Основные понятия физического и математического моделирования. Математическое моделирование

Главная / Квартира

В предложенной вашему вниманию статье мы предлагаем примеры математических моделей. Кроме этого, мы обратим внимание на этапы создания моделей и разберем некоторые задачи, связанные с математическим моделированием.

Еще один наш вопрос - это математические модели в экономике, примеры, определение которых мы рассмотрим немного позже. Начать наш разговор мы предлагаем с самого понятия «модель», кратко рассмотрим их классификацию и перейдем к основным нашим вопросам.

Понятие «модель»

Мы часто слышим слово «модель». Что же это такое? Данный термин имеет множество определений, вот только три из них:

  • специфический объект, который создается для получения и хранения информации, отражающий некоторые свойства или характеристики и так далее оригинала данного объекта (этот специфический объект может выражаться в разной форме: мысленный, описание при помощи знаков и так далее);
  • еще под моделью подразумевается отображение какой-либо конкретной ситуации, жизненной или управленческой;
  • моделью может служить уменьшенная копия какого-либо объекта (они создаются для более подробного изучения и анализа, так как модель отражает структуру и взаимосвязи).

Исходя из всего, что было сказано ранее, можно сделать небольшой вывод: модель позволяет подробно изучить сложную систему или объект.

Все модели можно классифицировать по ряду признаков:

  • по области использования (учебные, опытные, научно-технические, игровые, имитационные);
  • по динамике (статические и динамические);
  • по отрасли знаний (физические, химические, географические, исторические, социологические, экономические, математические);
  • по способу представления (материальные и информационные).

Информационные модели, в свою очередь, делятся на знаковые и вербальные. А знаковые - на компьютерные и некомпьютерные. Теперь перейдем к подробному рассмотрению примеров математической модели.

Математическая модель

Как не трудно догадаться, математическая модель отражает какие-либо черты объекта или явления при помощи специальных математических символов. Математика и нужна для того, чтобы моделировать закономерности окружающего мира на своем специфическом языке.

Метод математического моделирования зародился достаточно давно, тысячи лет назад, вместе с появлением данной науки. Однако толчок для развития данного способа моделирования дало появление ЭВМ (электронно-вычислительных машин).

Теперь перейдем к классификации. Ее так же можно провести по некоторым признакам. Они представлены в таблице ниже.

Мы предлагаем остановиться и подробнее рассмотреть последнюю классификацию, так как она отражает общие закономерности моделирования и цели создаваемых моделей.

Дескриптивные модели

В данной главе мы предлагаем остановиться подробнее на дескриптивных математических моделях. Для того чтобы было все предельно понятно, будет приведен пример.

Начнем с того, что этот вид можно назвать описательным. Это связано с тем, что мы просто делаем расчеты и прогнозы, но никак не можем повлиять на исход события.

Ярким примером описательной математической модели является вычисление траектории полета, скорости, расстояния от Земли кометы, которая вторглась в просторы нашей Солнечной системы. Эта модель является описательной, так как все полученные результаты могут только предупредить нас о какой-либо опасности. Повлиять на исход события, увы, мы не можем. Однако, основываясь на полученных расчетах, можно предпринять какие-либо меры для сохранения жизни на Земле.

Оптимизационные модели

Сейчас мы немного поговорим об экономико-математических моделях, примерами которых могут служить разные сложившиеся ситуации. В данном случае речь идет о моделях, которые помогают найти верный ответ в определенных условиях. Они обязательно имеют некие параметры. Чтобы стало предельно понятно, рассмотрим пример из аграрной части.

У нас есть зернохранилище, но зерно очень быстро портится. В этом случае нам необходимо правильно подобрать температурный режим и оптимизировать процесс хранения.

Таким образом, мы можем дать определение понятию «оптимизационная модель». В математическом смысле это система уравнений (как линейных, так и нет), решение которой помогает найти оптимальное решение в конкретной экономической ситуации. Пример математической модели (оптимизационной) мы рассмотрели, но хочется еще добавить: данный вид относится к классу экстремальных задач, они помогают описать функционирование экономической системы.

Отметим еще один нюанс: модели могут носить разный характер (см. таблицу ниже).

Многокритериальные модели

Сейчас предлагаем вам поговорить немного о математической модели многокритериальной оптимизации. До этого мы привели пример математической модели оптимизации процесса по какому-либо одному критерию, но что делать, если их много?

Ярким примером многокритериальной задачи служит организация правильного, полезного и одновременно экономного питания больших групп людей. С такими задачами часто встречаются в армии, школьных столовых, летних лагерях, больницах и так далее.

Какие критерии нам даны в данной задаче?

  1. Питание должно быть полезным.
  2. Расходы на пищу должны быть минимальными.

Как видите, эти цели совсем не совпадают. Значит, при решении задачи необходимо искать оптимальное решение, баланс между двумя критериями.

Игровые модели

Говоря об игровых моделях, необходимо понимать понятие «теория игр». Если говорить просто, то данные модели отражают математические модели настоящих конфликтов. Только стоит понимать, что, в отличие от реального конфликта, игровая математическая модель имеет свои определенные правила.

Сейчас будет приведен минимум информации из теории игр, которая поможет вам понять, что такое игровая модель. И так, в модели обязательно присутствуют стороны (две или более), которых принято называть игроками.

Все модели имеют некие характеристики.

Игровая модель может быть парной или множественной. Если у нас есть два субъекта, то конфликт парный, если больше - множественный. Также можно выделить антагонистическую игру, ее еще называют игрой с нулевой суммой. Это модель, в которой выигрыш одного из участников равняется проигрышу другого.

Имитационные модели

В данном разделе мы обратим внимание на имитационные математические модели. Примерами задач могут служить:

  • модель динамики численности микроорганизмов;
  • модель движения молекул, и так далее.

В данном случае мы говорим о моделях, которые максимально приближены к реальным процессам. По большому счету, они имитируют какое-либо проявление в природе. В первом случае, например, мы можем моделировать динамику численности муравьев в одной колонии. При этом можно наблюдать за судьбой каждой отдельной особи. В данном случае математическое описание используют редко, чаще присутствуют письменные условия:

  • через пять дней женская особь откладывает яйца;
  • через двадцать дней муравей погибает, и так далее.

Таким образом, используются для описания большой системы. Математическое заключение - это обработка полученных статистических данных.

Требования

Очень важно знать, что к данному виду модели предъявляют некоторые требования, среди которых - приведенные в таблице ниже.

Универсальность

Это свойство позволяет использовать одну и ту же модель при описании однотипных групп объектов. Важно отметить, что универсальные математические модели совершенно не зависят от физической природы исследуемого объекта

Адекватность

Здесь важно понимать, что данное свойство позволяет максимально правильно воспроизводить реальные процессы. В задачах эксплуатации очень важно данное свойство математического моделирования. Примером модели может служить процесс оптимизации использования газовой системы. В данном случае сопоставляются расчетные и фактические показатели, в результате проверяется правильность составленной модели

Точность

Данное требование подразумевает совпадение значений, которые мы получаем при расчете математической модели и входных параметров нашего реального объекта

Экономичность

Требование экономичности, предъявляемое к любой математической модели, характеризуется затратами на реализацию. Если работа с моделью осуществляется ручным способом, то необходимо рассчитать, сколько времени уйдет на решение одной задачи при помощи данной математической модели. Если речь идет об автоматизированном проектировании, то рассчитываются показатели затрат времени и памяти компьютера

Этапы моделирования

Всего в математическом моделировании принято выделять четыре этапа.

  1. Формулировка законов, связывающих части модели.
  2. Исследование математических задач.
  3. Выяснение совпадений практических и теоретических результатов.
  4. Анализ и модернизация модели.

Экономико-математическая модель

В этом разделе кратко осветим вопрос Примерами задач могут служить:

  • формирование производственной программы выпуска мясной продукции, обеспечивающей максимальную прибыль производства;
  • максимизация прибыли организации путем расчета оптимального количества выпуска столов и стульев на мебельной фабрике, и так далее.

Экономико-математическая модель отображает экономическую абстракцию, которая выражена при помощи математических терминов и знаков.

Компьютерная математическая модель

Примерами компьютерной математической модели являются:

  • задачи гидравлики при помощи блок-схем, диаграмм, таблиц, и так далее;
  • задачи на механику твердого тела, и так далее.

Компьютерная модель - это образ объекта или системы, представленный в виде:

  • таблицы;
  • блок-схемы;
  • диаграммы;
  • графика, и так далее.

При этом данная модель отражает структуру и взаимосвязи системы.

Построение экономико-математической модели

Мы уже ранее сказали о том, что такое экономико-математическая модель. Пример решения задачи будет рассмотрен прямо сейчас. Нам необходимо произвести анализ производственной программы для выявления резерва повышения прибыли при сдвиге в ассортименте.

Полностью рассматривать задачу мы не будем, а только построим экономико-математическую модель. Критерий нашей задачи - максимизация прибыли. Тогда функция имеет вид: Л=р1*х1+р2*х2…, стремящееся к максимуму. В данной модели р - это прибыль за единицу, х - это количество производимых единиц. Далее, основываясь на построенной модели, необходимо произвести расчеты и подвести итог.

Пример построения простой математической модели

Задача. Рыбак вернулся со следующим уловом:

  • 8 рыб - обитатели северных морей;
  • 20% улова - обитатели южных морей;
  • из местной реки не обнаружилось ни одной рыбы.

Сколько рыб он купил в магазине?

Итак, пример построения математической модели данной задачи выглядит следующим образом. Обозначаем общее количество рыб за х. Следуя условию, 0,2х - это количество рыб, обитающих в южных широтах. Теперь объединяем всю имеющуюся информацию и получаем математическую модель задачи: х=0,2х+8. Решаем уравнение и получаем ответ на главный вопрос: 10 рыб он купил в магазине.

С.П. БОБКОВ, Д.О. БЫТЕВ

МОДЕЛИРОВАНИЕ СИСТЕМ

Учебное пособие


Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Ивановский государственный химико-технологический университет

Международный университет бизнеса и новых технологий (институт)

С.П. БОБКОВ, Д.О. БЫТЕВ

МОДЕЛИРОВАНИЕ СИСТЕМ

для студентов высших учебных заведений.


Бобков С.П. Моделирование систем: учеб. пособие / С.П. Бобков,

Д.О. Бытев; Иван. гос. хим.-технол. ун-т. – Иваново, 2008. – 156 с. - ISBN

Цель учебного пособия – дать студентам общее представление о со- временных методах моделирования технических и технико-экономических систем и объектов.

В пособии рассматриваются общие вопросы и современная методо-

логия моделирования, непрерывные и дискретные детерминированные мо-

дели объектов и систем, стохастические модели с дискретным и непрерыв- ным временем. Большое внимание уделено методам имитационного моде- лирования систем с вероятностными характеристиками. Дается обзор дру- гих подходов к моделированию сложных систем, таких как информацион- но-энтропийный, использование нейронных сетей и сетей Петри.

Учебное пособие предназначено для студентов, обучающихся по специальностям подготовки 080801 «Прикладная информатика» и 230201

«Информационные системы и технологии». Кроме того, пособие может быть полезным для студентов других специальностей и направлений.

Табл.7. Ил.92. Библиогр.:10 назв.

Печатается по решению редакционно-издательского совета Иванов-

ского государственного химико-технологического университета.

Рецензенты:

кафедра прикладной математики Ивановского государственного энергетического университета; доктор физико-математических наук В.А.Соколов, (Ярославский государственный университет).

ISBN 5-9616-0268-6 © ГОУ ВПО Ивановский государст- венный химико-технологический университет», 2008


1.5. Понятие математической схемы моделирования. . . . . . . . . . . . . . 12

1.6. Общая методика создания математических моделей. . . . . . . . . . . 13

1.7. Основные понятия системного подхода к созданию

математических моделей. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2. ДЕТЕРМИНИРОВАННЫЕ МОДЕЛИ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1. Математические модели технических объектов. . . . . . . . . . . . . . . 20

2.1.1. Компонентные функциональные уравнения объектов. . . . . 20

2.1.2. Фазовые переменные и их аналогии. . . . . . . . . . . . . . . . . . . . 23

2.1.3. Топологические уравнения. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.4. Примеры создания моделей технических объектов. . . . . . . 25

2.1.5. Модели технологических аппаратов. . . . . . . . . . . . . . . . . . . 29

2.2. Конечные автоматы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1. Понятие конечного автомата. . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.2. Способы описания и классы конечных автоматов. . . . . . . . 32

2.2.3. Другие виды конечных автоматов. . . . . . . . . . . . . . . . . . . . . 37

3. СТОХАСТИЧЕСКИЕ МОДЕЛИ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1. Элементы теории марковских случайных процессов. . . . . . . . . . . 39

3.1.1. Понятие случайного процесса. . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.2. Дискретные цепи Маркова. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.3. Стационарное распределение вероятностей. . . . . . . . . . . . . 43

3.1.4. Непрерывные марковские цепи. . . . . . . . . . . . . . . . . . . . . . . 45

3.1.5. Уравнения А.Н. Колмогорова. . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.6. Потоки событий. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2. Основы теории массового обслуживания. . . . . . . . . . . . . . . . . . . . . 51

3.2.1. Обобщенная структурная схема СМО. Параметры

и характеристики. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.2. Разомкнутые СМО с ожиданием и терпеливыми заявками. 58

3.2.3. Предельные варианты разомкнутой СМО. . . . . . . . . . . . . . . 62

3.2.4.Общий случай разомкнутой СМО. . . . . . . . . . . . . . . . . . . . . . 64

3.2.5. Замкнутые СМО. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.6. Сети массового обслуживания

с простейшими потоками событий. . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3. Вероятностные автоматы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77


4. ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ. . . . . . . . . . . . . . . . . . . . . . . . . .
4.1. Определение метода имитационного моделирования. . . . . . . . . .
4.2. Основные понятия имитационного моделирования. . . . . . . . . . . .
4.3. Основные этапы имитационного моделирования. . . . . . . . . . . . . .
4.4. Время в имитационных моделях. Псевдопараллелизм. . . . . . . . . .
4.5. Обобщённые алгоритмы имитационного моделирования. . . . . . .
4.6. Моделирование случайных факторов. . . . . . . . . . . . . . . . . . . . . . . .
4.6.1. Моделирование базовых случайных величин. . . . . . . . . . . .
4.6.2. Моделирование непрерывных случайных величин
с произвольным распределением. . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6.3. Моделирование дискретных случайных величин. . . . . . . . .
4.6.4. Моделирование случайных событий и их потоков. . . . . . .
4.7 Моделирование случайных процессов. . . . . . . . . . . . . . . . . . . . . . . .
4.7.1 Дискретные цепи Маркова. . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7.2 Непрерывные цепи Маркова. . . . . . . . . . . . . . . . . . . . . . . . . .
4.8. Обработка и анализ результатов имитационного моделирования.
4.8.1. Оценка вероятностных параметров. . . . . . . . . . . . . . . . . . . .
4.8.2. Оценка корреляционных параметров. . . . . . . . . . . . . . . . . . .
4.8.3. Расчет средних по времени параметров СМО. . . . . . . . . . . .
4.9. Планирование экспериментов с имитационными моделями. . . . .
4.10. Общие проблемы имитационного моделирования. . . . . . . . . . . .
5. ОБЗОР АЛЬТЕРНАТИВНЫХ ПОДХОДОВ К МОДЕЛИРОВАНИЮ
СЛОЖНЫХ СИСТЕМ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1. Сети Петри. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.1. Определение сети Петри. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.2. Функционирование сети Петри. . . . . . . . . . . . . . . . . . . . . . . .
5.1.3. Анализ сетей Петри. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2. Нейронные сети. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.1. Понятие нейронной сети. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.2. Искусственный нейрон. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.3. Основные виды активационных функций искусственных
нейронов. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.4. Виды простейших нейронных сетей. . . . . . . . . . . . . . . . . . . .
5.2.5. Рекуррентные и самоорганизующиеся нейронные сети. . .
5.2.6. Общие замечания по использованию нейронных сетей. . . .
5.3. Информационно-энтропийный подход к моделированию систем
СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . .

ВВЕДЕНИЕ

Моделирование является универсальным методом получения и использо- вания знаний об окружающем мире. Моделирование всегда используется чело- веком в целенаправленной деятельности, особенно в исследовательской. В со- временных условиях усиливается роль и значение математического моделиро- вания, которое с развитием средств вычислительной техники часто стали назы- вать компьютерным.

Математические (компьютерные) модели, в силу своей логичности и строгого формального характера, позволяют выявить основные факторы, опре- деляющие свойства изучаемых систем и исследовать их реакции на внешние воздействия и изменения параметров. Часто математические модели проще и удобнее использовать, чем натуральные (физические). Они позволяют прово- дить вычислительные эксперименты, реальная постановка которых затруднена или невозможна.

Изучение основных принципов математического моделирования является неотъемлемой частью подготовки специалистов в технических областях дея- тельности. Дисциплины, связанные с изучением основных аспектов моделиро- вания объектов и систем в обязательном порядке входят в соответствующие учебные планы, являясь компонентами федеральных образовательных стандар- тов.

Целью данного учебного пособия является последовательное изложение современных методов моделирования. Пособие предназначено главным обра- зом для студентов, обучающихся по специальностям и направлениям «Инфор- мационные системы» и «Прикладная информатика (по отраслям». Однако, учи- тывая опыт преподавания подобных дисциплин в технических вузах, авторы сочли целесообразным не ограничиваться рассмотрением только информаци- онных систем, но и включить в текст рассмотрение технических и технико- экономических систем и объектов.

Материал пособия выстроен следующим образом. В первой главе рас- сматриваются общие вопросы и современная методология моделирования, ис- пользование системного подхода при создании математических моделей. Вто- рая глава посвящена рассмотрению непрерывных и дискретных детерминиро- ванных моделей объектов и систем. Предлагается использование метода анало- гий при синтезе и анализе моделей технических объектов различной физиче- ской природы. В третьей главе изучаются стохастические модели с дискретным и непрерывным временем. Большое внимание в пособии уделено методам ими- тационного моделирования систем с вероятностными характеристиками, что составляет содержание четвертой главы. В пятой главе дается обзор других подходов к моделированию сложных систем, таких как информационно- энтропийный, использование нейронных сетей и сетей Петри.


ОБЩИЕ ПОНЯТИЯ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ

ЛЕКЦИЯ 4

Определение и назначение математического моделирования

Под моделью (от латинского modulus - мера, образец, норма) будем понимать такой материально или мысленно представляемый объект, который в процессе познания (изучения) замещает объект-оригинал, сохраняя некоторые важные для данного исследования типичные его черты. Процесс построения и использования модели называется моделированием.

Суть математического моделирования (ММ ) заключается в замене изучаемого объекта (процесса) адекватной математической моделью и последующем исследовании свойств этой модели с помощью либо аналитических методов, либо вычислительных экспериментов.

Иногда полезнее вместо того, чтобы давать строгие определения, описывать то или инее понятие на конкретном примере. Поэтому проиллюстри-руем приведенные выше определения ММ на примере задачи расчета удельного импульса. В начале 60-х годов перед учеными ставилась задача разработки ракетного топлива с наибольшим удельным импульсом. Принцип движения ракеты состоит в следующем: жидкое топливо и окислитель из баков ракеты подаются в двигатель, где происходит их сгорание, а продукты сгорания вылетают в атмосферу. Из закона сохранения импульса следует, что в этом ракета будет двигаться со скоростью.

Удельный импульс топлива – это полученный импульс, деленный на массу топлива. Проведение экспериментов было очень дорогостоящим и приводило к систематической порче оборудования. Оказалось, что легче и дешевле рассчитать термодинамические функции идеальных газов, вычислить с их помощью состав вылетающих газов и температуру плазмы, а затем и удельный импульс. То есть провести ММ процесса горения топлива.

Понятие математического моделирования (ММ) сегодня одно из самых распространенных в научной литературе . Подавляющее большинство современных дипломных и диссертационных работ связано с разработкой и использованием соответствующих математических моделей. Компьютерное ММ сегодня является составной частью многих областей человеческой деятельности (наука, техника, экономика, социология и т. д.). Это одна из причин сегодняшнего дефицита специалистов в области информационных технологий .

Бурный рост математического моделирования обусловлен стремительным совершенствованием вычислительной техники. Если еще 20 лет назад проведением численных расчетов занималось лишь небольшое число программистов, то теперь объем памяти и быстродействие современных компьютеров, позволяющих решать задачи математического моделирования доступных всем специалистам, включая студентов ВУЗов.

В любой дисциплине вначале дается качественное описание явлений. А затем уже – количественное, сформулированное в виде законов, устанавливающих связи между различными величинами (напряженность поля, интенсивность рассеяния, заряд электрона, …) в форме математических уравнений. Поэтому можно сказать, что в каждой дисциплине столько науки, сколько в ней есть математики, и этот факт позволяет успешно решать многие задачи методами математического моделирования.

Данный курс предназначен для студентов, специализирующихся в области прикладной математики, которые выполняют дипломные работы под руководством ведущих ученых, работающих в различных областях. Поэтому данный курс необходим не только как учебный материал, но и как подготовка к дипломной работе. Для изучения данного курса нам будут необходимы следующие разделы математики:

1. Уравнения математической физики (кантовая механика, газо - и гидродинамика)

2. Линейная алгебра (теория упругости)

3. Скалярные и векторные поля (теория поля)

4. Теория вероятностей (квантовая механика, статистическая физика, физическая кинетика)

5. Специальные функции.

6. Тензорный анализ (теория упругости)

7. Математический анализ

ММ в естествознании, технике, и экономике

Рассмотрим вначале различные разделы естествознания, техники, экономики, в которых используются математические модели.

Естествознание

Физика, устанавливающая основные законы естествознания, давно разделилась на теоретическую и экспериментальную. Выводом уравнений, описывающих физические явления, занимается теоретическая физика. Таким образом, теоретическая физика также может считаться одним из направлений математического моделирования. (Вспомним, что название первой книги по физике – «Математические начала натуральной философии» И. Ньютона можно перевести на современный язык как «Математические модели естествознания».) На основании полученных законов проводятся инженерные расчеты, которые проводятся в различных институтах, фирмах, КБ. Эти организации разрабатывают технологии изготовления современной продукции, которые являются наукоемкими.Таким образом, понятие наукоемкие технологии включает в себя расчеты с помощью соответствующих математических моделей.

Один из наиболее обширных разделов физики – классическая механика (иногда этот раздел называется теоретической или аналитической механикой). Данный раздел теоретической физики изучает движение и взаимодействие тел. Расчеты с помощью формул теоретической механики необходимы при изучении вращения тел (расчет моментов инерции, гиростатов – устройств сохраняющих в неподвижности оси вращения), анализе движения тела в безвоздушном пространстве, и др. Один из разделов теоретической механики называется теорией устойчивости и лежит в основе многих математических моделей, описывающих движение самолетов, кораблей, ракет. Разделы практической механики – курсы «Теория машин и механизмов», «Детали машин», изучается студентами почти всех технических вузов (включая МГИУ).

Теория упругости – часть раздела механики сплошных сред , предполагающая, что материал упругого тела однороден и непрерывно распределен по всему объему тела, так что самый малый элемент, вырезанный из тела, обладает теми же физическими свойствами, что и все тело. Приложение теории упругости – курс «сопротивление материалов», изучается студентами всех технических вузов (включая МГИУ). Данный раздел необходим для всех расчетов прочности. Здесь и расчет прочности корпусов кораблей, самолетов, ракет, расчет прочности стальных и железобетонных конструкций зданий и многое другое.

Газо- и гидродинамика , как и теория упругости – часть раздела механики сплошных сред , рассматривает законы движения жидкости и газа. Уравнения газо - и гидродинамики необходимы при анализе движения тел в жидкой и газообразной среде (спутники, подводные лодки, ракеты, снаряды, автомобили), при расчетах истечения газа из сопел двигателей ракет, самолетов. Практическое приложение гидродинамики – гидравлика (тормоз, руль,…)

Предыдущие разделы механики рассматривали движении тел в макромире, и физические законы макромира неприменимы в микромире, в котором движутся частицы вещества - протоны, нейтроны, электроны. Здесь действуют совершенно другие принципы, и для описания микромира необходима квантовая механика . Основное уравнение, описывающее поведение микрочастиц - уравнение Шредингера: . Здесь - оператор Гамильтона (гамильтониан). Для одномерного уравнения движения частицы https://pandia.ru/text/78/009/images/image005_136.gif" width="35" height="21 src=">-потенциальная энергия. Решение этого уравнения – набор собственных значений энергии и собственных функций..gif" width="55" height="24 src=">– плотность вероятности. Квантовомеханические расчеты нужны для разработки новых материалов (микросхемы), создания лазеров, разработки методов спектрального анализа, и др.

Большое количество задач решает кинетика , описывающая движение и взаимодействие частиц. Здесь и диффузия , теплообмен, теория плазмы – четвертого состояния вещества.

Статистическая физика рассматривает ансамбли частиц, позволяет сказать о параметрах ансамбля, исходя из свойств отдельных частиц. Если ансамбль состоит из молекул газа, то выведенные методами статистической физики свойства ансамбля представляют собой хорошо известные со средней школы уравнения газового состояния: https://pandia.ru/text/78/009/images/image009_85.gif" width="16" height="17 src=">.gif" width="16" height="17">-молекулярный вес газа. К – постоянная Ридберга. Статистическими методами рассчитываются также свойства растворов, кристаллов, электронов в металлах. ММ статистической физики – теоретическая основа термодинамики, которая лежит в основе расчета двигателей, тепловых сетей и станций.

Теория поля описывает методами ММ одну из основных форм материи – поле. При этом основной интерес представляют электромагнитные поля. Уравнения электромагнитного поля (электродинамики) были выведены Максвеллом: , , , . Здесь и https://pandia.ru/text/78/009/images/image018_44.gif" width="16" height="17"> - плотность заряда, -плотность тока. Уравнения электродинамики лежат в основе расчетов распространения электромагнитных волн, необходимых для описания распространения радиоволн (радио, телевидение, сотовая связь), объяснения работы радиолокационных станций.

Химию можно представить в двух аспектах, выделяя описательную химию – открытие химических факторов и их описание – и теоретическую химию – разработку теорий, позволяющих обобщить установленные факторы и представить их в виде определенной системы (Л. Полинг). Теоретическая химия называется также физической химией и является, в сущности, разделом физики, изучающей вещества и их взаимодействия. Поэтому все, что было сказано относительно физики, в полной мере относится и к химии. Разделами физической химии будут термохимия, изучающая тепловые эффекты реакций, химическая кинетика (скорости реакций), квантовая химия (строение молекул). При этом задачи химии бывают чрезвычайно сложными. Так, например, для решения задач квантовой химии – науки о строении атомов и молекул, используются программы, сравнимые по объему с программами ПВО страны. Например, для того, чтобы описать молекулу UCl4, состоящую из 5 ядер атомов и +17*4) электронов, нужно записать уравнение движения – уравнения в частных производных.

Биология

В биологию математика пришла по настоящему только во второй половине 20 века. Первые попытки математически описать биологические процессы относятся к моделям популяционной динамики. Популяцией называется сообщество особей одного вида, занимающих некоторую область пространства на Земле. Эта область математической биологии, изучающая изменение численности популяции в различных условиях (наличие конкурирующих видов, хищников, болезней и т. п.) и в дальнейшем служила математическим полигоном, на котором "отрабатывались" математические модели в разных областях биологии. В том числе модели эволюции, микробиологии, иммунологии и других областей, связанных с клеточными популяциями.
Самая первая известная модель, сформулированная в биологической постановке, ‑ знаменитый ряд Фибоначчи (каждое последующее число является суммой двух предыдущих), который приводит в своем труде Леонардо из Пизы в 13 веке. Это ряд чисел, описывающий количество пар кроликов, которые рождаются каждый месяц, если кролики начинают размножаться со второго месяца и каждый месяц дают потомство в виде пары кроликов. Ряд представляет последовательность чисел: 1, 1, 2, 3, 5, 8, 13, 21, …

1,

2 ,

3,

5,

8, 13, …

Другим примером является изучение процессов ионного трансмембранного переноса на искусственной бислойной мембране. Здесь для того, чтобы изучить законы образования поры, через которую ион проходит сквозь мембрану внутрь клетки, необходимо создать модельную систему, которую можно изучать экспериментально, и для которой можно использовать хорошо разработанное наукой физическое описание.

Классическим примером ММ также является популяция дрозофилы. Еще более удобной моделью являются вирусы , которые можно размножать в пробирке. Методами моделирования в биологии служат методы динамической теории систем, а средствами - дифференциальные и разностные уравнения, методы качественной теории дифференциальных уравнений, имитационное моделирование.
Цели моделирования в биологии:
3. Выяснение механизмов взаимодействия элементов системы
4. Идентификация и верификация параметров модели по экспериментальным данным.
5. Оценка устойчивости системы (модели).

6. Прогноз поведения системы при различных внешних воздействиях, различных способах управления и проч.
7. Оптимальное управление системой в соответствии с выбранным критерием оптимальности .

Техника

Совершенствованием техники занимается большое количество специалистов, которые в своей работе опираются на результаты научных исследований. Поэтому ММ в технике те же самые, что и ММ естествознания, о которых говорилось выше.

Экономика и социальные процессы

Принято считать, что математическое моделирование как метод анализа макроэкономических процессов было впервые применено лейб-медиком короля Людовика XV доктором Франсуа Кенэ , который в 1758 г. опубликовал работу «Экономическая таблица». В этой работе была сделана первая попытка количественно описать национальную экономику. А в 1838 г. в книге О. Курно «Исследование математических принципов теории богатства» количественные методы были впервые использованы для анализа конкуренции на рынке товара при различных рыночных ситуациях.

Широко известна также теория Мальтуса о народонаселении, в которой он предложил идею: рост населения далеко не всегда желателен, и рост этот идет быстрее, чем растут возможности обеспечения населения продовольствием. Математическая модель такого процесса достаточно проста: Пусть - прирост численности населения за время https://pandia.ru/text/78/009/images/image027_26.gif" width="15" height="24"> численность была равна . и - коэффициенты, учитывающие рождаемость и смертность (чел/год). Тогда

https://pandia.ru/text/78/009/images/image032_23.gif" width="151" height="41 src=">Инструментальные и математические методы " href="/text/category/instrumentalmznie_i_matematicheskie_metodi/" rel="bookmark">математические методы анализа (например, в последние десятилетия в гуманитарных науках появились математические теории развития культуры, построены и исследованы математические модели мобилизации, циклического развития социокультурных процессов, модель взаимодействия народа и правительства, модель гонки вооружений и др.).

В самых общих чертах процесс ММ социально-экономических процессов условно можно подразделить на четыре этапа:

    формулировка системы гипотез и разработка концептуальной модели; разработка математической модели; анализ результатов модельных расчетов, который включает сравнение их с практикой; формулировка новых гипотез и уточнение модели в случае несоответствия результатов расчетов и практических данных.

Отметим, что, как правило, процесс математического моделирования носит циклический характер, поскольку даже при исследовании сравнительно простых процессов редко удается с первого шага построить адекватную математическую модель и подобрать точные ее параметры.

В настоящее время экономика рассматривается как сложная развивающаяся система, для количественного описания которой применяются динамические математические модели различной степени сложности. Одно из направлений исследования макроэкономической динамики связано с построением и анализом относительно простых нелинейных имитационных моделей, отражающих взаимодействие различных подсистем – рынка труда, рынка товаров, финансовой системы , природной среды и др.

Успешно развивается теория катастроф. Эта теория рассматривает вопрос об условиях, при которых изменение параметров нелинейной системы вызывает перемещение точки в фазовом пространстве, характеризующей состояние системы, из области притяжения к начальному положению равновесия в область притяжения к другому положению равновесия. Последнее очень важно не только для анализа технических систем, но и для понимания устойчивости социально-экономических процессов. В этой связи представляют интерес выводы о значении исследования нелинейных моделей для управления. В книге «Теория катастроф», опубликованной в 1990 г., он, в частности, пишет: «…нынешняя перестройка во многом объясняется тем, что начали действовать хотя бы некоторые механизмы обратной связи (боязнь личного уничтожения)».

(параметры модели)

При построении моделей реальных объектов и явлений часто приходится сталкиваться с недостатком информации. Для исследуемого объекта распределение свойств, параметры воздействия и начальное состояние известны с той или иной степенью неопределенности. При построении модели возможны следующие варианты описания неопределенных параметров:

Классификация математических моделей

(методы реализации)

Методы реализации ММ можно классифицировать в соответствии с таблицей, приведенной ниже.

Методы реализации ММ

Очень часто аналитическое решение для модели представляется в виде функций. Для получения значений этих функций при конкретных значениях входных параметров используют их разложение в ряды (например, Тейлора), и значение функции при каждом значении аргумента определяется приближенно. Модели, использующие такой прием, называются приближенными .

При численном подходе совокупность математических соотношений модели заменяется конечномерным аналогом. Это чаще всего достигается дискретизацией исходных соотношений, т. е. переходом от функций непрерывного аргумента к функциям дискретного аргумента (сеточные методы).

Найденное после расчетов на компьютере решение принимается за приближен-ное решение исходной задачи.

Большинство существующих систем является очень сложными, и для них невозможно создать реальную модель, описанную аналитически. Такие системы следует изучать с помощью имитационного моделирования . Один из основных приемов имитационного моделирования связан с применением датчика случайных чисел.

Так как огромное количество задач решается методами ММ, то способы реализации ММ изучаются не в одном учебном курсе. Здесь и уравнения в частных производных, численные методы решения этих уравнений, вычислительная математика, компьютерное моделирование и т. п.

ПОЛИНГ, ЛАЙНУС КАРЛ (Pauling, Linus Carl) (), американский химик и физик, удостоенный в 1954 Нобелевской премии по химии за исследования природы химической связи и определение структуры белков. Родился 28 февраля 1901 в Портленде (шт. Орегон). В разработал квантовомеханический метод изучения строения молекул (наряду с американским физиком Дж. Слейером) - метод валентных связей, а также теорию резонанса, позволяющую объяснить строение углеродосодержащих соединений, прежде всего соединений ароматического ряда. В период культа личности СССР ученые, занимавшиеся квантовой химией подвергались гонениям и обвинялись в «полингизме».

МАЛЬТУС, ТОМАС РОБЕРТ (Malthus, Thomas Robert) (), английский экономист. Родился в Рукери близ Доркинга в Суррее 15 или 17 февраля 1766. В 1798 анонимно опубликовал труд Опыт о законе народонаселения. В 1819 Мальтус был избран членом Королевского общества.

Содержание Предмет математического моделирования. Основы моделирования. Понятие модели. Принцип моделирования. Моделирование как метод научного познания. Этапы моделирования. Характеристика 1 – 2 этапов. Этапы моделирования. Характеристика 3 – 4 этапов. Классификация моделей. Общий обзор. Классификация экономико-математических моделей. Этапы экономико-математического моделирования. Математическая модель. Линейное программирование. Постановка задачи линейного программирования. Геометрическая интерпретация и графическое решение задачи линейного программирования. Симплексный метод. Построение начального опорного плана. Симплексные таблицы. Признак оптимальности опорного плана. Понятие двойственности. Построение двойственных задач и их свойства. Транспортная задача. Построение исходного опорного плана. Транспортная задача. Метод потенциалов.

Содержание Основные понятия и определения теории графов. Упорядочение элементов орграфа. Алгоритм Фалкерсона. Решение задач о нахождении кратчайших путей в графе. Задача о максимальном потоке и ее приложения. Транспортная задача в сетевой постановке. Элементы сетевого планирования. Принципы динамического программирования, вычислительная процедура метода. Метод Монте-Карло. Суть метода. Решение задач методом Монте-Карло. Элементы теории матричных игр. Парные матричные игры с нулевой суммой. Методы решения матричных игр. Игры с природой. Критерии для принятия решения. Пакет Maple 7. Общий обзор пакета. Его возможности. Интерфейс программы, работа с командами. Использование переменных. Работа с таблицами.

Предмет математического моделирования. Основы моделирования Математическое моделирование - это исследование явлений, процессов, систем или объектов путем построения и изучения их моделей и использования последних для определения или уточнения характеристик и рациональных способов построения вновь конструируемых технологических процессов, систем и объектов. Математическая модель - это абстракция реального мира, в которой интересующие исследователя отношения между реальными элементами заменены подходящими отношениями между математическими категориями. Эти отношения, как правило, представлены в форме уравнений и (или) неравенств, характеризующих функционирование моделируемой реальной системы. Искусство построения математических моделей состоит в том, чтобы совместить как можно большую лаконичность в ее математическом описании с достаточной точностью модельного воспроизводства именно тех сторон анализируемой реальности, которые интересуют исследователя. Меню Моделирование - творческий процесс, требующий серьезной подготовки и переработки большого объема информации, сочетающий в себе трудоемкость и эвристические начала и носящий вероятностный характер.

Понятие модели. Моделирование как метод научного познания Модель - это некоторое упрощенное подобие реального объекта, явления или процесса. Модель - это такой материальный или мысленно представляемый объект, который замещает объект-оригинал с целью его исследования, сохраняя некоторые важные для данного исследования типичные черты и свойства оригинала. Хорошо построенная модель, как правило, доступнее для исследования, чем реальный объект (например, такой, как экономика страны, Солнечная система и т. п.). Другое, не менее важное назначение модели состоит в том, что с ее помощью выявляются наиболее существенные факторы, формирующие те или иные свойства объекта. Модель также позволяет учиться управлять объектом, что важно в тех случаях, когда экспериментировать с объектом бывает неудобно, трудно или невозможно (например, когда эксперимент имеет большую продолжительность или когда существует риск привести объект в нежелательное или необратимое состояние). Таким образом, можно сделать вывод, что модель необходима для того, чтобы: понять, как устроен конкретный объект - каковы его структура, основные свойства, законы развития и взаимодействия с окружающим миром; научиться управлять объектом или процессом и определить наилучшие способы управления при заданных целях и критериях (оптимизация); Меню прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект, процесс.

Этапы моделирования Характеристика 1 этапа I этап. Постановка задачи Под задачей в самом общем смысле понимается некая проблема, которую надо решить. Главное - определить объект моделирования и понять, что собой должен представлять результат. По характеру постановки все задачи можно разделить на две основные группы. К первой группе можно отнести задачи, в которых требуется исследовать, как изменяется характеристика объекта при некотором воздействии на него. Такую постановку задачи принято называть "что будет, если. . . ". Вторая группа задач имеет такую обобщенную формулировку: какое надо произвести воздействие на объект, чтобы его параметры удовлетворяли некоторому заданному условию? Такая постановка задачи часто называется "как сделать, чтобы. . . ". Цели моделирования определяются расчетными параметрами модели. Чаще всего это поиск ответа на вопрос, поставленный в формулировке задачи. Далее переходят к описанию объекта или процесса. На этой стадии выявляются факторы, от которых зависит поведение модели. При моделировании в электронных таблицах учитывать можно только те параметры, которые имеют количественные характеристики. Иногда задача может быть уже сформулирована в упрощенном виде, и в ней четко поставлены цели и определены параметры модели, которые надо учесть. При анализе объекта необходимо ответить на следующий вопрос: можно ли исследуемый объект или процесс рассматривать как единое целое или же это система, состоящая из более простых объектов? Если это единое целое, то можно перейти к построению информационной модели. Если система - надо перейти к анализу объектов, ее составляющих, определить связи между ними. Меню

Этапы моделирования Характеристика 2 этапа II этап. Разработка модели По результатам анализа объекта составляется информационная модель. В ней детально описываются все свойства объекта, их параметры, действия и взаимосвязи. Далее информационная модель должна быть выражена в одной из знаковых форм. Учитывая, что мы будем работать в среде электронных таблиц, то информационную модель необходимо преобразовать в математическую. На основе информационной и математической моделей составляется компьютерная модель в форме таблиц, в которой выделяются три области данных: исходные данные, промежуточные расчеты, результаты. Исходные данные вводятся "вручную". Расчеты, как промежуточные, так и окончательные, проводятся по формулам, записанным по правилам электронных таблиц. Меню

Этапы моделирования Характеристика 3 этапа III этап. Компьютерный эксперимент Чтобы дать жизнь новым конструкторским разработкам, внедрить новые технические решения в производство или проверить новые идеи, нужен эксперимент. В недалеком прошлом такой эксперимент можно было провести либо в лабораторных условиях на специально создаваемых для него установках, либо на натуре, т. е. на настоящем образце изделия, подвергая его всяческим испытаниям. Это требует больших материальных затрат и времени. В помощь пришли компьютерные исследования моделей. При проведении компьютерного эксперимента проверяют правильность построения моделей. Изучают поведение модели при различных параметрах объекта. Каждый эксперимент сопровождается осмыслением результатов. Если результаты компьютерного эксперимента противоречат смыслу решаемой задачи, то ошибку надо искать в неправильно выбранной модели или в алгоритме и методе ее решения. После выявления и устранения ошибок компьютерный эксперимент повторяется. Меню

Этапы моделирования Характеристика 4 этапа IV этап. Анализ результатов моделирования Заключительный этап моделирования - анализ модели. По полученным расчетным данным проверяется, насколько расчеты отвечают нашему представлению и целям моделирования. На этом этапе определяются рекомендации по совершенствованию принятой модели и, если возможно, объекта или процесса. Меню

Классификация моделей Классификация по области использования Учебные: наглядные пособия, различные тренажеры, обучающие программы. Опытные: уменьшенные или увеличенные копии исследуемого объекта для дальнейшего изучения (модели корабля, автомобиля, самолета, гидростанции). Научно-технические модели создают для исследования процессов и явлений (стенд для проверки телевизоров; синхротрон - ускоритель электронов и др.). Игровые: военные, экономические, спортивные, деловые игры. Имитационные: отражают реальность с той или иной степенью точности (испытание нового лекарственного средства в ряде опытах на мышах; эксперименты по внедрению в производство новой технологии). Классификация с учетом фактора времени Статическая модель - модель объекта в данный момент времени. Динамическая модель позволяет увидеть изменения объекта во времени. Меню

Классификация моделей Классификация по способу представления Материальная модель - это физическое подобие объекта. Они воспроизводят геометрические и физические свойства оригинала (чучела птиц, муляжи животных, внутренних органов человеческого организма, географические и исторические карты, схема солнечной системы). Информационная модель - это совокупность информации, характеризующая свойства и состояния объекта, процесса, явления, а также взаимосвязь с внешним миром. Любая информационная модель содержит лишь существенные сведения об объекте с учетом той цели, для которой она создается. Информационные модели одного и того же объекта, предназначенные для разных целей, могут быть совершенно разными. Вербальная модель - информационная модель в мысленной или разговорной форме. Знаковая модель - информационная модель, выраженная специальными знаками, т. е. средствами любого формального языка. Знаковые модели - это рисунки, тексты, графики, схемы, таблицы и т. д. Компьютерная модель - модель, реализованная средствами программной среды. Прежде чем построить модель объекта (явления, процесса), необходимо выделить составляющие его элементы и связи между ними (провести системный анализ) и "перевести" полученную структуру в какую-либо заранее определенную форму - формализовать информацию. Меню Формализация - это процесс выделения и перевода внутренней структуры предмета, явления или процесса в определенную информационную структуру - форму.

Классификация экономикоматематических моделей Экономико-математические модели – модели управляемых и регулируемых экономических процессов, использующиеся для преобразования экономической действительности. Адекватность моделей объектам моделирования определяется по совпадению результатов исследования с наблюдаемыми фактами. Практика в этом случае означает действительность. По целевому назначению экономико-математические модели бывают Теоретико-аналитические Прикладные Экономико-математические модели делятся на модели всего народного хозяйства и его подсистем (отраслей, регионов и т. д.) Модели бывают функциональные и структурные. Модели бывают дескрептивные и нормативные. Дескрептивные модели отвечают на вопрос, как это происходит и как может дальше развиваться? Нормативные модели отвечают на вопрос как это должно быть? То есть предполагают целенаправленную деятельность. Различают модели жёстко детерминистские и модели, учитывающие случайность и неопределённость. Модели бывают статически и динамические. По длительности рассматриваемого периода различают модели краткосрочного (1 -5 лет) и долгосрочного (10 -15 и более лет) прогнозирования, планирования. Само время в таких моделях может изменяться либо, непрерывно либо дискретно. Меню Модели могут быть линейные и нелинейные.

Этапы экономико-математического моделирования. Постановка экономической проблемы и её анализ. Главное – определить сущность проблемы, принимаемые допущения и те вопросы на которые, требуется получить ответы. Этап включает выделение важнейших черт и свойств объекта, абстрагирование от второстепенных. Формирование гипотез, если требуется, объясняющих поведение и развитие объекта. Построение математической модели. Этап формализации экономической проблемы. Неправильно полагать, что чем больше фактов учитывает модель, тем она лучше. Изменение сложности и громоздкости модели затрудняет процесс исследования. Нужно учитывать реальные возможности информационного и математического обеспечения. Нужно сопоставить затраты на моделирование с получаемым эффектом. Одной из важнейших особенностей математической модели является потенциальная возможность их использования для решения разных задач. Меню

Этапы экономико-математического моделирования. Математический анализ модели. Целью данного этапа является выяснение общих свойств модели. Важный момент – доказательство существования решения. Подготовка исходной информации Надо учитывать за какие сроки будет собрана нужная информация, учитывать затраты на подготовку информации. В процессе подготовки широко используются методы теории вероятности, теоретической и математической статистики. Численное решение. Разработка алгоритмов для численного решения задачи, составления программ для компьютера и непосредственно проведение расчетов. Трудность на этом этапе создаёт большая размерность экономических задач и необходимость обработки значительных массивов информации. Меню Анализ численных результатов и их применение. На этом этапе встаёт вопрос о правильности и полноте результатов моделирования, о степени их практической применимости.

Линейное программирование. Это раздел математического моделирования, все зависимости которого линейны. Математическая модель любой задачи линейного программирования имеет вид Z= max(min) Меню Условия не отрицательности Xj ≥ 0

Пример: При изготовлении изделий u 1 и u 2 используются токарные и фрезерные станки, а также сталь и цветные металлы, по технологическим нормам на производство единице изделия u 1 требуется 300 и 200 единиц соответственно токарного и фрезерного оборудования (в часах), и 10 и 20 единиц стали и цветных металлов (в кг.). для производства изделия u 2 требуется 400, 100, 70, 50 соответственно единиц тех же ресурсов. Цех располагает 12400 и 6800 часами, 640 и 840 кг. материала. Прибыль от реализации единице изделия u 1=6000 ден. ед. , u 2=16000 ден. ед. Требуется: Свести исходные данные в таблицу, удобную для построения модели. Составить математическую модель задачи. Определить план выпуска изделий, обеспечить max прибыль при условие что, время работы фрезерных станков должно быть использовано полностью.

Решение: Пусть х1 - число изделий u 1, а х2 – число изделий u 2, z – суммарная прибыль.

Линейное программирование. Эта общая или производная форма записи. Переменные Xj, которые удовлетворяют системе ограничений и условию не отрицательности, называются допустимыми. Допустимые переменные, которые превращают целевую функцию в max или min, называются оптимальными. Методы решения таких задач подразделяются на универсальные и специальные. Универсальным методом решают любые ЗЛП. Специальные методы учитывают особенности модели. Особенностью ЗЛП является то, что max (min) целевая функция достигает на границе области допустимых решений. К ЗЛП относятся: задача о выборе оптимальных технологий; задача о смесях; задача о раскрое материала; транспортная задача; Меню задача о наилучшем использовании ресурсов; задача о размещении заказа;

Постановка задачи линейного программирования Любая ЗЛП записывается с помощью математической модели. Существует 3 формы записи ЗЛП Меню Общая (произвольная)

Постановка задачи линейного программирования Все эти формы эквивалентны. Чтобы от max перейти к min (или наоборот) надо поменять знаки у каждого слагаемого в записи целевой функции. Чтобы превратить неравенство вида в неравенство вида (и наоборот) нужно обе части неравенства умножить на -1. Меню Каноническая (основная) Чтобы неравенство превратить в равенство (и наоборот) нужно добавить или отнять от левой части дополнительную неотрицательную переменную, она называется балансовой. При записи целевой функции она имеет коэффициент =0.

Математическое моделирование - процесс построения и изучения математических моделей

основные тенденции в развитии математического (компьютерного) моделирования в последние годы связываются не столько с решением "микро" проблем, таких как представленное выше соотношение "модель-алгоритм-программа". Акценты моделирования все более смещаются к "макро-проблемам". Действительно, аппаратно-программные средства решения микро-проблем за последнее время практически перестали ограничивать возможности моделирования даже в самых крупных проектах. Во всем мире наряду с базовыми языками программирования для моделирования широко используются десятки специализированных языков и коммерчески доступных систем моделирования, а возможности сетевого общения открывают доступ к самым современным методологиям и идеям.

В современной теории управления создаются и применяются математические модели двух основных типов (хотя в различных разделах теории эти типы и определяются по-разному).
Для технологических объектов это деление соответствует "феноменологическим" и "дедуктивным" моделям. Под феноменологическими моделями понимаются преимущественно эмпирически восстанавливаемые входо-выходные зависимости, как правило, с небольшим числом входов и выходов. Дедуктивное моделирование предполагает выяснение и описание основных физических закономерностей функционирования всех узлов исследуемого процесса и механизмов их взаимодействия. Дедуктивные модели намного богаче, они описывают процесс в целом, а не отдельные его режимы.
Первый тип моделей - аналитические модели (или, точнее говоря, модели данных). "Модели данных - это модели, которые не требуют, не используют и не отображают каких-либо гипотез о физических процессах (системах), в которых эти данные получены". Второй тип моделей - системные модели (или модели систем). Это математические модели , которые "строятся в основном на базе физических законов и гипотез о том, как система структурирована и, возможно, о том, как она функционирует".
В классическом понимании к моделям данных (аналитическим моделям) относятся все модели математической статистики . В последнее время характерные макро-изменения наблюдаются и для этих моделей. Связь с "внешним миром" проникает в эту сферу моделирования как экспертно-статистические методы и системы, что существенно расширяет методологическую базу для принятия решений в задачах анализа данных и управления.
Вплоть до недавнего времени математические модели использовались в практике управления только как источник входных данных для систем управления. Моделирование технических систем на этапе проектирования для оптимизации их структуры и параметров продолжает эту традицию.
Во многих других задачах принципиально применимы только системные модели Во многих случаях модель может входить в систему управления в форме блока, вычисляющего выходы некоторого объекта по ее входам. Часто в этом случае речь идет о развитии так называемого имитационного моделирования - динамическом моделировании объекта . Динамическое моделирование характерно для различных задач реального времени, прежде всего, для компьютерных тренажеров. Так, в процессе тренажерного обучения действия оператора интерпретируются как входы модели системы (технологической, транспортной и т.п.), а выходы модели преобразуются в аудио-визуальный образ реакций системы на действия оператора. Такое моделирование осуществляется в реальном времени, что позволяет использовать его результаты в различных технологиях реального времени (от обнаружения неисправностей до интерактивного тренинга операторов).
Существует два основных класса задач, связанных с математическими моделями: прямые и обратные. В первом случае все параметры модели считаются известными, и нам остается только исследовать её поведение. Например, определение частоты колебаний гармонического осциллятора при известном значении параметра k -- прямая задача математического моделирования.


Порой требуется решить обратную задачу: какие-то параметры модели неизвестны (например, не могут быть измерены явно), и требуется их найти, сопоставляя поведение реальной системы с её моделью. Ещё одна обратная задача: подобрать параметры модели таким образом, чтобы она удовлетворяла каким-то заданным условиям - такие задачи требуется решать при проектировании систем.

математическая модель выражает существенные черты-объекта или процесса языком уравнений и других математических средств. Собственно говоря, сама математика обязана своим существованием тому, что она пытается отразить, т.е. промоделировать, на своем специфическом языке закономерности окружающего мира.

Путь математического моделирования в наше время гораздо более всеобъемлющ, нежели моделирования натурного. Огромный толчок развитию математического моделирования дало появление ЭВМ, хотя сам метод зародился одновременно с математикой тысячи лет назад.

Математическое моделирование как таковое отнюдь не всегда требует компьютерной поддержки. Каждый специалист, профессионально занимающийся математическим моделированием, делает все возможное для аналитического исследования модели. Аналитические решения (т.е. представленные формулами, выражающими результаты исследования через исходные данные) обычно удобнее и информативнее численных. Возможности аналитических методов решения сложных математических задач, однако, очень ограниченны и, как правило, эти методы гораздо сложнее численных.



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация