m x стационарного процессаx(t), на

входе линейной системы не равно нулю, тогда на основании принципа суперпозиции для линейных систем этот случайный процесс на входе системы можно представить

x1 (t)= mx + xo c (t),

где x o (t ) - центрированный случайный процесс на входе системы.

В этом случае математическое ожидание на выходе системы m y определяется, еслиm x умножить на частотную передаточную функцию приω =0

my = W(0) mx

Когда на систему одновременно действует случайный сигнал управления x a (t) и случайный сигнал возмущенияx n (t), то спектральная плотность ошибки регулированияS oш (ω) определяется

Sîø (ω )= Wa (jω )2 Sa (ω )+ Wn (jω )2 Sn (ω ),

где S a (ω) - спектральная плотность сигнала управления;S n (ω) - спектральная плотность сигнала возмущения;

W a (jω) - передаточная функция по ошибке регулирования;W n (jω) - передаточная функция по возмущению.

Дисперсия ошибки регулирования D y и общее среднеквадратичное ее значениеσ у определяется по формулам

Dy = 1 / 2π ∞ ∫ [ Wa (jω )2 Sa (ω )+ Wn (jω )2 Sn (ω )] dω ,

При подаче на вход системы случайных сигналов управления и возмущения общая среднеквадратичная ошибка определяется по теореме Пифагора по СКО управления и СКО возмущения

Отметим преимущества и недостатки оценки точности работы системы по среднеквадратичной ошибке регулирования (СКО). С помощью СКО можно оценить вероятность появления ошибки сверху. Так оценивает усредненное, статистическое значение ошибки, а не величина мгновенного значения ошибки. Поэтому для систем, где недопустимы большие ошибки (хотя и кратковременные) применяется другой метод расчета. Кроме этого, полученное СКО справедливо для больших промежутков времени (при T → ∞ ), а ошибки, связанные с кратковременным переходным процессом, практически не учитываются.

Если спектральные плотности и частотные передаточные функции заданы в виде дробно-рациональных функций от ω, то можно сразу определить дисперсию выходного сигналаD y , образно говоря, минуя определенияS y (ω) выходного сигнала иR y (τ) выходного сигнала. Значение дисперсии выходного сигнала определяется по табличному интегралуJ n в зависимости от порядка характеристического уравнения системы. Для этого подинтегральное выражение приводится к табличному виду

1 ∞

1 ∞ G(ω )dω

J n=

W(jω )

S(ω )dω =

−∫ ∞

H(jω )

где G(ω )= b0 ω 2n − 2 + b1 ω 2n − 4 + ...+ bn − 1 ; H(jω )= a0 (jω )n + a1 (jω )n − 1 + ...+ an.

Покажем формулы вычисления табличного интеграла по коэффициентам передаточной функции

J 1=

− b 0 a 2 + b 1 a 0 ;

2a0 a1

2a0 a1 a2

J 3=

− b 0a 2a 3+ b 1a 0a 3− b 2a 0a 1

2a0 a3 (a1 a2 − a0 a3 )

Для более высокой степени характеристического уравнения вычисления этих табличных интегралов становится громоздким. Поэтому используются другие методы статистического анализа.

Параметры системы, выбранные по критерию минимизации СКО необходимо оценить по возможности их технической реализации и, кроме этого, оценить изменившиеся динамические характеристики системы.

Пример 6.1 –По критерию минимизации СКО Определить оптимальное значение коэффициента усиленияK y для заданной линейной следящей системы (рисунок 6.4). На вход системы поступает случайный сигнал, управляющая

спектральная плотность которого S α = (2 D γ α ) . Одновременно на вход посту-

α 2+ ω 2

пают случайные помехи в виде белого шума со спектральной плотностью S n (ω) =С 2

Определяем частотную

передаточную

функцию по ошибке управления

W (jω )=

1 + Ky

/ jω jω + Ky

Рисунок 6.4 – Структурная

схема системы к примеру 6.1

2 Частотная передаточная функция замк-

нутой системы

W (jω )=

K y /

1 + Ky

/ jω jω + Ky

3 Дисперсия ошибки регулирования по управлению

1 ∞

2 2D γ α

2Dγ α ∞

ω2 d ω

2 π−∞ ∫

2 π−∞ ∫

jω + Ky

α 2+ ω 2

(jω + Ky )(α + jω )

2Dγ α ∞

ω2 d ω

α J

2 π−∞ ∫

(j ω )2

+ (K y +α ) j ω +K y α

4 Полученное подинтегральное выражение соответствует табличному интегралу J 2

G(ω) = ω2 ,

+α ) j ω +K

b0 = 1, b1 = 0,

H(ω )= (jω ) 2 +

1 , a

+ α , a

− b a

K y α

J 2=

2(Ky + α ) Ky α

2(Ky

+α )

2a0 a1 a2

5 Это значение J 2 подставим в формулуD ош

D îø=

2Dγ α

Dγ α

2(Ky + α ) =

K y + α

6 Дисперсия ошибки регулирования от случайных помех в виде белого шума

2 ∞

D пом=

−∞∫

С2 dω =

−∞∫

С2 Ky 2 J1

jω + Ky

jω + Ky

7 Полученное подинтегральное выражение соответствует табличному интегралу J 1

H(ω )= jω + Ky , a0 = 1, a1 = Ky

J 1=

2a0 a1

2K y

Это значение J 1 подставим в формулуD ïîì

С2 Ky

С2 Ky

2K y

Дисперсия суммарной ошибки D общ

D α

С2 Ky

D +D

K y + α

10 Для определения оптимального значения K y , при котором суммарная ошибка минимальная, построим графикиD ош , D пом , D общ в зависимости отK y (рисунок 6.5).

D ошD помD общ

D общ

D пом

D ош

К оптК у

Рисунок 6.5 – Графическое определение оптимального значения K y к примеру 6.1

По графикам видно, что с увеличением K y дисперсия ошибки по управлениюD ош уменьшается, а дисперсия ошибки от помехD пом увеличивается. При большем коэффициенте усиления помехи свободнее проходят через систему. В зависимости от степени неопределенности сигнала управления (коэффициент α) и от интенсивности помех (коэффициент С2 ) можно получить разное оптимальное значениеK y .

6.5 Особенности расчета случайного процесса в нелинейной системе

Если случайный сигнал проходит нелинейное звено, то расчет такой системы существенно усложняется по сравнению с расчетом прохождения случайного сигнала через линейное звено. На рисунке 6.6 показано прохождение случайного сигнала через нелинейный элемент с насыщением F(x).

а - прохождение случай-

ного сигнала через нели-

нейный элемент;

б - случайный входной

в - нелинейный элемент с

насыщением;

г - выходной сигнал по-

сле нелинейного элемен-

б а

Рисунок 6.6 – Прохождение случайного сигнала через нелинейный элемент

В данном примере за счет участка насыщения случайный сигнал не полностью проходит через нелинейный элемент и в результате дисперсия выходного сигнала или «коридор», в пределах которого размещаются выходной сигнал, будет меньше. На рисунке 6.6 показано, что часть случайного входного сигнала попала на зону насыщения и не прошла через нелинейное звено. Это привело к изменению дисперсии выходного сигнала (она уменьшается) и к уменьшению его среднего значения. Уточняем, уменьшение этих параметров выходного случайного сигнала произошло не за счет коэффициента усиления, а из-за нелинейности характеристики элемента в виде зоны насыщения.

Рассмотрим вначале структурную схему линейной системы управления (рисунок 6.7), на вход который подается случайный сигнал

x(t) = mx (t)+ xo (t)

где m x - математическое ожидание входного сигнала;

x ° (t) - помехи и шумы входного сигнала, которые характеризуются дисперсией(D x ).

В этой линейной системе, используя принцип суперпозиции, можно отдельно и независимо друг от друга определить математическое ожидание вы-

ходного сигнала m

my (t)

yт (t)

x° (t)

y° (t)

y q (t) - действительный выходной

y т (t) -теоретически рассчитанный выходной сигнал

Рисунок 6.7 – Прохождение случайного сигнала через линейную систему управления

yq (t)

mx (t)

my (t)

K0 (mx , σx )W(0)

ym (t)

K1 (mx , σx )W(p)

Рисунок 6.8 – Прохождение случайного сигнала через нелинейное звено

сунок 6.7). Этот расчет показан в подразделе 6.4 и в примере 6.1.

Если такой же случайный сигнал будет подан на нелинейную систему управления (рисунок 6.8), то математическое ожидание на выходе системы зависит от изменения дисперсии, а изменение дисперсии зависит от изменения математического ожидания. Эти две характеристики случайного процесса становится взаимно связанны. Обозначим через K 0 (m x , σ x ) эту взаимозависимость математического ожидания от дисперсии входного сигналаD x. . При расчете удобнее вместо дисперсииD x использовать среднеквадратичное отклонениеσ x .

Соответственно обозначим через K 1 (m x , σ x ) взаимосвязь среднеквадратичного отклонения от математического ожидания. Тогда

ym (t)= my + yo (t)= K0 mx + K1 xo (t)

Для нахождения этих коэффициентов K 0 иK 1 при расчете прохождения сигнала через нелинейное звено используетсяметод стати-

стической линеаризации нелинейного элемента

Метод статистической линеаризации основан на замене нелинейного элемента статистически эквивалентным линеаризованным элементом.

Этот метод статистической линеаризации по общей идее (аналогичен методу гармонической линеаризации.

Спектральная плотность и сигнал связаны между собой парой преобразований Фурье:

Все свойства спектральной плотности объединены в основных теоремах о спектрах.

I. Свойство линейности.

Если имеется некоторая совокупность сигналов причём,…, то взвешенная сумма сигналов преобразуется по Фурье следующим образом:

Здесь - произвольные числовые коэффициенты.

II. Теорема о сдвигах.

Предположим, что для сигнала известно соответствие. Рассмотрим такой же сигнал, но возникающий на секунд позднее. Принимая точку за новое начало отсчёта времени, обозначим этот смещённый сигнал как. Введём замену переменной: . Тогда,


Модуль комплексного числа при любых равен 1, поэтому амплитуды элементарных гармонических составляющих, из которых складывается сигнал, не зависят от его положения на оси времени. Информация об этой характеристике сигнала заключена фазовом спектре.

III. Теорема масштабов.

Предположим, что исходный сигнал подвергнут изменению масштаба времени. Это означает, что роль времени играет новая независимая переменная (- некоторое вещественное число.) Если > 1, то происходит “ сжатие” исходного сигнала; если же 0<<1, то сигнал “растягивается” во времени. Если, то:

Произведём замену переменной, тогда, откуда следует:

При сжатии сигнала в раз на временной оси во столько же раз расширяется его спектр на оси частот. Модуль спектральной плотности при этом уменьшается в раз.

Очевидно, что при растягивании сигнала во времени (т.е. при <1) имеет место сужение спектра и увеличение модуля спектральной плотности.

IV. Теорема о спектре производной и неопределённого интеграла.

Пусть сигнал и его спектральная плоскость заданы. Будем изучать новый сигнал и поставим цель найти его спектральную плотность.

По определению:

Преобразование Фурье - линейная операция, значит, равенство (2.3) справедливо и по отношению к спектральным плотностям. Получаем по теореме о сдвигах:

Представляя экспоненциальную функцию рядом Тейлора:

подставляя этот ряд в (2.6) и ограничиваясь первыми двумя членами ряда, находим

Итак, дифференцирование сигнала по времени эквивалентно простой алгебраической операции умножения спектральной плотности на множитель. Поэтому говорят, что мнимое число является оператором дифференцирования, действующим в частотной области.

Вторая часть теоремы. Рассмотренная функция является неопределённым интегралом по отношению к функции. Интеграл это есть, значит - его спектральная плотность, а из формулы (2.7) равна:

Таким образом, множитель служит оператором интегрирования в частотной области.

V. Теорема о свёртке.

При суммировании сигналов их спектры складываются. Однако спектр произведения сигналов не равен произведению спектров, а выражается некоторым специальным интегральным соотношением между спектрами сомножителей.

Пусть и - два сигнала, для которых известны соответствия,. Образуем произведение этих сигналов: и вычислим его спектральную плотность. По общему правилу:

Применив обратное преобразование Фурье, выразим сигнал через его спектральную плотность и подставим результат в (2.9):

Изменив порядок интегрирования, будем иметь:

Интеграл, стоящий в правой части называют свёрткой функций и. Символически операция свёртки обозначается как *

Таким образом, спектральная плотность произведения двух сигналов с точностью до постоянного числового множителя равна свёртке спектральных плотностей сомножителей.

Функция не является периодической, поэтому она не может быть разложена в ряд Фурье. С другой стороны, функция из-за неограниченной длительности не интегрируема и поэтому не может быть представлена интегралом Фурье. Для избежания этих трудностей вводится вспомогательная функция , которая совпадает с функцией на интервале и равна нулю вне этого интервала:

(5.15)

Функция интегрируема и для нее существует прямое преобразование Фурье (интеграл Фурье):

(5.16)

Спектральной плотностью мощности случайного сигнала (или просто спектральной плотностью ) называется функция вида:

(5.17)

Спектральная плотность - это функция, характеризующая распределение средних значений квадратов амплитуд гармоник сигнала. Спектральная плотность обладает следующими свойствами:

1. Чем быстрее изменяется стационарный случайный процесс, тем шире график .

2. Отдельные пики на графике спектральной плотности свидетельствуют о наличии у случайного сигнала периодических составляющих.

3. Спектральная плотность является четной функцией:

(5.18)

Спектральная плотность связана с дисперсией сигнала следующим соответствием:

(5.19)

Экспериментально спектральная плотность определяется (вычисляется) по следующей схеме:

Рис. 5.6.

Спектральная плотность связана с корреляционной функцией следующим выражением (по теореме Хинчина-Винера):

(5.20)

(5.21)

Если разложить множители и с помощью формулы Эйлера и учесть, что , и являются четными функциями, а - нечетная функция, то выражения (5.20), (5.21) можно преобразовать к следующему виду:

(5.22)

(5.23)

Выражения (5.23), (5.24) применяют в практических расчетах. Нетрудно заметить, что при выражение (5.24) определяет дисперсию стационарного случайного процесса.:

(5.24)

Соотношения, связывающие корреляционную функцию и спектральную плотность, обладают всеми присущими преобразованию Фурье свойствами и определяют следующие сравнительные характеристики: чем шире график , тем уже график , и наоборот, чем быстрее убывает функция , тем медленнее уменьшается функция . Эту взаимосвязь иллюстрируют графика на рис (5.7), (5.8)

Рис. 5.7.

Рис. 5.8.

Линии 1 на обоих рисунках соответствуют медленно меняющемуся случайному сигналу, в спектре которого преобладают низкочастотные гармоники. Линии 2 соответствуют быстроменяющемуся сигналу, в спектре которого преобладают высокочастотные гармоники.

Если случайный сигнал изменяется во времени очень резко и между его предыдущими и последующими значениями корреляция практически отсутствует, то корреляционная функция имеет вид дельта-функции (линия 3). График спектральной плотности в этом случае представляет горизонтальную прямую в диапазоне. Это указывает на то, что амплитуды гармоник во всем диапазоне частот одинаковы. Такой сигнал называется белым шумом (по аналогии с белым светом, у которого, как известно, интенсивность всех компонент одинакова).



Понятие «белого шума» является математической абстракцией. Физически сигналы в виде белого шума неосуществимы, так как бесконечно широкому спектру соответствует бесконечно большая дисперсия, а следовательно, бесконечно большая мощность. Однако часто реальные системы с конечным спектром можно приближенно рассматривать как белый шум. Это упрощение правомерно в тех случаях, когда спектр сигнала значительно шире полосы пропускания системы, на которую действует сигнал.

Пусть сигнал s (t ) задан в виде непериодической функции, причем он существует только на интервале (t 1 ,t 2) (пример - одиночный импульс). Выберем произвольный отрезок времени T , включающий в себя интервал (t 1 ,t 2) (см. рис.1).

Обозначим периодический сигнал, полученный из s (t ), в виде s T (t ). Тогда для него можно записать ряд Фурье

где

Подставим выражение для в ряд:

Для того, чтобы перейти к функции s (t ) следует в выражении s T (t ) устремить период к бесконечности. При этом число гармонических составляющих с частотами w =n 2p /T будет бесконечно велико, расстояние между ними будет стремиться к нулю (к бесконечно малой величине: , амплитуды составляющих также будут бесконечно малы. Поэтому говорить о спектре такого сигнала уже нельзя, т.к. спектр становится сплошным .

При предельном переходе в случае Т => , имеем:

Таким образом, в пределе получаем

Внутренний интеграл является функцией частоты. Его называют спектральной плотностью сигнала, или частотной характеристикой сигнала и обозначают ,

рямое (*) и обратное (**) преобразования Фурье вместе называют парой преобразований Фурье. Модуль спектральной плотности определяет амплитудно-частотную характеристику (АЧХ) сигнала, а ее аргумент называют фазо-частотной характеристикой (ФЧХ) сигнала. АЧХ сигнала является четной функцией, а ФЧХ - нечетной.

Смысл модуля S (w ) определяется как амплитуда сигнала (тока или напряжения), приходящаяся на 1 Гц в бесконечно узкой полосе частот, которая включает в себя рассматриваемую частоту w . Его размерность - [сигнал/частота].

9. Свойства преобразования Фурье. Свойства линейности, изменения масштаба времени, другие. Теореме о спектре производной. Теорема о спектре интеграла.

10. Дискретное преобразование Фурье. Помехи радиоприёму. Классификация помех.

Дискретное преобразование Фурье может быть получено непосредственно из интегрального преобразования дискретизаций аргументов (t k = kDt, f n = nDf):

S(f) = s(t) exp(-j2pft) dt, S(f n) = Dt s(t k) exp(-j2pf n kDt), (6.1.1)

s(t) = S(f) exp(j2pft) df, s(t k) = Df S(f n) exp(j2pnDft k). (6.1.2)

Напомним, что дискретизация функции по времени приводит к периодизации ее спектра, а дискретизация спектра по частоте - к периодизации функции. Не следует также забывать, что значения (6.1.1) числового ряда S(f n) являются дискретизаций непрерывной функции S"(f) спектра дискретной функции s(t k), равно как и значения (6.1.2) числового ряда s(t k) являются дискретизацией непрерывной функции s"(t), и при восстановлении этих непрерывных функций S"(f) и s"(t) по их дискретным отсчетам соответствие S"(f) = S(f) и s"(t) = s(t) гарантировано только при выполнении теоремы Котельникова-Шеннона.

Для дискретных преобразований s(kDt) Û S(nDf), и функция, и ее спектр дискретны и периодичны, а числовые массивы их представления соответствуют заданию на главных периодах Т = NDt (от 0 до Т или от -Т/2 до Т/2), и 2f N = NDf (от -f N до f N), где N – количество отсчетов, при этом:

Df = 1/T = 1/(NDt), Dt = 1/2f N = 1/(NDf), DtDf = 1/N, N = 2Tf N . (6.1.3)

Соотношения (6.1.3) являются условиями информационной равноценности динамической и частотной форм представления дискретных сигналов. Другими словами: число отсчетов функции и ее спектра должны быть одинаковыми. Но каждый отсчет комплексного спектра представляется двумя вещественными числами и, соответственно, число отсчетов комплексного спектра в 2 раза больше отсчетов функции? Это так. Однако представление спектра в комплексной форме - не более чем удобное математическое представление спектральной функции, реальные отсчеты которой образуются сложением двух сопряженных комплексных отсчетов, а полная информация о спектре функции в комплексной форме заключена только в одной его половине - отсчетах действительной и мнимой части комплексных чисел в частотном интервале от 0 до f N , т.к. информация второй половины диапазона от 0 до -f N является сопряженной с первой половиной и никакой дополнительной информации не несет.

При дискретном представлении сигналов аргумент t k обычно проставляется номерами отсчетов k (по умолчанию Dt = 1, k = 0,1,…N-1), а преобразования Фурье выполняются по аргументу n (номер шага по частоте) на главных периодах. При значениях N, кратных 2:

S(f n) º S n = s k exp(-j2pkn/N), n = -N/2,…,0,…,N/2. (6.1.4)

s(t k) º s k = (1/N) S n exp(j2pkn/N), k = 0,1,…,N-1. (6.1.5)

Главный период спектра в (6.1.4) для циклических частот от -0.5 до 0.5, для угловых частот от -p до p. При нечетном значении N границы главного периода по частоте (значения ±f N) находятся на половину шага по частоте за отсчетами ±(N/2) и, соответственно, верхний предел суммирования в (6.1.5) устанавливается равным N/2.



В вычислительных операциях на ЭВМ для исключения отрицательных частотных аргументов (отрицательных значений номеров n) и использования идентичных алгоритмов прямого и обратного преобразования Фурье главный период спектра обычно принимается в интервале от 0 до 2f N (0 £ n £ N), а суммирование в (6.1.5) производится соответственно от 0 до N-1. При этом следует учитывать, что комплексно сопряженным отсчетам S n * интервала (-N,0) двустороннего спектра в интервале 0-2f N соответствуют отсчеты S N+1- n (т.е. сопряженными отсчетами в интервале 0-2f N являются отсчеты S n и S N+1- n).

Пример: На интервале Т= , N=100, задан дискретный сигнал s(k) = d(k-i) - прямоугольный импульс с единичными значениями на точках k от 3 до 8. Форма сигнала и модуль его спектра в главном частотном диапазоне, вычисленного по формуле S(n) = s(k)×exp(-j2pkn/100) с нумерацией по n от -50 до +50 с шагом по частоте, соответственно, Dw=2p/100, приведены на рис. 6.1.1.

Рис. 6.1.1. Дискретный сигнал и модуль его спектра.

На рис. 6.1.2 приведена огибающая значений другой формы представления главного диапазона спектра. Независимо от формы представления спектр периодичен, в чем нетрудно убедиться, если вычислить значения спектра для большего интервала аргумента n с сохранением того же шага по частоте, как это показано на рис. 6.1.3 для огибающей значений спектра.

Рис. 6.1.2. Модуль спектра. Рис. 6.1.3. Модуль спектра.

На рис. 6.1.4. показано обратное преобразование Фурье для дискретного спектра, выполненное по формуле s"(k) =(1/100) S(n)×exp(j2pkn/100), которое показывает периодизацию исходной функции s(k), но главный период k={0,99} этой функции полностью совпадает с исходным сигналом s(k).

Рис. 6.1.4. Обратное преобразование Фурье.

Преобразования (6.1.4-6.1.5) называют дискретными преобразованиями Фурье (ДПФ). Для ДПФ, в принципе, справедливы все свойства интегральных преобразований Фурье, однако при этом следует учитывать периодичность дискретных функций и спектров. Произведению спектров двух дискретных функций (при выполнении каких-либо операций при обработке сигналов в частотном представлении, как, например, фильтрации сигналов непосредственно в частотной форме) будет соответствовать свертка периодизированных функций во временном представлении (и наоборот). Такая свертка называется циклической (см. раздел 6.4) и ее результаты на концевых участках информационных интервалов могут существенно отличаться от свертки финитных дискретных функций (линейной свертки).

Из выражений ДПФ можно видеть, что для вычисления каждой гармоники нужно N операций комплексного умножения и сложения и соответственно N 2 операций на полное выполнение ДПФ. При больших объемах массивов данных это может приводить к существенным временным затратам. Ускорение вычислений достигается при использовании быстрого преобразования Фурье.

Помехи

Помехами обычно называют посторонние электрические возмущения, накладывающиеся на передаваемый сигнал и затрудняющие его прием. При большой интенсивности помех прием становится практически невозможным.

Классификация помех:

а) помехи от соседних радиопередатчиков (станций);

б) помехи от промышленных установок;

в) атмосферные помехи (грозы, осадки);

г) помехи, обусловленные прохождением электромагнитных волн через слои атмосферы: тропосферу, ионосферу;

д) тепловые и дробовые шумы в элементах радиоцепей, обусловленные тепловым движением электронов.

Математически сигнал на входе приемника можно представить либо в виде суммы передаваемого сигнала и помехи, и тогда помеху называют аддитивной , либо просто шумом , либо в виде произведения передаваемого сигнала и помехи, и тогда такую помеху называют мультипликативной . Эта помеха приводит к значительным изменениям интенсивности сигнала на входе приемника и объясняет такие явления как замирания .

Наличие помех затрудняет прием сигналов при большой интенсивности помех, распознавание сигнала может стать практически невозможным. Способность системы противостоять мешающему воздействию помехи носит название помехоустойчивости .

Внешние естественные активные помехи представляют собой шумы, возникающие в результате радиоизлучения земной поверхности и космических объектов, работы других радиоэлектронных средств. Комплекс мероприятий, направленных на уменьшение влияния взаимных помех РЭС, называется электомагнитной совместимостью. Этот комплекс включает в себя как технические меры совершенствования радиоаппаратуры, выбор формы сигнала и способа его обработки, так и организационные меры: регламентация частоты, разнесение РЭС в пространстве, нормирование уровня внеполосных и побочных излучений и др.

11. Дискретизация непрерывных сигналов. Теорема Котельникова (отсчётов). Понятие частоты Найквиста. Понятие интервала дискретизации.



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация