Числовые ряды основные понятия и определения. Числовые ряды: определения, свойства, признаки сходимости, примеры, решения

Главная / Квартира

Пусть задана бесконечная последовательность чисел u1, u2, u3…

Выражение u1+ u2+ u3…+ un (1) называется числовым рядом, а числа его составляющие- членами ряда.

Сумма конечно числа n первых членов ряда называется n-ной частичной суммой ряда: Sn = u1+..+un

Если сущ. конечный предел: , то его называют суммой ряда и говорят, что ряд сходится, если такого предела не существует, то говорят что ряд расходится и суммы не имеет.

2 Геометрический и арифметический ряды

Ряд состоящий из членов бесконечной геометрической прогрессии наз. геометрическим:
или

а+ аq +…+aq n -1

a  0 первый член q – знаменатель. Сумма ряда:

следовательно конечный предел последовательности частных сумм ряда зависит от величины q

Возможны случаи:

1 |q|<1

т. е. ряд схд-ся и его сумма
2 |q|>1
и предел суммы так же равен бесконечности

т. е. ряд расходится.

3 при q = 1 получается ряд: а+а+…+а… Sn = na
ряд расходится

4 при q1 ряд имеет вид: а-а+а … (-1) n -1 a Sn=0 при n четном, Sn=a при n нечетном предела частных суммы не существует. ряд расходится.

Рассмотрим ряд из бесконечных членов арифметической прогрессии:
u – первый член, d – разность. Сумма ряда

при любых u1 и d одновременно  0 и ряд всегда расходится.

3 С-ва сходящихся рядов

Пусть даны два ряда: u1+u2+…un =(1) иv1+v2+…vn = (2)

Произведением ряда (1) на число   R наз ряд: u1+u2+…un =(3)

Суммой рядов (1) и (2) наз ряд:

(u1+v1)+(u2+v2)+…(un+vn) =
(для разности там только - появица)

Т1 Об общем множителе

Если ряд (1) сходится и его сумма = S, то для любого числа  ряд = тоже сходится и его суммаS’ = S Если ряд (1) расходится и   0, то и ряд тоже расходится. Т. е. общий множитель не влияет на расходимости ряда.

Т2 Если ряды (1) и (2) сходятся, а их суммы = соотв S и S’, то и ряд:
тоже сходится и если его сумма, то  = S+S’. Т. е. сходящиеся ряды можно почленно складывать и вычитать. Если ряд (1) сходится, а ряд (2) расходится, то их сумма(или разность) тоже расходится. А вот если оба ряда расходятся. то ихняя сумма (или разность)может как расходится (если un=vn) так и сходиться (если un=vn)

Для ряда (1) ряд
называетсяn – ным остатком ряда. Если нный остаток ряда сходится, то его сумму будем обозначать: r n =

Т3 Если ряд сходится, то и любой его остаток сходится, если какой либо остаток ряда сходится, то сходится и сам ряд. Причем полная сумма = частичная сумма ряда Sn + r n

Изменение, а также отбрасывание или добавление конечного числа членов не влияет на сходимость (расходимость) ряда.

4 Необходимый признак сходимости рядов

Если ряд сходится, то предел его общего члена равен нулю:

Док-во:

Sn-1\u1+u2+…+un-1

un=Sn-Sn-1, поэтому:

Сей признак является только необходимым, но не является достаточным., т. е. если предел общегоь члена и равен нулю совершенно необязательно чтобы ряд при этом сходился. Следовательно, вот сие условие при его невыполнении является зато достаточным условием расходимости ряда.

5 Интегральный признак сходимости ряда. Ряд Дирихле

Т1 Пущай дан рядт (1), члены которого неотрицательны, и не возрастают:u1>=u2>=u3…>=un

Если существует ф-ция f(x) неотрицательная, непрерывная и не возрастающая на такая, что f(n) = Un,  n  N, то для сходимости ряда (1) необходимо унд достаточно, чтобы сходился несобственный интеграл:
, а для расходимости достаточно и необходимо чтобы сей интеграл наоборот расходился (ВАУ!).

Применим сей признак для исследования ряда Дирихле: Вот он: ,  R Сей ряд называют обобщенным гармоническим рядом, при  >0 общий член оного un=1/n  0 и убывает поэтому можно воспользоваться интегральным признаком, функцией здеся будет ф-ция f(x)=1/x  (x>=1)сия ф-ция удовлетворяет условиям теоремы 1 поэтому сходимость (расходимости) ряда Дирихле равнозначна сходимости расходимости интеграла:

Возможны три случая:

1  >1,

Интеграл а потому и ряд сходится.

Интеграл и ряд расходится

Интеграл и ряд расходится

Данная статья представляет собой структурированную и подробную информацию, которая может пригодиться во время разбора упражнений и задач. Мы рассмотрим тему числовых рядов.

Данная статья начинается с основных определений и понятий. Далее мы стандартные варианты и изучим основные формулы. Для того, чтобы закрепить материал, в статье приведены основные примеры и задачи.

Yandex.RTB R-A-339285-1

Базовые тезисы

Для начала представим систему: a 1 , a 2 . . . , a n , . . . , где a k ∈ R , k = 1 , 2 . . . .

Для примера, возьмем такие числа, как: 6 , 3 , - 3 2 , 3 4 , 3 8 , - 3 16 , . . . .

Определение 1

Числовой ряд – это сумма членов ∑ a k k = 1 ∞ = a 1 + a 2 + . . . + a n + . . . .

Чтобы лучше понять определение, рассмотрим данный случай, в котором q = - 0 . 5: 8 - 4 + 2 - 1 + 1 2 - 1 4 + . . . = ∑ k = 1 ∞ (- 16) · - 1 2 k .

Определение 2

a k является общим или k –ым членом ряда.

Он выглядит примерно таким образом - 16 · - 1 2 k .

Определение 3

Частичная сумма ряда выглядит примерно таким образом S n = a 1 + a 2 + . . . + a n , в которой n –любое число. S n является n -ой суммой ряда.

Например, ∑ k = 1 ∞ (- 16) · - 1 2 k есть S 4 = 8 - 4 + 2 - 1 = 5 .

S 1 , S 2 , . . . , S n , . . . образуют бесконечную последовательность числового ряда.

Для ряда n –ая сумму находится по формуле S n = a 1 · (1 - q n) 1 - q = 8 · 1 - - 1 2 n 1 - - 1 2 = 16 3 · 1 - - 1 2 n . Используем следующую последовательность частичных сумм: 8 , 4 , 6 , 5 , . . . , 16 3 · 1 - - 1 2 n , . . . .

Определение 4

Ряд ∑ k = 1 ∞ a k является сходящимся тогда, когда последовательность обладает конечным пределом S = lim S n n → + ∞ . Если предела нет или последовательность бесконечна, то ряд ∑ k = 1 ∞ a k называется расходящимся.

Определение 5

Суммой сходящегося ряда ∑ k = 1 ∞ a k является предел последовательности ∑ k = 1 ∞ a k = lim S n n → + ∞ = S .

В данном примере lim S n n → + ∞ = lim 16 3 т → + ∞ · 1 - 1 2 n = 16 3 · lim n → + ∞ 1 - - 1 2 n = 16 3 , ряд ∑ k = 1 ∞ (- 16) · - 1 2 k сходится. Сумма равна 16 3: ∑ k = 1 ∞ (- 16) · - 1 2 k = 16 3 .

Пример 1

В качестве примера расходящегося ряда можно привести сумму геометрической прогрессии со знаменателем большем, чем единица: 1 + 2 + 4 + 8 + . . . + 2 n - 1 + . . . = ∑ k = 1 ∞ 2 k - 1 .

n -ая частичная сумма определяется выражением S n = a 1 · (1 - q n) 1 - q = 1 · (1 - 2 n) 1 - 2 = 2 n - 1 , а предел частичных сумм бесконечен: lim n → + ∞ S n = lim n → + ∞ (2 n - 1) = + ∞ .

Еще одим примером расходящегося числового ряда является сумма вида ∑ k = 1 ∞ 5 = 5 + 5 + . . . . В этом случае n -ая частичная сумма может быть вычислена как S n = 5 n . Предел частичных сумм бесконечен lim n → + ∞ S n = lim n → + ∞ 5 n = + ∞ .

Определение 6

Сумма подобного вида как ∑ k = 1 ∞ = 1 + 1 2 + 1 3 + . . . + 1 n + . . . – это гармонический числовой ряд.

Определение 7

Сумма ∑ k = 1 ∞ 1 k s = 1 + 1 2 s + 1 3 s + . . . + 1 n s + . . . , где s –действительное число, является обобщенно гармоническим числовым рядом.

Определения, рассмотренные выше, помогут вам для решения большинства примеров и задач.

Для того, чтобы дополнить определения, необходимо доказать определенные уравнения.

  1. ∑ k = 1 ∞ 1 k – расходящийся.

Действуем методом от обратного. Если он сходится, то предел конечен. Можно записать уравнение как lim n → + ∞ S n = S и lim n → + ∞ S 2 n = S . После определенных действий мы получаем равенство l i m n → + ∞ (S 2 n - S n) = 0 .

Напротив,

S 2 n - S n = 1 + 1 2 + 1 3 + . . . + 1 n + 1 n + 1 + 1 n + 2 + . . . + 1 2 n - - 1 + 1 2 + 1 3 + . . . + 1 n = 1 n + 1 + 1 n + 2 + . . . + 1 2 n

Справедливы следующие неравенства 1 n + 1 > 1 2 n , 1 n + 1 > 1 2 n , . . . , 1 2 n - 1 > 1 2 n . Получаем, что S 2 n - S n = 1 n + 1 + 1 n + 2 + . . . + 1 2 n > 1 2 n + 1 2 n + . . . + 1 2 n = n 2 n = 1 2 . Выражение S 2 n - S n > 1 2 указывает на то, что lim n → + ∞ (S 2 n - S n) = 0 не достигается. Ряд расходящийся.

  1. b 1 + b 1 q + b 1 q 2 + . . . + b 1 q n + . . . = ∑ k = 1 ∞ b 1 q k - 1

Необходимо подтвердить, что сумма последовательности чисел сходится при q < 1 , и расходится при q ≥ 1 .

Согласно приведенным выше определениям, сумма n членов определяется согласно формуле S n = b 1 · (q n - 1) q - 1 .

Если q < 1 верно

lim n → + ∞ S n = lim n → + ∞ b 1 · q n - 1 q - 1 = b 1 · lim n → + ∞ q n q - 1 - lim n → + ∞ 1 q - 1 = = b 1 · 0 - 1 q - 1 = b 1 q - 1

Мы доказали, что числовой ряд сходится.

При q = 1 b 1 + b 1 + b 1 + . . . ∑ k = 1 ∞ b 1 . Суммы можно отыскать с использованием формулы S n = b 1 · n , предел бесконечен lim n → + ∞ S n = lim n → + ∞ b 1 · n = ∞ . В представленном варианте ряд расходится.

Если q = - 1 , то ряд выглядит как b 1 - b 1 + b 1 - . . . = ∑ k = 1 ∞ b 1 (- 1) k + 1 . Частичные суммы выглядят как S n = b 1 для нечетных n , и S n = 0 для четных n . Рассмотрев данный случай, мы удостоверимся, что предела нет и ряд является расходящимся.

При q > 1 справедливо lim n → + ∞ S n = lim n → + ∞ b 1 · (q n - 1) q - 1 = b 1 · lim n → + ∞ q n q - 1 - lim n → + ∞ 1 q - 1 = = b 1 · ∞ - 1 q - 1 = ∞

Мы доказали, что числовой ряд расходится.

  1. Ряд ∑ k = 1 ∞ 1 k s сходится, если s > 1 и расходится, если s ≤ 1 .

Для s = 1 получаем ∑ k = 1 ∞ 1 k , ряд расходится.

При s < 1 получаем 1 k s ≥ 1 k для k , натурального числа. Так как ряд является расходящимся ∑ k = 1 ∞ 1 k , то предела нет. Следуя этому, последовательность ∑ k = 1 ∞ 1 k s неограниченна. Делаем вывод, что выбранный ряд расходится при s < 1 .

Необходимо предоставить доказательства, что ряд ∑ k = 1 ∞ 1 k s сходится при s > 1 .

Представим S 2 n - 1 - S n - 1:

S 2 n - 1 - S n - 1 = 1 + 1 2 s + 1 3 s + . . . + 1 (n - 1) s + 1 n s + 1 (n + 1) s + . . . + 1 (2 n - 1) s - - 1 + 1 2 s + 1 3 s + . . . + 1 (n - 1) s = 1 n s + 1 (n + 1) s + . . . + 1 (2 n - 1) s

Допустим, что 1 (n + 1) s < 1 n s , 1 (n + 2) s < 1 n s , . . . , 1 (2 n - 1) s < 1 n s , тогда S 2 n - 1 - S n - 1 = 1 n s + 1 (n + 1) s + . . . + 1 (2 n - 1) s < < 1 n s + 1 n s + . . . + 1 n s = n n s = 1 n s - 1

Представим уравнение для чисел, которые являются натуральными и четными n = 2: S 2 n - 1 - S n - 1 = S 3 - S 1 = 1 2 s + 1 3 s < 1 2 s - 1 n = 4: S 2 n - 1 - S n - 1 = S 7 - S 3 = 1 4 s + 1 5 s + 1 6 s + 1 7 s < 1 4 s - 1 = 1 2 s - 1 2 n = 8: S 2 n - 1 - S n - 1 = S 15 - S 7 = 1 8 s + 1 9 s + . . . + 1 15 s < 1 8 s - 1 = 1 2 s - 1 3 . . .

Получаем:

∑ k = 1 ∞ 1 k s = 1 + 1 2 s + 1 3 s + 1 4 s + . . . + 1 7 s + 1 8 s + . . . + 1 15 s + . . . = = 1 + S 3 - S 1 + S 7 - S 3 + S 15 + S 7 + . . . < < 1 + 1 2 s - 1 + 1 2 s - 1 2 + 1 2 s - 1 3 + . . .

Выражение 1 + 1 2 s - 1 + 1 2 s - 1 2 + 1 2 s - 1 3 + . . . – это сумма геометрической прогрессии q = 1 2 s - 1 . Согласно исходным данным при s > 1 , то 0 < q < 1 . Получаем, ∑ k = 1 ∞ < 1 + 1 2 s - 1 + 1 2 s - 1 2 + 1 2 s - 1 3 + . . . = 1 1 - q = 1 1 - 1 2 s - 1 . Последовательность ряда при s > 1 увеличивается и ограничивается сверху 1 1 - 1 2 s - 1 . Представим, что есть предел и ряд является сходящимся ∑ k = 1 ∞ 1 k s .

Определение 8

Ряд ∑ k = 1 ∞ a k знакоположителен в том случае , если его члены > 0 a k > 0 , k = 1 , 2 , . . . .

Ряд ∑ k = 1 ∞ b k знакочередующийся , если знаки чисел отличаются. Данный пример представлен как ∑ k = 1 ∞ b k = ∑ k = 1 ∞ (- 1) k · a k или ∑ k = 1 ∞ b k = ∑ k = 1 ∞ (- 1) k + 1 · a k , где a k > 0 , k = 1 , 2 , . . . .

Ряд ∑ k = 1 ∞ b k знакопеременный , так как в нем множество чисел, отрицательных и положительных.

Второй вариант ряд – это частный случай третьего варианта.

Приведем примеры для каждого случая соответственно:

6 + 3 + 3 2 + 3 4 + 3 8 + 3 16 + . . . 6 - 3 + 3 2 - 3 4 + 3 8 - 3 16 + . . . 6 + 3 - 3 2 + 3 4 + 3 8 - 3 16 + . . .

Для третьего варианта также можно определить абсолютную и условную сходимость.

Определение 9

Знакочередующийся ряд ∑ k = 1 ∞ b k абсолютно сходится в том случае, когда ∑ k = 1 ∞ b k также считается сходящимся.

Подробно разберем несколько характерных вариантов

Пример 2

Если ряды 6 - 3 + 3 2 - 3 4 + 3 8 - 3 16 + . . . и 6 + 3 - 3 2 + 3 4 + 3 8 - 3 16 + . . . определяются как сходящиеся, то верно считать, что 6 + 3 + 3 2 + 3 4 + 3 8 + 3 16 + . . .

Определение 10

Знакопеременный ряд ∑ k = 1 ∞ b k считается условно сходящимся в том случае, если ∑ k = 1 ∞ b k – расходящийся, а ряд ∑ k = 1 ∞ b k считается сходящимся.

Пример 3

Подробно разберем вариант ∑ k = 1 ∞ (- 1) k + 1 k = 1 - 1 2 + 1 3 - 1 4 + . . . . Ряд ∑ k = 1 ∞ (- 1) k + 1 k = ∑ k = 1 ∞ 1 k , который состоит из абсолютных величин, определяется как расходящийся. Этот вариант считается сходящимся, так как это легко определить. Из данного примера мы узнаем, что ряд ∑ k = 1 ∞ (- 1) k + 1 k = 1 - 1 2 + 1 3 - 1 4 + . . . будет считаться условно сходящимся.

Особенности сходящихся рядов

Проанализируем свойства для определенных случаев

  1. Если ∑ k = 1 ∞ a k будет сходится, то и ряд ∑ k = m + 1 ∞ a k также признается сходящимся. Можно отметить, что ряд без m членов также считается сходящимся. В случае, если мы добавляем к ∑ k = m + 1 ∞ a k несколько чисел, то получившийся результат также будет сходящимся.
  2. Если ∑ k = 1 ∞ a k сходится и сумма = S , то сходится и ряд ∑ k = 1 ∞ A · a k , ∑ k = 1 ∞ A · a k = A · S , где A –постоянная.
  3. Если ∑ k = 1 ∞ a k и ∑ k = 1 ∞ b k являются сходящимися, суммы A и B тоже, то и ряды ∑ k = 1 ∞ a k + b k и ∑ k = 1 ∞ a k - b k также сходятся. Суммы будут равняться A + B и A - B соответственно.
Пример 4

Определить, что ряд сходится ∑ k = 1 ∞ 2 3 k · k 3 .

Изменим выражение ∑ k = 1 ∞ 2 3 k · k 3 = ∑ k = 1 ∞ 2 3 · 1 k 4 3 . Ряд ∑ k = 1 ∞ 1 k 4 3 считается сходящимся, так как ряд ∑ k = 1 ∞ 1 k s сходится при s > 1 . В соответствии со вторым свойством, ∑ k = 1 ∞ 2 3 · 1 k 4 3 .

Пример 5

Определить, сходится ли ряд ∑ n = 1 ∞ 3 + n n 5 2 .

Преобразуем изначальный вариант ∑ n = 1 ∞ 3 + n n 5 2 = ∑ n = 1 ∞ 3 n 5 2 + n n 2 = ∑ n = 1 ∞ 3 n 5 2 + ∑ n = 1 ∞ 1 n 2 .

Получаем сумму ∑ n = 1 ∞ 3 n 5 2 и ∑ n = 1 ∞ 1 n 2 . Каждый ряд признается сходящимся согласно свойству. Так, как ряды сходятся, то исходный вариант тоже.

Пример 6

Вычислить, сходится ли ряд 1 - 6 + 1 2 - 2 + 1 4 - 2 3 + 1 8 - 2 9 + . . . и вычислить сумму.

Разложим исходный вариант:

1 - 6 + 1 2 - 2 + 1 4 - 2 3 + 1 8 - 2 9 + . . . = = 1 + 1 2 + 1 4 + 1 8 + . . . - 2 · 3 + 1 + 1 3 + 1 9 + . . . = = ∑ k = 1 ∞ 1 2 k - 1 - 2 · ∑ k = 1 ∞ 1 3 k - 2

Каждый ряд сходится, так как является одним из членов числовой последовательности. Согласно третьему свойству, мы можем вычислить, что исходный вариант также является сходящимся. Вычисляем сумму: Первый член ряда ∑ k = 1 ∞ 1 2 k - 1 = 1 , а знаменатель = 0 . 5 , за этим следует, ∑ k = 1 ∞ 1 2 k - 1 = 1 1 - 0 . 5 = 2 . Первый член ∑ k = 1 ∞ 1 3 k - 2 = 3 , а знаменатель убывающей числовой последовательности = 1 3 . Получаем: ∑ k = 1 ∞ 1 3 k - 2 = 3 1 - 1 3 = 9 2 .

Используем выражения, полученные выше, для того, чтобы определить сумму 1 - 6 + 1 2 - 2 + 1 4 - 2 3 + 1 8 - 2 9 + . . . = ∑ k = 1 ∞ 1 2 k - 1 - 2 · ∑ k = 1 ∞ 1 3 k - 2 = 2 - 2 · 9 2 = - 7

Необходимое условие для определения, является ли ряд сходящимся

Определение 11

Если ряд ∑ k = 1 ∞ a k является сходящимся, то предел его k -ого члена = 0: lim k → + ∞ a k = 0 .

Если мы проверим любой вариант, то нужно не забывать о непременном условии. Если оно не выполняется, то ряд расходится. Если lim k → + ∞ a k ≠ 0 , то ряд расходящийся.

Следует уточнить, что условие важно, но не достаточно. Если равенство lim k → + ∞ a k = 0 выполняется, то это не гарантирует, что ∑ k = 1 ∞ a k является сходящимся.

Приведем пример. Для гармонического ряда ∑ k = 1 ∞ 1 k условие выполняется lim k → + ∞ 1 k = 0 , но ряд все равно расходится.

Пример 7

Определить сходимость ∑ n = 1 ∞ n 2 1 + n .

Проверим исходное выражение на выполнение условия lim n → + ∞ n 2 1 + n = lim n → + ∞ n 2 n 2 1 n 2 + 1 n = lim n → + ∞ 1 1 n 2 + 1 n = 1 + 0 + 0 = + ∞ ≠ 0

Предел n -ого члена не равен 0 . Мы доказали, что данный ряд расходится.

Как определить сходимость знакоположительного ряда.

Если постоянно пользоваться указанными признаками, придется постоянно вычислять пределы. Данный раздел поможет избежать сложностей во время решения примеров и задач. Для того, чтобы определить сходимость знакоположительного ряда, существует определенное условие.

Для сходимости знакоположительного ∑ k = 1 ∞ a k , a k > 0 ∀ k = 1 , 2 , 3 , . . . нужно определять ограниченную последовательность сумм.

Как сравнивать ряды

Существует несколько признаков сравнения рядов. Мы сравниваем ряд, сходимость которого предлагается определить, с тем рядом, сходимость которого известна.

Первый признак

∑ k = 1 ∞ a k и ∑ k = 1 ∞ b k - знакоположительные ряды. Неравенство a k ≤ b k справедливо для k = 1, 2, 3, ... Из этого следует, что из ряда ∑ k = 1 ∞ b k мы можем получить ∑ k = 1 ∞ a k . Так как ∑ k = 1 ∞ a k расходится, то ряд ∑ k = 1 ∞ b k можно определить как расходящийся.

Данное правило постоянно используется для решения уравнений и является серьезным аргументом, которое поможет определить сходимость. Сложности могут состоять в том, что подобрать подходящий пример для сравнения можно найти далеко не в каждом случае. Довольно часто ряд выбирается по принципу, согласно которому показатель k -ого члена будет равняться результату вычитания показателей степеней числителя и знаменателя k -ого члена ряда. Допустим, что a k = k 2 + 3 4 k 2 + 5 , разность будет равна 2 – 3 = - 1 . В данном случае можно определить, что для сравнения необходим ряд с k -ым членом b k = k - 1 = 1 k , который является гармоническим.

Для того, чтобы закрепить полученный материал, детально рассмотрим пару типичных вариантов.

Пример 8

Определить, каким является ряд ∑ k = 1 ∞ 1 k - 1 2 .

Так как предел = 0 lim k → + ∞ 1 k - 1 2 = 0 , мы выполнили необходимое условие. Неравенство будет справедливым 1 k < 1 k - 1 2 для k , которые являются натуральными. Из предыдущих пунктов мы узнали, что гармонический ряд ∑ k = 1 ∞ 1 k – расходящийся. Согласно первому признаку, можно доказать, что исходный вариант является расходящимся.

Пример 9

Определить, является ряд сходящимся или расходящимся ∑ k = 1 ∞ 1 k 3 + 3 k - 1 .

В данном примере выполняется необходимое условие, так как lim k → + ∞ 1 k 3 + 3 k - 1 = 0 . Представляем в виде неравенства 1 k 3 + 3 k - 1 < 1 k 3 для любого значения k . Ряд ∑ k = 1 ∞ 1 k 3 является сходящимся, так как гармонический ряд ∑ k = 1 ∞ 1 k s сходится при s > 1 . Согласно первому признаку, мы можем сделать вывод, что числовой ряд является сходящимся.

Пример 10

Определить, является каким является ряд ∑ k = 3 ∞ 1 k ln (ln k) . lim k → + ∞ 1 k ln (ln k) = 1 + ∞ + ∞ = 0 .

В данном варианте можно отметить выполнение нужного условия. Определим ряд для сравнения. Например, ∑ k = 1 ∞ 1 k s . Чтобы определить, чему равна степень, расммотрим последовательность { ln (ln k) } , k = 3 , 4 , 5 . . . . Члены последовательности ln (ln 3) , ln (ln 4) , ln (ln 5) , . . . увеличивается до бесконечности. Проанализировав уравнение, можно отметить, что, взяв в качестве значения N = 1619 , то члены последовательности > 2 . Для данной последовательности будет справедливо неравенство 1 k ln (ln k) < 1 k 2 . Ряд ∑ k = N ∞ 1 k 2 сходится согласно первому признаку, так как ряд ∑ k = 1 ∞ 1 k 2 тоже сходящийся. Отметим, что согласно первому признаку ряд ∑ k = N ∞ 1 k ln (ln k) сходящийся. Можно сделать вывод, что ряд ∑ k = 3 ∞ 1 k ln (ln k) также сходящийся.

Второй признак

Допустим, что ∑ k = 1 ∞ a k и ∑ k = 1 ∞ b k - знакоположительные числовые ряды.

Если lim k → + ∞ a k b k ≠ ∞ , то ряд ∑ k = 1 ∞ b k сходится, и ∑ k = 1 ∞ a k сходится также.

Если lim k → + ∞ a k b k ≠ 0 , то так как ряд ∑ k = 1 ∞ b k расходится, то ∑ k = 1 ∞ a k также расходится.

Если lim k → + ∞ a k b k ≠ ∞ и lim k → + ∞ a k b k ≠ 0 , то сходимость или расходимость ряда означает сходимость или расходимость другого.

Рассмотрим ∑ k = 1 ∞ 1 k 3 + 3 k - 1 с помощью второго признака. Для сравнения ∑ k = 1 ∞ b k возьмем сходящийся ряд ∑ k = 1 ∞ 1 k 3 . Определим предел: lim k → + ∞ a k b k = lim k → + ∞ 1 k 3 + 3 k - 1 1 k 3 = lim k → + ∞ k 3 k 3 + 3 k - 1 = 1

Согласно второму признаку можно определить, что сходящийся ряд ∑ k = 1 ∞ 1 k 3 означается, что первоначальный вариант также сходится.

Пример 11

Определить, каким является ряд ∑ n = 1 ∞ k 2 + 3 4 k 3 + 5 .

Проанализируем необходимое условие lim k → ∞ k 2 + 3 4 k 3 + 5 = 0 , которое в данном варианте выполняется. Согласно второму признаку, возьмем ряд ∑ k = 1 ∞ 1 k . Ищем предел: lim k → + ∞ k 2 + 3 4 k 3 + 5 1 k = lim k → + ∞ k 3 + 3 k 4 k 3 + 5 = 1 4

Согласно приведенным выше тезисам, расходящийся ряд влечет собой расходимость исходного ряда.

Третий признак

Рассмотрим третий признак сравнения.

Допустим, что ∑ k = 1 ∞ a k и _ ∑ k = 1 ∞ b k - знакоположительные числовые ряды. Если условие выполняется для некого номера a k + 1 a k ≤ b k + 1 b k , то сходимость данного ряда ∑ k = 1 ∞ b k означает, что ряд ∑ k = 1 ∞ a k также является сходящимся. Расходящийся ряд ∑ k = 1 ∞ a k влечет за собой расходимость ∑ k = 1 ∞ b k .

Признак Даламбера

Представим, что ∑ k = 1 ∞ a k - знакоположительный числовой ряд. Если lim k → + ∞ a k + 1 a k < 1 , то ряд является сходящимся, если lim k → + ∞ a k + 1 a k > 1 , то расходящимся.

Замечание 1

Признак Даламбера справедлив в том случае, если предел бесконечен.

Если lim k → + ∞ a k + 1 a k = - ∞ , то ряд является сходящимся, если lim k → ∞ a k + 1 a k = + ∞ , то расходящимся.

Если lim k → + ∞ a k + 1 a k = 1 , то признак Даламбера не поможет и потребуется провести еще несколько исследований.

Пример 12

Определить, является ряд сходящимся или расходящимся ∑ k = 1 ∞ 2 k + 1 2 k по признаку Даламбера.

Необходимо проверить, выполняется ли необходимое условие сходимости. Вычислим предел, воспользовавшись правилом Лопиталя: lim k → + ∞ 2 k + 1 2 k = ∞ ∞ = lim k → + ∞ 2 k + 1 " 2 k " = lim k → + ∞ 2 2 k · ln 2 = 2 + ∞ · ln 2 = 0

Мы можем увидеть, что условие выполняется. Воспользуемся признаком Даламбера: lim k → + ∞ = lim k → + ∞ 2 (k + 1) + 1 2 k + 1 2 k + 1 2 k = 1 2 lim k → + ∞ 2 k + 3 2 k + 1 = 1 2 < 1

Ряд является сходящимся.

Пример 13

Определить, является ряд расходящимся ∑ k = 1 ∞ k k k ! .

Воспользуемся признаком Даламбера для того, чтобы определить рассходимость ряда: lim k → + ∞ a k + 1 a k = lim k → + ∞ (k + 1) k + 1 (k + 1) ! k k k ! = lim k → + ∞ (k + 1) k + 1 · k ! k k · (k + 1) ! = lim k → + ∞ (k + 1) k + 1 k k · (k + 1) = = lim k → + ∞ (k + 1) k k k = lim k → + ∞ k + 1 k k = lim k → + ∞ 1 + 1 k k = e > 1

Следовательно, ряд является расходящимся.

Радикальный признак Коши

Допустим, что ∑ k = 1 ∞ a k - это знакоположительный ряд. Если lim k → + ∞ a k k < 1 , то ряд является сходящимся, если lim k → + ∞ a k k > 1 , то расходящимся.

Замечание 2

Если lim k → + ∞ a k k = 1 , то данный признак не дает никакой информации – требуется проведение дополнительного анализа.

Данный признак может быть использован в примерах, которые легко определить. Случай будет характерным тогда, когда член числового ряда – это показательно степенное выражение.

Для того, чтобы закрепить полученную информацию, рассмотрим несколько характерных примеров.

Пример 14

Определить, является ли знакоположительный ряд ∑ k = 1 ∞ 1 (2 k + 1) k на сходящимся.

Нужное условие считается выполненным, так как lim k → + ∞ 1 (2 k + 1) k = 1 + ∞ + ∞ = 0 .

Согласно признаку, рассмотренному выше, получаем lim k → + ∞ a k k = lim k → + ∞ 1 (2 k + 1) k k = lim k → + ∞ 1 2 k + 1 = 0 < 1 . Данный ряд является сходимым.

Пример 15

Сходится ли числовой ряд ∑ k = 1 ∞ 1 3 k · 1 + 1 k k 2 .

Используем признак, описанный в предыдущем пункте lim k → + ∞ 1 3 k · 1 + 1 k k 2 k = 1 3 · lim k → + ∞ 1 + 1 k k = e 3 < 1 , следовательно, числовой ряд сходится.

Интегральный признак Коши

Допустим, что ∑ k = 1 ∞ a k является знакоположительным рядом. Необходимо обозначить функцию непрерывного аргумента y = f (x) , которая совпадает a n = f (n) . Если y = f (x) больше нуля, не прерывается и убывает на [ a ; + ∞) , где a ≥ 1

То в случае, если несобственный интеграл ∫ a + ∞ f (x) d x является сходящимся, то рассматриваемый ряд также сходится. Если же он расходится, то в рассматриваемом примере ряд тоже расходится.

При проверке убывания функции можно использовать материал, рассмотренный на предыдущих уроках.

Пример 16

Рассмотреть пример ∑ k = 2 ∞ 1 k · ln k на сходимость.

Условие сходимости ряда считается выполненным, так как lim k → + ∞ 1 k · ln k = 1 + ∞ = 0 . Рассмотрим y = 1 x · ln x . Она больше нуля, не прерывается и убывает на [ 2 ; + ∞) . Первые два пункта доподлинно известны, а вот на третьем следует остановиться подробнее. Находим производную: y " = 1 x · ln x " = x · ln x " x · ln x 2 = ln x + x · 1 x x · ln x 2 = - ln x + 1 x · ln x 2 . Она меньше нуля на [ 2 ; + ∞) . Это доказывает тезис о том, что функция является убывающей.

Собственно, функция y = 1 x · ln x соответствует признакам принципа, который мы рассматривали выше. Воспользуемся им: ∫ 2 + ∞ d x x · ln x = lim A → + ∞ ∫ 2 A d (ln x) ln x = lim A → + ∞ ln (ln x) 2 A = = lim A → + ∞ (ln (ln A) - ln (ln 2)) = ln (ln (+ ∞)) - ln (ln 2) = + ∞

Согласно полученным результатам, исходный пример расходится, так как несобственный интеграл является расходящимся.

Пример 17

Докажите сходимость ряда ∑ k = 1 ∞ 1 (10 k - 9) (ln (5 k + 8)) 3 .

Так как lim k → + ∞ 1 (10 k - 9) (ln (5 k + 8)) 3 = 1 + ∞ = 0 , то условие считается выполненным.

Начиная с k = 4 , верное выражение 1 (10 k - 9) (ln (5 k + 8)) 3 < 1 (5 k + 8) (ln (5 k + 8)) 3 .

Если ряд ∑ k = 4 ∞ 1 (5 k + 8) (ln (5 k + 8)) 3 будет считаться сходящимся, то, согласно одному из принципов сравнения, ряд ∑ k = 4 ∞ 1 (10 k - 9) (ln (5 k + 8)) 3 также будет считаться сходящимся. Таким образом, мы сможет определить, что исходное выражение также является сходящимся.

Перейдем к доказательству ∑ k = 4 ∞ 1 (5 k + 8) (ln (5 k + 8)) 3 .

Так как функция y = 1 5 x + 8 (ln (5 x + 8)) 3 больше нуля, не прерывается и убывает на [ 4 ; + ∞) . Используем признак, описанный в предыдущем пункте:

∫ 4 + ∞ d x (5 x + 8) (l n (5 x + 8)) 3 = lim A → + ∞ ∫ 4 A d x (5 x + 8) (ln (5 x + 8)) 3 = = 1 5 · lim A → + ∞ ∫ 4 A d (ln (5 x + 8) (ln (5 x + 8)) 3 = - 1 10 · lim A → + ∞ 1 (ln (5 x + 8)) 2 | 4 A = = - 1 10 · lim A → + ∞ 1 (ln (5 · A + 8)) 2 - 1 (ln (5 · 4 + 8)) 2 = = - 1 10 · 1 + ∞ - 1 (ln 28) 2 = 1 10 · ln 28 2

В полученном сходящемся ряде, ∫ 4 + ∞ d x (5 x + 8) (ln (5 x + 8)) 3 , можно определить, что ∑ k = 4 ∞ 1 (5 k + 8) (ln (5 k + 8)) 3 также сходится.

Признак Раабе

Допустим, что ∑ k = 1 ∞ a k - знакоположительный числовой ряд.

Если lim k → + ∞ k · a k a k + 1 < 1 , то ряд расходится, если lim k → + ∞ k · a k a k + 1 - 1 > 1 , то сходится.

Данный способ определения можно использовать в том случае, если описанные выше техники не дают видимых результатов.

Исследование на абсолютную сходимость

Для исследования берем ∑ k = 1 ∞ b k . Используем знакоположительный ∑ k = 1 ∞ b k . Мы можем использовать любой из подходящих признаков, которые мы описывали выше. Если ряд ∑ k = 1 ∞ b k сходится, то исходный ряд является абсолютно сходящимся.

Пример 18

Исследовать ряд ∑ k = 1 ∞ (- 1) k 3 k 3 + 2 k - 1 на сходимость ∑ k = 1 ∞ (- 1) k 3 k 3 + 2 k - 1 = ∑ k = 1 ∞ 1 3 k 3 + 2 k - 1 .

Условие выполняется lim k → + ∞ 1 3 k 3 + 2 k - 1 = 1 + ∞ = 0 . Используем ∑ k = 1 ∞ 1 k 3 2 и воспользуемся вторым признаком: lim k → + ∞ 1 3 k 3 + 2 k - 1 1 k 3 2 = 1 3 .

Ряд ∑ k = 1 ∞ (- 1) k 3 k 3 + 2 k - 1 сходится. Исходный ряд также абсолютно сходящийся.

Расходимость знакопеременных рядов

Если ряд ∑ k = 1 ∞ b k – расходящийся, то соответствующий знакопеременный ряд ∑ k = 1 ∞ b k либо расходящийся, либо условно сходящийся.

Лишь признак Даламбера и радикальный признак Коши помогут сделать выводы о ∑ k = 1 ∞ b k по расходимости из модулей ∑ k = 1 ∞ b k . Ряд ∑ k = 1 ∞ b k также расходится, если не выполняется необходимое условие сходимости, то есть, если lim k → ∞ + b k ≠ 0 .

Пример 19

Проверить расходимость 1 7 , 2 7 2 , - 6 7 3 , 24 7 4 , 120 7 5 - 720 7 6 , . . . .

Модуль k -ого члена представлен как b k = k ! 7 k .

Исследуем ряд ∑ k = 1 ∞ b k = ∑ k = 1 ∞ k ! 7 k на сходимость по признаку Даламбера: lim k → + ∞ b k + 1 b k = lim k → + ∞ (k + 1) ! 7 k + 1 k ! 7 k = 1 7 · lim k → + ∞ (k + 1) = + ∞ .

∑ k = 1 ∞ b k = ∑ k = 1 ∞ k ! 7 k расходится так же, как и исходный вариант.

Пример 20

Является ли ∑ k = 1 ∞ (- 1) k · k 2 + 1 ln (k + 1) сходящимся.

Рассмотрим на необходимое условие lim k → + ∞ b k = lim k → + ∞ k 2 + 1 ln (k + 1) = ∞ ∞ = lim k → + ∞ = k 2 + 1 " (ln (k + 1)) " = = lim k → + ∞ 2 k 1 k + 1 = lim k → + ∞ 2 k (k + 1) = + ∞ . Условие не выполнено, поэтому ∑ k = 1 ∞ (- 1) k · k 2 + 1 ln (k + 1) ряд расходящийся. Предел был вычислен по правилу Лопиталя.

Признаки для условной сходимости

Признак Лейбница

Определение 12

Если величины членов знакочередующегося ряда убывают b 1 > b 2 > b 3 > . . . > . . . и предел модуля = 0 при k → + ∞ , то ряд ∑ k = 1 ∞ b k сходится.

Пример 17

Рассмотреть ∑ k = 1 ∞ (- 1) k 2 k + 1 5 k (k + 1) на сходимость.

Ряд представлен как ∑ k = 1 ∞ (- 1) k 2 k + 1 5 k (k + 1) = ∑ k = 1 ∞ 2 k + 1 5 k (k + 1) . Нужное условие выполняется lim k → + ∞ = 2 k + 1 5 k (k + 1) = 0 . Рассмотрим ∑ k = 1 ∞ 1 k по второму признаку сравнения lim k → + ∞ 2 k + 1 5 k (k + 1) 1 k = lim k → + ∞ 2 k + 1 5 (k + 1) = 2 5

Получаем, что ∑ k = 1 ∞ (- 1) k 2 k + 1 5 k (k + 1) = ∑ k = 1 ∞ 2 k + 1 5 k (k + 1) расходится. Ряд ∑ k = 1 ∞ (- 1) k 2 k + 1 5 k (k + 1) сходится по признаку Лейбница: последовательность 2 · 1 + 1 5 · 1 · 1 1 + 1 = 3 10 , 2 · 2 + 1 5 · 2 · (2 + 1) = 5 30 , 2 · 3 + 1 5 · 3 · 3 + 1 , . . . убывает и lim k → + ∞ = 2 k + 1 5 k (k + 1) = 0 .

Ряд условно сходится.

Признак Абеля-Дирихле

Определение 13

∑ k = 1 + ∞ u k · v k сходится в том случае, если { u k } не возрастает, а последовательность ∑ k = 1 + ∞ v k ограничена.

Пример 17

Исследуйте 1 - 3 2 + 2 3 + 1 4 - 3 5 + 1 3 + 1 7 - 3 8 + 2 9 + . . . на сходимость.

Представим

1 - 3 2 + 2 3 + 1 4 - 3 5 + 1 3 + 1 7 - 3 8 + 2 9 + . . . = 1 · 1 + 1 2 · (- 3) + 1 3 · 2 + 1 4 · 1 + 1 5 · (- 3) + 1 6 · = ∑ k = 1 ∞ u k · v k

где { u k } = 1 , 1 2 , 1 3 , . . . - невозрастающая, а последовательность { v k } = 1 , - 3 , 2 , 1 , - 3 , 2 , . . . ограничена { S k } = 1 , - 2 , 0 , 1 , - 2 , 0 , . . . . Ряд сходится.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

1.Числовые ряды: основные понятия, необходимые условия сходимости ряда. Остаток ряда.

2.Ряды с положительными членами и признаки их сходимости: признаки сравнения, Даламбера, Коши.

3. Знакочередующиеся ряды, признак Лейбница.

1. Определение числового ряда. Сходимость

В математических приложениях, а также при решении некоторых задач в экономике, статистике и других областях рассматриваются суммы с бесконечным числом слагаемых. Здесь мы дадим определение того, что понимается под такими суммами.

Пусть задана бесконечная числовая последовательность

Определение 1.1 . Числовым рядом или просто рядом называется выражение (сумма) вида

. (1.1)

Числа называютсячленами ряда , –общим или n–м членом ряда.

Чтобы задать ряд (1.1) достаточно задать функцию натурального аргумента вычисления-го члена ряда по его номеру

Пример 1.1 . Пусть . Ряд

(1.2)

называется гармоническим рядом .

Пример 1.2 . Пусть ,Ряд

(1.3)

называется обобщенным гармоническим рядом . В частном случае при получается гармонический ряд.

Пример 1.3 . Пусть =. Ряд

называется рядом геометрической прогрессии .

Из членов ряда (1.1) образуем числовую последовательность частичных сумм где – суммапервых членов ряда, которая называетсяn -й частичной суммой , т. е.

…………………………….

…………………………….

Числовая последовательность при неограниченном возрастании номераможет:

1) иметь конечный предел;

2) не иметь конечного предела (предел не существует или равен бесконечности).

Определение 1.2 . Ряд (1.1) называется сходящимся, если последовательность его частичных сумм (1.5) имеет конечный предел, т. е.

В этом случае число называетсясуммой ряда (1.1) и пишется

Определение 1.3. Ряд (1.1) называется расходящимся, если последовательность его частичных сумм не имеет конечного предела.

Расходящемуся ряду не приписывают никакой суммы.

Таким образом, задача нахождения суммы сходящегося ряда (1.1) равносильна вычислению предела последовательности его частичных сумм.

Рассмотрим несколько примеров.

Пример 1.4. Доказать, что ряд

сходится, и найти его сумму.

Найдем n-ю частичную сумму данного ряда .

Общий член ряда представим в виде.

Отсюда имеем: . Следовательно, данный ряд сходится и его сумма равна 1:

Пример 1.5 . Исследовать на сходимость ряд

Для этого ряда

. Следовательно, данный ряд расходится.

Замечание. При ряд (1.6) представляет собой сумму бесконечного числа нулей и является, очевидно, сходящимся.

2. Основные свойства числовых рядов

Свойства суммы конечного числа слагаемых отличаются от свойств ряда, т. е. суммы бесконечного числа слагаемых. Так, в случае конечного числа слагаемых их можно группировать в каком угодно порядке, от этого сумма не изменится. Существуют сходящиеся ряды (условно сходящиеся, которые будут рассмотрены в разделе 5), для которых, как показал Риман* , меняя надлежащим образом порядок следования их членов, можно сделать сумму ряда равной какому угодно числу, и даже расходящийся ряд.

Пример 2.1. Рассмотрим расходящийся ряд вида (1.7)

Сгруппировав его члены попарно, получим сходящийся числовой ряд с суммой, равной нулю:

С другой стороны, сгруппировав его члены попарно, начиная со второго члена, получим также сходящийся ряд, но уже с суммой, равной единице:

Сходящиеся ряды обладают некоторыми свойствами, которые позволяют действовать с ними, как с конечными суммами. Так их можно умножать на числа, почленно складывать и вычитать. У них можно объединять в группы любые рядом стоящие слагаемые.

Теорема 2.1. (Необходимый признак сходимости ряда).

Если ряд (1.1) сходится, то его общий член стремится к нулю при неограниченном возрастании n, т. е.

Доказательство теоремы следует из того, что , и если

S – сумма ряда (1.1), то

Условие (2.1) является необходимым, но недостаточным условием для сходимости ряда. Т. е., если общий член ряда стремится к нулю при , то это не значит, что ряд сходится. Например, для гармонического ряда (1.2)однако, как будет показано ниже, он расходится.

Ответ : ряд расходится.

Пример №3

Найти сумму ряда $\sum\limits_{n=1}^{\infty}\frac{2}{(2n+1)(2n+3)}$.

Так как нижний предел суммирования равен 1, то общий член ряда записан под знаком суммы: $u_n=\frac{2}{(2n+1)(2n+3)}$. Составим n-ю частичную сумму ряда, т.е. просуммируем первые $n$ членов заданного числового ряда:

$$ S_n=u_1+u_2+u_3+u_4+\ldots+u_n=\frac{2}{3\cdot 5}+\frac{2}{5\cdot 7}+\frac{2}{7\cdot 9}+\frac{2}{9\cdot 11}+\ldots+\frac{2}{(2n+1)(2n+3)}. $$

Почему я пишу именно $\frac{2}{3\cdot 5}$, а не $\frac{2}{15}$, будет ясно из дальнейшего повествования. Однако запись частичной суммы ни на йоту не приблизила нас к цели. Нам ведь нужно найти $\lim_{n\to\infty}S_n$, но если мы просто запишем:

$$ \lim_{n\to\infty}S_n=\lim_{n\to\infty}\left(\frac{2}{3\cdot 5}+\frac{2}{5\cdot 7}+\frac{2}{7\cdot 9}+\frac{2}{9\cdot 11}+\ldots+\frac{2}{(2n+1)(2n+3)}\right), $$

то эта запись, совершенно верная по форме, ничего нам не даст по сути. Чтобы найти предел, выражение частичной суммы предварительно нужно упростить.

Для этого есть стандартное преобразование, состоящее в разложении дроби $\frac{2}{(2n+1)(2n+3)}$, которая представляет общий член ряда, на элементарные дроби. Вопросу разложения рациональных дробей на элементарные посвящена отдельная тема (см., например, пример №3 на этой странице). Раскладывая дробь $\frac{2}{(2n+1)(2n+3)}$ на элементарные дроби, будем иметь:

$$ \frac{2}{(2n+1)(2n+3)}=\frac{A}{2n+1}+\frac{B}{2n+3}=\frac{A\cdot(2n+3)+B\cdot(2n+1)}{(2n+1)(2n+3)}. $$

Приравниваем числители дробей в левой и правой частях полученного равенства:

$$ 2=A\cdot(2n+3)+B\cdot(2n+1). $$

Чтобы найти значения $A$ и $B$ есть два пути. Можно раскрыть скобки и перегруппировать слагаемые, а можно просто подставить вместо $n$ некие подходящие значения. Сугубо для разнообразия в этом примере пойдём первым путём, а следующем - будем подставлять частные значения $n$. Раскрывая скобки и перегруппировывая слагаемые, получим:

$$ 2=2An+3A+2Bn+B;\\ 2=(2A+2B)n+3A+B. $$

В левой части равенства перед $n$ стоит ноль. Если угодно, левую часть равенства для наглядности можно представить как $0\cdot n+ 2$. Так как в левой части равенства перед $n$ стоит ноль, а в правой части равества перед $n$ стоит $2A+2B$, то имеем первое уравнение: $2A+2B=0$. Сразу разделим обе части этого уравнения на 2, получив после этого $A+B=0$.

Так как в левой части равенства свободный член равен 2, а в правой части равенства свободный член равен $3A+B$, то $3A+B=2$. Итак, имеем систему:

$$ \left\{\begin{aligned} & A+B=0;\\ & 3A+B=2. \end{aligned}\right. $$

Доказательство будем проводить методом математической индукции. На первом шаге нужно проверить, выполнено ли доказываемое равенство $S_n=\frac{1}{3}-\frac{1}{2n+3}$ при $n=1$. Мы знаем, что $S_1=u_1=\frac{2}{15}$, но даст ли выражение $\frac{1}{3}-\frac{1}{2n+3}$ значение $\frac{2}{15}$, если подставить в него $n=1$? Проверим:

$$ \frac{1}{3}-\frac{1}{2n+3}=\frac{1}{3}-\frac{1}{2\cdot 1+3}=\frac{1}{3}-\frac{1}{5}=\frac{5-3}{15}=\frac{2}{15}. $$

Итак, при $n=1$ равенство $S_n=\frac{1}{3}-\frac{1}{2n+3}$ выполнено. На этом первый шаг метода математической индукции закончен.

Предположим, что при $n=k$ равенство выполнено, т.е. $S_k=\frac{1}{3}-\frac{1}{2k+3}$. Докажем, что это же равенство будет выполнено при $n=k+1$. Для этого рассмотрим $S_{k+1}$:

$$ S_{k+1}=S_k+u_{k+1}. $$

Так как $u_n=\frac{1}{2n+1}-\frac{1}{2n+3}$, то $u_{k+1}=\frac{1}{2(k+1)+1}-\frac{1}{2(k+1)+3}=\frac{1}{2k+3}-\frac{1}{2(k+1)+3}$. Согласно сделанному выше предположению $S_k=\frac{1}{3}-\frac{1}{2k+3}$, поэтому формула $S_{k+1}=S_k+u_{k+1}$ примет вид:

$$ S_{k+1}=S_k+u_{k+1}=\frac{1}{3}-\frac{1}{2k+3}+\frac{1}{2k+3}-\frac{1}{2(k+1)+3}=\frac{1}{3}-\frac{1}{2(k+1)+3}. $$

Вывод: формула $S_n=\frac{1}{3}-\frac{1}{2n+3}$ верна при $n=k+1$. Следовательно, согласно методу математической индукции, формула $S_n=\frac{1}{3}-\frac{1}{2n+3}$ верна при любом $n\in N$. Равенство доказано.

В стандартном курсе высшей математики обычно довольствуются "вычёркиванием" сокращающихся слагаемых, не требуя никаких доказательств. Итак, мы получили выражение для n-й частичной суммы: $S_n=\frac{1}{3}-\frac{1}{2n+3}$. Найдём значение $\lim_{n\to\infty}S_n$:

Вывод: заданный ряд сходится и сумма его $S=\frac{1}{3}$.

Второй способ упрощения формулы для частичной суммы.

Честно говоря, я сам предпочитаю именно этот способ:) Давайте запишем частичную сумму в сокращённом варианте:

$$ S_n=\sum\limits_{k=1}^{n}u_k=\sum\limits_{k=1}^{n}\frac{2}{(2k+1)(2k+3)}. $$

Мы получили ранее, что $u_k=\frac{1}{2k+1}-\frac{1}{2k+3}$, поэтому:

$$ S_n=\sum\limits_{k=1}^{n}\frac{2}{(2k+1)(2k+3)}=\sum\limits_{k=1}^{n}\left(\frac{1}{2k+1}-\frac{1}{2k+3}\right). $$

Сумма $S_n$ содержит конечное количество слагаемых, поэтому мы можем переставлять их так, как нам заблагорассудится. Я хочу сначала сложить все слагаемые вида $\frac{1}{2k+1}$, а уж затем переходить к слагаемым вида $\frac{1}{2k+3}$. Это означает, что частичную сумму мы представим в таком виде:

$$ S_n =\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\ldots+\frac{1}{2n+1}-\frac{1}{2n+3}=\\ =\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\ldots+\frac{1}{2n+1}-\left(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\ldots+\frac{1}{2n+3}\right). $$

Конечно, развёрнутая запись крайне неудобна, поэтому представленное выше равенство можно оформить более компактно:

$$ S_n=\sum\limits_{k=1}^{n}\left(\frac{1}{2k+1}-\frac{1}{2k+3}\right)=\sum\limits_{k=1}^{n}\frac{1}{2k+1}-\sum\limits_{k=1}^{n}\frac{1}{2k+3}. $$

Теперь преобразуем выражения $\frac{1}{2k+1}$ и $\frac{1}{2k+3}$ к одному виду. Я полагаю удобным приводить к виду большей дроби (хотя можно и к меньшей, это дело вкуса). Так как $\frac{1}{2k+1}>\frac{1}{2k+3}$ (чем больше знаменатель, тем меньше дробь), то будем приводить дробь $\frac{1}{2k+3}$ к виду $\frac{1}{2k+1}$.

Выражение в знаменателе дроби $\frac{1}{2k+3}$ я представлю в таком виде:

$$ \frac{1}{2k+3}=\frac{1}{2k+2+1}=\frac{1}{2(k+1)+1}. $$

И сумму $\sum\limits_{k=1}^{n}\frac{1}{2k+3}$ теперь можно записать так:

$$ \sum\limits_{k=1}^{n}\frac{1}{2k+3}=\sum\limits_{k=1}^{n}\frac{1}{2(k+1)+1}=\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}. $$

Если равенство $\sum\limits_{k=1}^{n}\frac{1}{2k+3}=\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}$ не вызывает вопросов, то пойдём далее. Если же вопросы есть, то прошу развернуть примечание.

Как мы получили преобразованную сумму? показать\скрыть

У нас был ряд $\sum\limits_{k=1}^{n}\frac{1}{2k+3}=\sum\limits_{k=1}^{n}\frac{1}{2(k+1)+1}$. Давайте вместо $k+1$ введём новую переменную, - например, $t$. Итак, $t=k+1$.

Как изменялась старая переменная $k$? А изменялась она от 1 до $n$. Давайте выясним, как же будет изменяться новая переменная $t$. Если $k=1$, то $t=1+1=2$. Если же $k=n$, то $t=n+1$. Итак, выражение $\sum\limits_{k=1}^{n}\frac{1}{2(k+1)+1}$ теперь стало таким: $\sum\limits_{t=2}^{n+1}\frac{1}{2t+1}$.

$$ \sum\limits_{k=1}^{n}\frac{1}{2(k+1)+1}=\sum\limits_{t=2}^{n+1}\frac{1}{2t+1}. $$

У нас есть сумма $\sum\limits_{t=2}^{n+1}\frac{1}{2t+1}$. Вопрос: а не всё ли равно, какую букву использовать в этой сумме? :) Банально записывая букву $k$ вместо $t$, получим следующее:

$$ \sum\limits_{t=2}^{n+1}\frac{1}{2t+1}=\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}. $$

Вот так и получается равенство $\sum\limits_{k=1}^{n}\frac{1}{2(k+1)+1}=\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}$.

Таким образом, частичную сумму можно представить в следующем виде:

$$ S_n=\sum\limits_{k=1}^{n}\frac{1}{2k+1}-\sum\limits_{k=1}^{n}\frac{1}{2k+3}=\sum\limits_{k=1}^{n}\frac{1}{2k+1}-\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}. $$

Заметьте, что суммы $\sum\limits_{k=1}^{n}\frac{1}{2k+1}$ и $\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}$ отличаются лишь пределами суммирования. Сделаем эти пределы одинаковыми. "Забирая" первый элемент из суммы $\sum\limits_{k=1}^{n}\frac{1}{2k+1}$ будем иметь:

$$ \sum\limits_{k=1}^{n}\frac{1}{2k+1}=\frac{1}{2\cdot 1+1}+\sum\limits_{k=2}^{n}\frac{1}{2k+1}=\frac{1}{3}+\sum\limits_{k=2}^{n}\frac{1}{2k+1}. $$

"Забирая" последний элемент из суммы $\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}$, получим:

$$\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}=\sum\limits_{k=2}^{n}\frac{1}{2k+1}+\frac{1}{2(n+1)+1}=\sum\limits_{k=2}^{n}\frac{1}{2k+1}+\frac{1}{2n+3}.$$

Тогда выражение для частичной суммы примет вид:

$$ S_n=\sum\limits_{k=1}^{n}\frac{1}{2k+1}-\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}=\frac{1}{3}+\sum\limits_{k=2}^{n}\frac{1}{2k+1}-\left(\sum\limits_{k=2}^{n}\frac{1}{2k+1}+\frac{1}{2n+3}\right)=\\ =\frac{1}{3}+\sum\limits_{k=2}^{n}\frac{1}{2k+1}-\sum\limits_{k=2}^{n}\frac{1}{2k+1}-\frac{1}{2n+3}=\frac{1}{3}-\frac{1}{2n+3}. $$

Если пропустить все пояснения, то процесс нахождения сокращённой формулы для n-й частичной суммы примет такой вид:

$$ S_n=\sum\limits_{k=1}^{n}u_k =\sum\limits_{k=1}^{n}\frac{2}{(2k+1)(2k+3)} =\sum\limits_{k=1}^{n}\left(\frac{1}{2k+1}-\frac{1}{2k+3}\right)=\\ =\sum\limits_{k=1}^{n}\frac{1}{2k+1}-\sum\limits_{k=1}^{n}\frac{1}{2k+3} =\frac{1}{3}+\sum\limits_{k=2}^{n}\frac{1}{2k+1}-\left(\sum\limits_{k=2}^{n}\frac{1}{2k+1}+\frac{1}{2n+3}\right)=\frac{1}{3}-\frac{1}{2n+3}. $$

Напомню, что мы приводили дробь $\frac{1}{2k+3}$ к виду $\frac{1}{2k+1}$. Разумеется, можно поступить и наоборот, т.е. представить дробь $\frac{1}{2k+1}$ в виде $\frac{1}{2k+3}$. Конечное выражение для частичной суммы не изменится. Процесс нахождения частичной суммы в этом случае я скрою под примечание.

Как найти $S_n$, если приводить к виду иной дроби? показать\скрыть

$$ S_n =\sum\limits_{k=1}^{n}\frac{1}{2k+1}-\sum\limits_{k=1}^{n}\frac{1}{2k+3} =\sum\limits_{k=0}^{n-1}\frac{1}{2k+3}-\sum\limits_{k=1}^{n}\frac{1}{2k+3}=\\ =\frac{1}{3}+\sum\limits_{k=1}^{n-1}\frac{1}{2k+3}-\left(\sum\limits_{k=1}^{n-1}\frac{1}{2k+3}+\frac{1}{2n+3}\right) =\frac{1}{3}-\frac{1}{2n+3}. $$

Итак, $S_n=\frac{1}{3}-\frac{1}{2n+3}$. Находим предел $\lim_{n\to\infty}S_n$:

$$ \lim_{n\to\infty}S_n=\lim_{n\to\infty}\left(\frac{1}{3}-\frac{1}{2n+3}\right)=\frac{1}{3}-0=\frac{1}{3}. $$

Заданный ряд сходится и сумма его $S=\frac{1}{3}$.

Ответ : $S=\frac{1}{3}$.

Продолжение темы нахождения суммы ряда будет рассмотрено во второй и третьей частях.



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация